鐘衛庚
摘 ?要:解題教學是高三數學課堂的主要形式,如何提高解題教學的有效性,提升高考復習備考效益、發展學生數學核心素養是值得研究的課題.現階段的解題教學,過分強調“教師示范+學生模仿”,淡化對學生的引導、啟發,在講解題思路時常出現這樣的情況:“容易想到”“不難想到”“由題意可知”等話語,學生聽了猶如霧里看花,最后只能識記“解題模式”,當再次碰到相類似的問題時他們就進行“模式識別”,結果試題稍作變形就不知所措了.因此,解題教學要立足核心素養,合理引導學生積極參與思考,理解數學概念、公式,體會解題過程,反思解題思路與方法,積累經驗,以達到提升學生數學綜合能力,促進學生核心素養發展目的.本文結合教學實例,進行闡述如立足核心素養,探討解題教學,與同行探討、交流。
關鍵詞:解題教學;分析問題;規范表述;反思小結
高考復習備考中高效的解題教學,有利于精準復習、高效備考,促進學生數學核心素養的發展.文章結合教學實例,通過合理引導學生學會分析問題、規范表述、反思小結,達到提升學生的數學綜合能力,發展學生的數學核心素養.希望能夠為廣大一線教師拋磚引玉.
1核心素養視角下的解題教學探討
1.1尋求準確的突破口
解題不單單應該儲存很多的知識量,還應該仔細準確地審核題目,尋求準確的解答突破口.大多數時候,學生在課堂教學中聽明白了,不過只要遇到解題就十分迷茫,其根本因素就是學生并不具備一定的審題水平,還無法科學運用現有條件對題目展開準確的探究,繼而實現高質量高效地解題.所以,高三階段學生應該在儲備了足夠的知識量以后,還應該培育其尋求準確解題突破口的水平,應該在短暫的時間之內厘清現有條件和未知條件的關聯所在,擬出確立的解題目標,不斷尋求該題目當中的解題核心,認識到題目當中最好的著手點.
1.2應有多元化的解題方式,拓展解題思路
數學題目是各式各樣的,其題目大多會產生一題多變、多個解答之類的狀況,大多數的題目解題方式并不是非此不行.高三階段的學生在高效解題方面,還應該多對這類題目展開探究,經過分析具體地展現出數學探究方式.實際上,數學解答題目的經過一直都是探究、探究、再探究,只有如此才能夠展現出數學問題在其形成同時被解答的實際經過.一方面,這種經過可以有利于教師根據學生的特點來因材施教;另一方面,還屬于衡量學生解題水平的度量尺度.不單單能夠強化學生多解求變的水平,還能夠更有效地培育學生在數學解題過程中的靈活性和思維的發散性.
1.3儲備所有知識展開準確的預測
學霸也不是一蹴而就的,只有儲備充分的知識,才可以切實成為一名標準的學霸.高三階段學生在對數學進行解題的時候,如若儲備充足的知識,就可以順應數學題目當中的多元化,在解答問題上就可以巧妙合理地轉化,不然,要是想實現高效的解題是不可能的,更別提準確展開解答題目的預測,尋找便捷適當的解題方式.
2解題反思觀念的培養建立
2.1反思解題策略,認識數學哲理
解題過程其實就是一個從知識點關聯到數學思想的應用再到解題策略的挑選,一個從簡到繁的煩瑣動態內心過程,因此,數學解題反思的對象也應該對應地從基礎知識、方式朝著數學理念、對策等慢慢提升,促使學生可以更加理性地思考數學問題,認識數學哲理.比如,解方程:(a-2)2-3(a-2)+2=0.這個方程式如若運用過去的方式,把(a-2)2全部展開、合并最終再求解,那么會特別煩瑣與費力,經過觀察,很容易察覺方程中出現兩次(a-2)這個細致的環節,其實我們可以把(a-2)看成一個整體,設a-2為b,如此一來方程就在很大程度上簡化成一元二次方程b2-3b+2+0.再運用一元二次方程的求解方式就可以自然得出b的值,而b=a-2,a的值也可以得出.同樣的道理,我們可以運用這樣的方式,對高次的方程轉化成一元二次方程去解,比如,a4-a2-6=0,可以設b=a2,方程就變成b2-b-6=0,再運用一元二次方程的解題方式去解題.
2.2反思解題失誤,認識數學原理
對錯誤的解題方式展開及時的反思,不僅能夠尋找改正錯誤的憑證,并且還存在更深刻的價值.其一,它是產生準確解題思路的前提,錯誤的背后往往是準確的認知.其二,對多元化的解題思路的分析充分體現了學生的思維發展經過,教師在這個過程當中應該主動引導學生展開全面的反思,能夠科學強化解題教學的針對性,學生通過反思的失誤,再到理解,可以深層感悟數學的原理.
2.3反思多題一解,認識數學模型
一樣的數學題目,能夠從不同的視角作為出發點展開題目的解答,這也是思維的發散性.相反,諸多數學題目,從相同的視角出發展開解答,就是思維的收斂性,在遇到一個題目的初期階段,因為解題處在探究期,因此,常常展現思維發散性,同時一經探究,確立了解題思路,思維就開始進行收斂,當同一個思維模式在多元化題目的解題過程中重復奏效,那么就會出現加強的功能.這個時候,教師應該可以對學生反思展開第一時間的引導,認識到數學模型的價值,必然會加強學生數學解題方式的挑選與評判.
結束語
解題教學時,教師需在學生的最近發展區分析問題,引起學生的共鳴,并及時給學生提供體驗、分享學習體會的機會.只有這樣,學生再次碰到同類問題時方可能自然地想到正確的解答思路,否則學生只能停留在“聽懂”,做題時只能進行“模式識別”以及生搬硬套的模仿,學生的解題能力和數學素養的提升就無從談起了.同時,如何合理引導,讓學生學會分析問題、學會規范表述、學會反思小結,直接體現一個教師的專業素養與業務能力水平.教師只有不斷地研究考綱、研究考題、研究學生、研究解題方法、研究教材教法、研究數學學習心理和教學心理等,在合理引導學生分析問題、規范表述、反思小結時方可讓學生真正領會解題思想方法,切實提高數學解題能力.
參考文獻:
[1] 趙志強.試論高中數學解題教學誤區及應對策略[J].數理化解題研究,2020,第9期
[2] 周錦春.解題教學中觀察能力的培養:意義、策略與路徑[J].數學教學通訊,2020,第9期
[3] 陳兆緒.類比中獲新知 應用中顯能力 ——從初中數學類比法解題談起[J].數學教學通訊,2020,第8期
[4] 張矛.分類討論思想在初中數學解題教學中的應用[J].中學課程輔導(教學研究),2020,第14卷,第6期