盧金昭 房曉宸 梁海鷹 何軍軍 申鋮皓










摘要:【目的】掌握馬氏珠母貝(Pinctada fucata martensii)Nα-乙酰轉移酶60基因(PmNatF)在不同組織、不同發育時期及不同病原相關分子模式(PAMPs)刺激下的表達變化規律,為后續研究NatF基因功能及揭示其在刺激應答中的分子機制提供理論依據。【方法】運用RACE克隆PmNatF基因cDNA序列,通過ProtScale、ProtParam、PSITE-Search、SignalP 4.1、SMART及Cell-PLoc 2.0 Package等在線軟件進行生物信息學分析,并以實時熒光定量PCR檢測PmNatF基因組織表達分布特征及其在不同發育時期和PAMPs刺激后的表達情況。【結果】PmNatF基因cDNA序列全長1142 bp,其開放閱讀框(ORF)為693 bp,5'端非編碼區(5'-UTR)為181 bp,3'端非編碼區(3'-UTR)為268 bp,共編碼230個氨基酸殘基。PmNatF蛋白分子量約26.64 kD,理論等電點(pI)為8.54,總平均親水性系數為-0.068,為不穩定的親水蛋白;PmNatF蛋白不存在信號肽和跨膜結構域,包含有N-乙酰轉移酶結構域(Acetyltransf_1 domain),其亞細胞定位于細胞質。PmNatF蛋白二級結構中,α-螺旋占36.52%,β-轉角占6.96%,延伸鏈占22.91%,無規則卷曲占33.91%;其三維結構與太平洋牡蠣(Crassostrea gigas)的NatF蛋白結構相似。PmNatF氨基酸序列與其他物種的NatF氨基酸序列高度同源,其中與美洲牡蠣(C. virginica)和歐洲大扇貝(Pecten maximus)的NatF氨基酸序列相似性較高,分別為76.52%和75.22%。PmNatF基因在馬氏珠母貝各組織中均有表達,以在性腺中的相對表達量最高;在不同發育時期也均有PmNatF基因表達,其相對表達量以卵的最高,擔輪幼蟲的最低。在脂多糖(LPS)刺激下,馬氏珠母貝鰓組織PmNatF基因表達呈上調趨勢,于刺激24 h時達最高值;在肽聚糖(PGN)刺激下,至刺激6 h時出現明顯的峰值;在聚肌胞苷酸(PolyI:C)刺激下,則在刺激72 h時出現峰值。【結論】PmNatF基因具有較高的保守性,在馬氏珠母貝各組織及不同發育時期均有表達,尤其以性腺和卵的相對表達量最高,且經PAMPs刺激后在馬氏珠母貝鰓組織中呈明顯的差異表達,表明PmNatF基因可能參與馬氏珠母貝生殖細胞的分裂和成熟及其免疫應答過程。
關鍵詞:馬氏珠母貝;NatF基因;性腺;卵;PAMPs刺激;表達特征
中圖分類號: S968.316.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2021)11-3085-08
Cloning and expression analysis of NatF gene from
Pinctada fucata martensii
LU Jin-zhao1,2, FANG Xiao-chen1,2, LIANG Hai-ying1,2,3*, HE Jun-jun1,2,
SHEN Cheng-hao1,2
(1Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong? 524088, China; 2Shenzhen Research Institute, Guangdong Ocean University, Shenzhen,Guangdong? 518108, China; 3 Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong? 518108, China)
Abstract:【Objective】By exploring the expression pattern of different tissues,different development stages,and pathogen-related molecular model(PAMPs) stimulation of Pinctada fucata martensii would provide a theoretical basis for the follow-up study of the N acetyltransferase 60(NatF) gene function and the molecular mechanism of response to stimulation. 【Method】The full length of NatF from P. fucata martensii (PmNatF) cDNA was obtained using rapid amplification of cDNA ends (RACE) technology. Bioinformatics analysis was carried out by online softwares such as ProtScale, ProtParam, PSITE-Search, SignalP 4.1, SMART, and Cell-PLoc 2.0 Package. And real-time fluorescence quantitative PCR (RT-PCR) was used to detect the expression of different tissues, different developmental stages,and performance after being stimulated by PAMPs of PmNatF. 【Result】 The results showed that the full length of PmNatF cDNA was 1142 bp, containing a 5' end non coding region(5'-UTR) of 181 bp, a 3' end noncoding region(3'-UTR) of 268 bp and an open reading frame (ORF) of 693 bp which encoded 230 amino acids. It was predicted that its molecular weight of PmNatF protein was about 26.64 kD and its theoretical isoelectric point(pI)was 8.54.The overall average hydrophilicity coefficient was -0.068, which was an unstable hydrophilic protein. Analysis of deduced amino acids showed that it had no signal peptide and transmembrane domain, and contained an acetyltransf_1 domain, and subcellular localization in the cytoplasm. In the secondary structure of PmNatF protein, α-helix accounted for 36.52%, β-turn accounted for 6.96%, extended chain accounted for 22.91%, and random coil accounted for 33.91%. Its three-dimensional structure was similar to that of Pacific oyster(Crassostrea gigas) NatF protein. The amino acid sequence of PmNatF was highly conservative among species, among which the amino acid sequence similarity with the NatF of American oyster(C. virginica) and European scallop (Pecten maximus) were high, 76.52% and 75.22%, respectively. RT-PCR showed that PmNatF was expressed in all the tested tissues, with the highest expression in gonads , and the expression was also found in different developmental stages, with highest expression in the egg stage and lowest in trochophore stage. After stimulated by? lipopolysaccharide(LPS), the relative expression reached the highest level at 24 h; under? peptidoglycan(PGN) stimulation, PmNatF was greatly up-regulated, peaked at 6 h; under PolyI:C stimulation, the relative expression reached the highest at 72 h. 【Conclusion】The PmNatF gene is highly conserved and? expresses in various tissues and in different developmental stages, especially the highly expresses in gonads and egg stage. It is differentially expressed in the gill tissue after stimulation with PAMPs, indicating that the gene may be involved in the process of in the division and maturation of germ cells and its immune response of P. fucata martensii.
Key words: Pinctada fucata martensii; NatF gene; gonad; egg; PAMPs stimulation; expression characters
Foundation item: National Natural Science Foundation of China(31472306);Guangdong Natural Science Foundation(2021A1515010962);Special Project of Guangdong Seaport Construction and Fishery Industry Development (A2016 08B15);Shenzhen Science and Technology Plan(JCYJ20180507183240459)
0 引言
【研究意義】海洋生物對環境刺激的應答初期均通過調控關鍵蛋白翻譯后修飾,而進一步調控下游的級聯反應(Li et al.,2020)。N-末端乙酰化(NTA)是真核生物中最豐富的蛋白修飾作用之一,在蛋白相互作用、蛋白復合物形成、蛋白降解、蛋白亞細胞定位/靶向及蛋白折疊等方面發揮重要作用(Behnia et al.,2004;Hole et al.,2011;Silva and Martinho,2015)。NTA是通過Nα-乙酰轉移酶(NATs)將乙酰基從乙酰輔酶A(Ac-CoA)轉移至底物蛋白N-末端α-氨基的一種蛋白修飾過程(Varland et al.,2018)。因此,克隆馬氏珠母貝(Pinctada fucata martensii)Nα-乙酰轉移酶60基因(PmNatF)cDNA序列并進行組織表達分析,可為后續研究NatF基因功能及其對刺激應答后的翻譯后修飾提供理論依據。【前人研究進展】在真核生物中,主要存在6個NATs亞型(NatA~NatF),且分別具有各自的底物特異性,大多數NATs需結合1~2個輔助因子才能發揮作用;而NatD(Naa40)和NatF(Naa60)是單體酶,能獨立發揮作用(Ree et al.,2015;St?ve et al.,2016)。NatF與其他NATs一致,具有進化保守的結構特征,屬于GNAT蛋白家族(Aksnes et al.,2015b)。NatF主要定位于高爾基體,參與跨膜蛋白的NTA,可催化N-末端具有Met-Lys-序列的底物而發生Nα-末端乙酰化,但在酵母中N-末端很少發生乙酰化(Linster et al.,2020)。NatF對維持人類高爾基體結構的完整性具有重要意義,敲除NatF基因會導致高爾基體破裂,進而抑制細胞增殖(Aksnes et al.,2015a)。高爾基體是細胞增殖中心的調節器,NatF通過乙酰化高爾基體功能相關底物蛋白,以維持高爾基體的結構(Linster et al.,2020)。已有研究發現,在果蠅(Drosophila melanogaster)Dme12細胞中,NatF不會對有絲分裂中期整齊排列于赤道板附近的染色體造成明顯影響,但后期發現染色體分離缺陷(von Damme et al.,2011)。在植物中,NTAs通過調節免疫蛋白穩定性而調控植物免疫。其中,NatA在擬南芥(Arabidopsis thalia-na)中參與干旱脅迫響應并在植物免疫中發揮重要作用(Linster and Wirtz,2018);NatB復合物參與鹽脅迫應答,且NatB和NatC的缺失會導致發育缺陷及生長遲緩(Feng et al.,2020);NatA和NatB以拮抗方式調控Nod樣受體SCN1蛋白穩定性而調節植物免疫反應(Xu et al.,2015);NatE通過乙酰化不同底物來調控不同發育過程(Feng et al.,2020); NatF則通過翻譯后修飾質膜蛋白以提高擬南芥的耐鹽性(Linster et al.,2020)。【本研究切入點】馬氏珠母貝是我國南方海水珍珠培育的主要貝類之一,分布廣泛,且具有極高的經濟價值(Lei et al.,2016;Wu et al.,2020)。馬氏珠母貝的筏式養殖方式極易受到生物或非生物因素影響(Adzigbli et al.,2020),尤其在高密度養殖過程中各種病害頻繁發生,其機體免疫應激研究已引起廣泛關注,但至今鮮見針對馬氏珠母貝NTA修飾的相關研究報道。【擬解決的關鍵問題】從馬氏珠母貝鰓組織中克隆NatF基因并進行生物信息學分析,掌握其在不同組織、不同發育時期及不同病原相關分子模式(PAMPs)刺激下的表達變化規律,為后續研究NatF基因功能及揭示其在刺激應答中的分子機制提供理論依據。
1 材料與方法
1. 1 試驗材料
供試2齡馬氏珠母貝采自廣東省湛江市徐聞珍珠養殖基地,清除貝體表面附著物,經實驗室暫養1周后進行后續試驗。TRIzol試劑和SYBR?Select MasterMix購自Thermo Fisher Scientific公司;Primer Star、反轉錄試劑盒、Reverse Transcriptase M-MLV(RNase H)、DNA Marker、rTaq DNA聚合酶及pMD19-T載體等購自TaKaRa公司;RACE試劑盒購自Clontech公司。
1. 2 總RNA提取及cDNA合成
采用TRIzol法提取馬氏珠母貝鰓組織總RNA,通過1.0%瓊脂糖凝膠電泳和NanoDrop ND1000紫外分光光度計檢測RNA質量。參照RACE試劑盒說明制備5'-RACE和3'-RACE模板,并參照RNase H說明合成cDNA模板。
1. 3 PmNatF基因cDNA序列獲得
從已構建的馬氏珠母貝血細胞轉錄組文庫中搜索注釋為NatF的Unigene序列,并進行BLASTx比對分析(He et al.,2019),設計PmNatF基因的特異性擴增引物(表1)。以鰓組織為RACE的模板,進行中間片段驗證后采用巢式PCR擴增其5'端和3'端。將純化的目的基因片段導入pMD19-T載體后,轉化Trans1-T1 Phage Resistant感受態細胞,過夜培養;挑取陽性單克隆菌落進行PCR檢測,并送至廣州生工生物科技有限公司測序。參考何軍軍等(2018)的方法,使用DNAMAN 8.0將Unigene序列和測序獲得的序列進行重疊拼接,以獲得PmNatF基因cDNA序列。
1. 4 PmNatF基因生物信息學分析
采用NCBI中的ORF Finder預測PmNatF基因開放閱讀框(ORF)及其推導氨基酸序列;運用ExPASy中的ProtScale和ProtParam及PSITE-Search分別預測PmNatF蛋白的親/疏水性、理化性質和功能位點;通過SignalP 4.1、SMART及Cell-PLoc 2.0 Package預測該蛋白的信號肽、跨膜結構域和亞細胞定位;采用SOPMA和SWISS-MODEL預測PmNatF蛋白的二、三級結構;運用Jalview進行同源比對分析,并以MEGA X構建系統發育進化樹。
1. 5 實時熒光定量PCR檢測PmNatF基因表達情況
不同組織:挑選10只規格一致、活力較好的馬氏珠母貝,取其血淋巴液(B)、閉殼肌(A)、肝胰腺(He)、鰓(Gi)、邊緣膜區(Me)、中央膜區(Mc)、套膜區(Mp)和性腺(Go)等8個組織分別放入凍存管,并立即放入液氮中保存備用。不同發育時期:收集卵、受精卵、囊胚期、原腸胚、擔輪幼蟲、D型幼蟲、早期殼頂幼蟲期及眼點期等8個發育時期的馬氏珠母貝全組織,分別放入凍存管,并立即放入液氮中保存備用。PAMPs刺激:取暫養1周的健康馬氏珠母貝320只,隨機分成4組,每組80只;采用閉殼肌注射的方法,試驗組每只馬氏珠母貝注射100 μL(10 μg/mL)脂多糖(Lipopolysaccharide,LPS)或肽聚糖(Peptidoglycan,PGN)或聚肌胞苷酸(Polyinosinic acid-polycytidylic acid,PolyI:C),注射后3、6、12、24、48、72和96 h分別收集10只馬氏珠母貝的鰓組織,對照組注射100 μL PBS。血淋巴液在4 ℃下3000 r/min離心5 min,棄上清液,經TRIzol試劑處理后同其他組織均置于-80 ℃冰箱保存備用。提取各組織樣品RNA,以無RNA酶的DNase I進行處理,再用RNase H反轉錄合成cDNA模板,然后進行實時熒光定量PCR檢測。以Actin為內參基因,采用2-△△Ct法換算各組織的PmNatF基因相對表達量。運用SPSS 26.0對試驗數據進行單因素方差分析(One-way ANOVA),并以Duncan’s多重比較進行差異顯著性檢驗(Wu et al.,2020)。
2 結果與分析
2. 1 PmNatF基因克隆及序列分析結果
經RACE克隆后,通過DNAMAN 8.0將Unigene序列和測序獲得的序列進行重疊拼接,得到PmNatF基因cDNA序列全長為1142 bp。其中,5'端非編碼區(5'-UTR)為181 bp;3'端非編碼區(3'-UTR)為268 bp,包含26 bp的poly(A)尾巴;ORF為693 bp,共編碼230個氨基酸殘基(圖1)。PmNatF蛋白分子量約26.64 kD,理論等電點(pI)為8.54。
2. 2 PmNatF蛋白理化性質預測分析結果
ProtScale預測結果表明,PmNatF蛋白總平均親水性系數為-0.068,屬于親水蛋白,在第67位氨基酸處達最高疏水性,在第154位氨基酸處達最高親水性(圖2)。ProParam預測結果顯示,PmNatF蛋白不穩定系數為39.78,屬于不穩定蛋白。ScanProsite預測發現,在第21~155位氨基酸處包含有N-乙酰轉移酶結構域(Acetyltransf_1 domain)(圖3)。PmNatF蛋白不存在信號肽和跨膜結構域,其亞細胞定位于細胞質。SoftBerry-Psite預測其功能位點,證實PmNatF蛋白包含2個PKC磷酸化位點、3個酪蛋白激酶Ⅱ磷酸化位點、1個酪氨酸激酶磷酸化位點、2個CAAX盒及5個微體C-末端定位信號序列。在PmNatF蛋白二級結構中,α-螺旋占36.52%,β-轉角占6.96%,延伸鏈占22.91%,無規則卷曲占33.91%。SWISS-MODEL預測結果表明,PmNatF蛋白三維結構與太平洋牡蠣(Crassostrea gigas)的NatF蛋白結構相似(圖4)。
2. 3 NatF多序列比對及系統發育進化分析結果
BLASTx比對分析結果顯示,PmNatF氨基酸序列與其他物種的NatF氨基酸序列高度同源,其中與美洲牡蠣(C. virginica)和歐洲大扇貝(Pecten maximus)的NatF氨基酸序列相似性較高,分別為76.52%和75.22%,說明NatF高度保守。采用MEGAX對PmNatF氨基酸序列與美洲牡蠣(XP_022318747.1)、歐洲大扇貝(XP_033737223.1)、蝦夷扇貝(Mizuhopectenyessoensis,XP_021379455.1)、太平洋牡蠣(XP_011444570.1)、小鼠(Mus musculus,NP_083366.1)、人類(Homo sapiens,NP_079121.1)和斑馬魚(Danio rerio,NP_001076341.1)的NatF氨基酸序列進行多序列比對分析,結果發現物種間的NatF氨基酸序列相似性較高(圖5)。從基于NatF氨基酸序列相似性構建的系統發育進化樹(圖6)也可看出,馬氏珠母貝與美洲牡蠣、長牡蠣(C. gigas)、蝦夷扇貝和歐洲大扇貝先聚為一簇,再與普通章魚(Octopus vulgaris)聚為一大支,而人類、小鼠和斑馬魚聚為另一大支,與傳統的物種分類相吻合。
2. 4 PmNatF基因組織表達分布特征及其在不同發育時期的表達情況
采用實時熒光定量PCR檢測PmNatF基因在馬氏珠母貝各組織中的表達情況,結果發現PmNatF基因在各組織中均有表達,以在性腺中的相對表達量最高,其次是血淋巴液和鰓組織(圖7)。在不同發育時期也均有PmNatF基因表達,其相對表達量以卵的最高,其次是受精卵和囊胚期,擔輪幼蟲的相對表達量最低(圖8)。
2. 5 PAMPs刺激后PmNatF基因在馬氏珠母貝鰓組織中的時序表達特征
選擇LPS、PGN和PolyI:C等病原激活馬氏珠母貝先天免疫反應,實時熒光定量PCR檢測PmNatF基因在馬氏珠母貝鰓組織中的時序變化情況,結果表明,在LPS刺激下,馬氏珠母貝鰓組織PmNatF基因表達呈上調趨勢,至刺激24 h時其相對表達量上升至最高值,然后緩慢恢復到正常水平(圖9-A);在PGN刺激下,馬氏珠母貝鰓組織PmNatF基因表達也明顯上調,至刺激6 h時出現明顯的峰值(圖9-B);在PolyI:C刺激下,馬氏珠母貝鰓組織PmNatF基因表達總體上呈先降低后逐漸上升的變化趨勢,至刺激72 h時出現峰值(圖9-C)。
3 討論
NTA是真核生物中普遍存在的修飾形式(Linster and Wirtz,2018),與其他蛋白翻譯后修飾相比,NTA生物學功能的研究相對較匱乏。質膜作為細胞與環境間的分子—信息交流接口,與質膜相關的NatF已引起廣泛關注。本研究運用RACE成功克隆獲得PmNatF基因cDNA序列,ScanProsite結構域預測結果表明PmNatF蛋白含有N-乙酰轉移酶結構域(Acetyltransf_1 domain),屬于GNAT蛋白超家族。GNAT超家族由十幾個蛋白家族組成,參與多種細胞過程包括應急調節、轉錄控制、細胞溶膠狀態維持及保護細胞內容物免受細胞損傷等一系列功能(Xie et al.,2014;Salah Ud-Din et al.,2016;Czub et al.,2018)。PmNatF蛋白無信號肽和跨膜結構域,可能為胞內蛋白。Aksnes等(2015a,2015b)在人類NatF的第52~69位和第84~104位氨基酸區域發現較弱的跨膜結構域,表明NatF是一種面向細胞膜的外周膜蛋白,只有在脂質體存在的情況下C端才能折疊成α-螺旋構象,通過疏水和靜電作用特異定位在高爾基體上。
PmNatF氨基酸序列與其他物種的NatF氨基酸序列高度同源,其中與美洲牡蠣和歐洲大扇貝的NatF氨基酸序列相似性較高,分別為76.52%和75.22%,說明NatF高度保守。在真菌及釀酒酵母中,由于進化過程出現二次丟失而缺乏NatF,也可能是人類乙酰化程度高于酵母所致(Kalvik and Arnesen,2013),但目前尚無證據表明進化過程中高等真核生物的N-末端更易乙酰化(von Damme et al.,2011)。Rathore等(2016)研究表明,真核生物NATs的多樣化并未增加,但不可否認NTA在多細胞組織中的重要作用。本研究采用實時熒光定量PCR檢測PmNatF基因在馬氏珠母貝各組織及不同發育時期的表達情況,結果發現PmNatF基因在閉殼肌、血淋巴液、鰓、性腺、肝胰腺、中央膜區、邊緣膜區及套膜區等8個組織中均有不同程度的表達,且以在性腺中的相對表達量最高,其次是血淋巴液和鰓組織,在閉殼肌中的相對表達量最低;不同發育時期則以卵的PmNatF基因相對表達量最高,擔輪幼蟲的相對表達量最低。von Damme等(2011)研究發現,敲除果蠅Dmel2細胞的NatF基因會導致染色體分離缺陷,即NatF基因與生物體染色體分離密不可分(Hole et al.,2011)。PmNatF基因在馬氏珠母貝卵中的高表達可能與其參與生殖細胞的減數分裂及成熟過程相關,且與染色體的分離密切相關(何毛賢等,2002)。
馬氏珠母貝的養殖方式使其暴露在許多病原微生物及各種各樣的環境條件下(He et al.,2020),鰓組織是馬氏珠母貝與外界環境接觸的主要器官,也是雙殼類軟體動物抵御細菌感染的第一道防線(Zhang et al.,2009;王志新等,2013)。PmNatF基因在馬氏珠母貝鰓組織中高表達說明NatF在抵抗外界各種環境刺激時發揮重要作用,而PmNatF基因在馬氏珠母貝鰓組織中的時序表達情況說明其對不同PAMPs刺激均產生免疫效應,但免疫效應時間不同。該結論為馬氏珠母貝機體免疫及翻譯后修飾研究打下了理論基礎,也為開展貝類NatF的應激調控機理研究提供了基礎資料。
4 結論
PmNatF基因具有較高的保守性,在馬氏珠母貝各組織及不同發育時期均有表達,尤其以性腺和卵的相對表達量最高,且經PAMPs刺激后在馬氏珠母貝鰓組織中呈明顯的差異表達,表明PmNatF基因可能參與馬氏珠母貝生殖細胞的分裂和成熟及其免疫應答過程。
參考文獻:
何軍軍,梁海鷹,吳羽媛,林麗旋,鄧岳文. 2018. 馬氏珠母貝接頭蛋白CIKS的基因克隆與組織表達分析[J]. 廣東海洋大學學報,38(4):1-7. [He J J,Liang H Y,Wu Y Y,Lin L X,Deng Y W. 2018. Gene cloning and tissue expression analysis of adapter protein CIKS from Pinctada fucata martensii[J]. Journal of Guangdong Ocean University,38(4):1-7.] doi:10.3969/j.issn.1673-9159.2018.04.001.
何毛賢,姜衛國,潘金培. 2002. CB抑制合浦珠母貝受精卵第一極體釋放的染色體分離[J]. 水產學報,26(1):15-20. [He M X,Jiang W G,Pan J P. 2002. Chromosome segregation in fertilized eggs from pearl oyster Pinctada martensii Dunker following the first polar body inhibition witn cytochalasin B[J]. Journal of Fisheries of China,26(1):15-20.] doi:10.3321/j.issn:1000-0615.2002.01.003.
王志新,梁海鷹,杜曉東,黃榮蓮,鄧岳文,王慶恒,焦鈺. 2013. 馬氏珠母貝熱休克蛋白HSP60基因的克隆與表達分析[J]. 廣東海洋大學學報,33(6):14-23. [Wang Z X,Liang H Y,Du X D,Huang R L,Deng Y W,Wang Q H,Jiao Y. 2013. Cloning and express characters of HSP60 gene from Pinctada martensii[J]. Journal of Guangdong Ocean University,33(6):14-23.]
Adzigbli L,Hao R J,Jiao Y,Deng Y W,Du X D,Wang Q H,Huang R L. 2020. Immune response of pearl oysters to stress and diseases[J]. Reviews in Aquaculture,12(2):513-523. doi:10.1111/raq.12329.
Aksnes H,Hole K,Arnesen T. 2015a. Chapter seven-molecula,cellular,and physiological significance of N-terminal acetylation[J]. International Review of Cell and Molecular Biology,316:267-305. doi:10.1016/bs.ircmb.2015.01.001.
Aksnes H,van Damme P,Goris M,Starheim K K,Marie M,St?ve S I,Hoel C,Kalvik T V,Hole K,Glomnes N,Furnes C,Ljostveit S,Ziegler M,Niere M,Gevaert K,Arnesen T. 2015b. An organellar Nα-acetyltransferase,naa60,acetylates cytosolic N termini of transmembrane proteins and maintains golgi integrity[J]. Cell Reports,10(8):1362-1374. doi:10.1016/j.celrep.2015.01.053.
Behnia R,Panic B,Whyte J R C,Munro S. 2004. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p[J]. Nature Cell Biology,6(5):405-413. doi:10.1038/ncb1120.
Czub M P,Zhang B,Chiarelli M P,Majorek K A,Joe L,Porebski P J,Revilla A,Wu W M,Becker D P,Minor W,Kuhn M L. 2018. A Gcn5-related N-acetyltransferase (GNAT) capable of acetylating polymyxin B and colistin antibiotics in vitro[J]. Biochemistry,57(51):7011-7020. doi:10.1021/acs.biochem.8b00946.
Feng J L,Hu J X,Li Y,Li R Q,Yu H,Ma L G. 2020. The N-terminal acetyltransferase Naa50 regulates Arabidopsis growth and osmotic stress response[J]. Plant & Cell Phy-siology,61(9):1565-1575. doi:10.1093/pcp/pcaa081.
He J J,Liang H Y,Zhu J P,Fang X C. 2019. Separation,identification and gene expression analysis of PmAMP-1 from Pinctada fucata martensii[J]. Fish & Shellfish Immunology,92:728-735. doi:10.1016/j.fsi.2019.07.002.
He J J,Shen C H,Liang H Y,Fang X C,Lu j Z. 2020. Antimicrobial properties and immune-related gene expression of a C-type lectin isolated from Pinctada fucata martensii[J]. Fish & Shellfish Immunology,105:330-340. doi:10. 1016/j.fsi.2020.07.017.
Hole K,van Damme P,Dalva M,Aksnes H,Glomnes N,Varhaug J E,Lillehaug J R,Gevaert K,Arnesen T. 2011. The human N-alpha-acetyltransferase 40(hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4[J]. PLoS One,6(9):e24713. doi:10. 1371/journal.pone.0024713.
Kalvik T V,Arnesen T. 2013. Protein N-terminal acetyltransferases in cancer[J]. Oncogene,32(3):269-276. doi:10. 1038/onc.2012.82.
Lei Q N,Wu Y Y,Liang H Y,Wang Z X,Zheng Z,Deng Y W. 2016. Molecular cloning and expression analysis of heat shock protein 20 (HSP20) from the pearl oyster Pinctada martensii[J]. Genetics and Molecular Research,15(2). doi:10.4238/gmr.15028799.
Li A,Li L,Wang W,Zhang G F. 2020. Acetylome analysis reveals population differentiation of the Pacific oyster Crassostrea gigas in response to heat stress[J]. Marine Biotechnology,22(2):233-245. doi:10.1007/s10126-020-09947-6.
Linster E,Layer D,Bienvenut W V,Dinh T V,Weyer F A,Leemhuis W,Brünje A,Hoffrichter M,Miklankova P,Kopp J,Lapouge K,Sindlinger J,Schwarzer D,Meinnel T,Finkemeier I,Giglione C,Hell R,Sinning I,Wirtz M. 2020. The Arabidopsis Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response[J]. The New Phytologist,228(2):554-569. doi:10.1111/nph.16747.
Linster E,Wirtz M. 2018. N-terminal acetylation:An essential protein modification emerges as an important regulator of stress responses[J]. Journal of Experimental Botany,69(19):4555-4568. doi:10.1093/jxb/ery241.
Rathore O S,Faustino A,Prudêncio P,van Damme P,Cox C J,Martinho R G. 2016. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms[J]. Scientific Reports,6:21304. doi:10.1038/ srep21304.
Ree R,Myklebust L M,Thiel P,Foyn H,Fladmark K E,Arnesen T. 2015. The N-terminal acetyltransferase Naa10 is essential for zebrafish development[J]. Bioscience Reports,35(5):e00249. doi:10.1042/BSR20150168.
Salah Ud-Din A I M,Tikhomirova A,Roujeinikova A. 2016. Structure and functional diversity of GCN5-related N-acetyltransferases(GNAT)[J]. International Journal of Molecular Sciences,17(7):1018. doi:10.3390/ijms17071018.
Silva R D,Martinho R G. 2015. Developmental roles of protein N-terminal acetylation[J]. Proteomics,15(14):2402-2409. doi:10.1002/pmic.201400631.
St?ve S I,Magin R S,Foyn H,Haug B E,Marmorstein R,Arnesen T. 2016. Crystal structure of the golgi-associated human Nα-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation[J]. Structure,24(7):1044-1056. doi:10.1016/j.str.2016.04.020.
Varland S,Myklebust L M,Goks?yr S ?,Glomnes N,Torsvik J,Varhaug J E,Arnesen T. 2018. Identification of an alternatively spliced nuclear isoform of human N-terminal acetyltransferase Naa30[J]. Gene,644:27-37. doi:10.1016/j. gene.2017.12.019.
von Damme P,Hole K,Pimenta-Marques A,Helsens K,Vandekerckhove J,Martinho R G,Gevaert K,Arnesen T. 2011. NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation[J]. PLoS Genetics,7(7):e1002169. doi:10.1371/journal.pgen.1002169.
Wu Y Y,He J J,Yao G Y,Liang H Y,Huang X M. 2020. Molecular cloning,characterization,and expression of two TNFRs from the pearl oyster Pinctada fucata martensii[J]. Fish & Shellfish Immunology,98:147-59. doi:10.1016/j.fsi.2020.01.010.
Xie L X,Zeng J,Luo H P,Pan W H,Xie J P. 2014. The roles of bacterial GCN5-related N-acetyltransferases[J]. Critical Reviews in Eukaryotic Gene Expression,24(1):77-87. doi:10.1615/critreveukaryotgeneexpr.2014007988.
Xu F,Huang Y,Li L,Gannon P,Linster E,Huber M,Kapos P,Bienvenut W,Polevoda B,Meinnel T,Hell R,Giglione C,Zhang Y L,Wirtz M,Chen S,Li X. 2015. Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis[J]. The Plant Cell,27(5):1547-1562. doi:10.1105/tpc.15.00173.
Zhang D C,Jiang J J,Jiang S G,Ma J J,Su T F,Qiu L H,Zhu C Y,Xu X P. 2009. Molecular characterization and expression analysis of a putative LPS-induced TNF-alpha factor(LITAF) from pearl oyster Pinctada fucata[J]. Fish & Shellfish Immunology,27(3):391-396. doi:10.1016/j.fsi.2009.04.006.
收稿日期:2020-10-26
基金項目:國家自然科學基金項目(31472306);廣東省自然科學基金項目(2021A1515010962);廣東省海港建設與漁業產業發展專項(A201608B15);深圳市科技計劃項目(JCYJ20180507183240459)
通訊作者:梁海鷹(1971-),https://orcid.org/0000-0002-7998-9805,博士,教授,主要從事海洋生物功能基因及蛋白研究工作,E-mail:zjlianghy@126.com
第一作者:盧金昭(1997-),https://orcid.org/0000-0002-9959-1642,研究方向為珍珠培育與加工,E-mail:571658258@qq.com