盛阮妹 張宏澤





摘要:目的 比較右美托咪啶對于伴或不伴腦創傷的危重患者腦血流的影響。方法 非腦創傷患者15名與腦創傷患者20名分入CON和TBI組,所有患者接受1 ug kg-1的右美托咪啶靜注10分鐘,繼之0.4 ug kg-1 h-1推注60分鐘,多巴胺維持血壓在用藥前水平。于鎮靜前和鎮靜開始后70分鐘測定腦血流(CBF)和腦代謝率(CMR)。結果 右美托咪啶顯著減少CON組腦血流(差值=3.3 ml s-1, 95% CI=0.92–5.7 ml s-1, p=0.008),CMR和CMR/CBF無變化。TBI組右美托咪啶所致的CBF、CMR和CMF/CBF無明顯改變。CON組CBF減少幅度大于TBI組(差值 = 13.9%, 95% CI = 5.5–22.2%, p=0.002).結論 右美托咪啶用于腦創傷患者對腦氧代謝無明顯影響。
關鍵詞:腦血流,腦代謝率,腦創傷
【中圖分類號】R338 【文獻標識碼】A 【文章編號】2107-2306(2020)01-006-04
【Abstract】Objective To examine the effect of dexmedetomidine on CBF in critical ill patients with or without TBI. Methods Fifteen patients without TBI and 20 patients with TBI were assigned to CON or TBI groups, respectively. All patients received 1 ug kg-1 dexmedetomidine infused over 10 minutes, followed by a 0.4 ug kg-1 h-1 continuous infusion for 60 minutes. Blood pressure was maintained at the pre-sedation level with dopamine for all patients. The CBF and cerebral metabolic rate (CMR) were measured before sedation and 70 minutes after dexmedetomidine administration. Results Dexmedetomidine administration significantly decreased CBF in patients of the CON group (difference=3.3 ml s-1, 95% CI=0.92–5.7 ml s-1, p=0.008), without altering the CMR and CMR/CBF ratio. The dexmedetomidine-induced change of CBF, CMR and CMR/CBF was not significant in the TBI group. The percentage of CBF reduction was greater in the CON group than in the TBI group (difference = 13.9%, 95% CI = 5.5–22.2%, p=0.002). Conclusions Dexmedetomidine may be used in patients with TBI without risk of affecting brain oxygenation.
【KEY WORDS】Cerebral blood flow, cerebral metabolic rate, traumatic brain injury
腦創傷患者經常需要應用鎮靜劑以便抑制躁動,避免呼吸機對抗,控制顱內壓1。然而鎮靜藥物可能影響對患者神智評估,延長呼吸機使用和ICU滯留時間2。右美托咪啶(Dex)是高選擇性α2受體拮抗劑,具有淺鎮靜、易喚醒,呼吸抑制小的特點3,尤其適合神經重癥患者鎮靜的需要4,5。
大量研究顯示Dex可減少實驗動物6,7和健康志愿者8,9的腦血流(CBF),但其對腦創傷患者CBF的影響尚不清楚。對于腦血管自我調節功能受損的患者,Dex可降低血壓從而減少CBF10,而其對腦代謝率的影響未知。動物實驗顯示Dex顯著減少CBF,對CMR的影響則不大11,12。Drummond等9證實Dex可同時減少健康志愿者的CBF和CMR。有研究提示Dex可安全的用于神經損傷患者,但是并未報告其對患者CBF的影響3,13。
多種因素可能影響腦創傷患者的預后,CBF是其中最關鍵因素14。即便血壓輕度降低也可能影響腦創傷患者死亡率15。Dex可因其抗交感作用而劑量依賴性的降低體循環血壓,減少CBF16。對于腦創傷患者,該作用可能更明顯,因為患者的腦血管自我調節功能受損17。Dex還可能收縮血管增加腦血管阻力,從而影響CBF8。但是對于腦血管收縮功能受損的腦創傷患者,該作用有多大影響尚不清楚14。我們認為對于腦創傷患者,當維持患者體循環血壓穩定時,可防止Dex減少CBF。本研究中,我們比較了伴或不伴腦創傷患者,使用Dex鎮靜對CBF的影響。
1 資料與方法
1.1 一般資料
本研究經院倫理委員會批準,并在Current Controlled Trials網站注冊(ISRCTN57998533)。患者入ICU后第二天進行評估,如果符合入選標準,則患者家屬簽署知情同意書后立即開始實驗。
1.2 入選和排除標準
入選標準:1)年齡位于18-80歲之間;2)患者使用呼吸機。排除標準:1)孕婦;2)平均動脈壓低于60 mmHg(非腦創傷患者)或者80 mmHg(腦創傷患者);3)肝腎功能障礙;4)實驗當天使用過血管活性藥或者鎮靜藥,或者其他可能影響CBF的藥物;5)合并其它神經系統疾病的非腦創傷患者。
1.3 治療方案
15名非腦創傷患者和20名腦創傷患者分別分入CON組和TBI組,所有的患者接受10分鐘總量1ug kg-1的Dex,繼之0.4 ug kg-1 h-1輸注1小時,多巴胺維持患者血壓于鎮靜前平均動脈壓±5 mmHg水平。記錄患者一般資料,鎮靜前和鎮靜70分鐘時記錄CBF數值,計算CMR和CMR/CBF數值,以及多巴胺使用量。
1.4 CBF測量
CBF測量采用多普勒超聲技術測定顱外頸內動脈和椎動脈處血流18。采用7.5-MHz線陣探頭的彩色超聲系統(Esaote MyLab40, Naples, Italy)。患者仰臥,測量頸內動脈時頭略微抬起并偏向對側25-40度,在頸動脈分叉水平以上1.5 cm測量;測量椎動脈時頭偏轉10度,于C4和C5水平測量。所有測量由同一位超聲醫生使用同一臺機器重復測量2次。CBF的減少值=(鎮靜前CBF-鎮靜中CBF)/鎮靜前CBF*100%。
1.5 CMR計算
CMR測定方法同前9。頸靜脈血氧飽和度(SjvO2)測量,頸靜脈采血速度不快于1.5 ml min-1。動脈血氧飽和度(SaO2)和二氧化碳分壓(PaCO2)根據股動脈處血氣分析值獲得。CMR計算公式:CMR=CBF*(SaO2 ml-1-SjvO2 ml-1)。
研究的首要目標是鎮靜后CBF的變化,次要目前是CMR和CMR/CBF。
1.6 統計方法
正態分布的數據以均數±標準差及可信區間表示,采用團體t檢驗比較。分類數據以數量或中位數表示。采用SAS 8.0軟件進行統計分析,p<0.05認為差異有統計學意義。
2 結果
2.1 患者基本情況
患者一般情況見表1。CON組所有患者實驗前進行了腹部或者骨科手術。TBI組18名患者試驗前進行了血腫清除術。
2.2 腦血流和腦氧代謝變化
如表2所示,對于CON組患者,Dex減少CBF達19.6±9.6%(差值=3.3 ml s-1,95% CI=0.92-5.7 ml s-1,p=0.008)。TBI組Dex鎮靜期間CBF減少5.7±13.6%(差值=0.8 ml s-1,95% CI=-1.3-2.9 ml s-1,p=0.432)。兩組之間CBF減少值差異顯著(差異=13.9%,95% CI=5.5-22.2 ml s-1,p=0.002,圖1)。
Dex對CON組(差值=0.7,95% CI=0.1-1.6)和TBI組(差值=0.3,95% CI=-0.4-1.1)患者的CMR影響都不明顯(表2),兩組之間CMR的變化值差異亦不明顯(差值=7.7%,95% CI=-6.2%-21.7%,p=0.268,圖1)。CON(差值=-0.02,95% CI=-0.05-0.01)和TBI組(差值=0.01,95% CI=-0.02-0.04)CMR/CBF比值在鎮靜前后的差異也不明顯。
兩組患者鎮靜前后SjvO2變化不明顯。我們注意到TBI組鎮靜前CMR值低于CON組,而SjvO2高于CON組,雖然其差異未達統計學意義(表2)。
2.3 呼吸和循環變化
兩組患者鎮靜前后的血壓和心率無明顯變化。呼吸指標如PaO2和PaCO2保持在鎮靜前水平(表3)。TBI組多巴胺用量為8.6±2.7 ug kg-1 min-1,較之CON組的6.2±3.7 ug kg-1 min-1明顯增高(差值=2.4 ug kg-1 min-1,95% CI=0.2-4.6 ug kg-1 min-1,p=0.034)。
3 討論
本研究觀察了Dex對腦創傷患者CBF和CMR的影響。研究發現,Dex對腦創傷患者CBF的影響顯著小于非腦創傷患者。如果保持血壓平穩,Dex對患者CMR/CBF的比值也無明顯影響。
Dex可用于短時間鎮靜而無明顯呼吸抑制19。既往的研究提示Dex可通過多種機制發揮腦保護作用,作為腦損傷患者的鎮靜藥物很有吸引力。Dex降低循環中的兒茶酚胺濃度,平衡腦的氧供與氧耗,減少興奮性毒性,改善腦缺血部位灌注20,21。作為α2受體激動劑,Dex可促進星形膠質細胞的氧代謝,降低神經毒性遞質谷氨酸的前體谷氨酰胺的含量22。其腦保護機制還有抑制異氟烷誘導的caspase-3表達23,從而調節促凋亡和抗凋亡蛋白的平衡24。
精確測量患者的血流量很困難,不同的方法都有其固有的缺陷25。電磁流量計被認為是測量血流量的金標準,然而其有創性和電離輻射影響其應用。經顱多普勒超聲是臨床監測腦灌注最常用的技術手段9,10。然而它只能提供血流流速信息,而不能提供血管幾何形狀和CBF方面的信息26。血流速度增加可能是動脈血管收縮和缺血的跡象。超聲血流定量技術已研究多年,本研究利用頻譜多普勒超聲技術來估測血流量,之前的研究顯示其系統誤差為6%或更低27。
既往認為Dex會減少CBF,不適合用于腦損傷患者鎮靜19。其機制可能與降低體循環血壓,以及收縮腦血管有關9,17。腦血管具有自主調節能力以對抗體循環血壓變化,維持CBF穩定。腦創傷往往伴有腦血管損傷,這使得患者的CBF易于受到血壓的影響14。因此,在Dex鎮靜期間防止體循環血壓下降尤為重要。而且因為腦血管功能受損,我們懷疑Dex所致的腦血管收縮也可能不像在非腦創傷患者中那么明顯。本研究中的結果也支持該假設,腦創傷患者Dex鎮靜期間CBF的減少程度明顯低于對照組。多巴胺可誘發血管收縮,有研究顯示α1受體激動劑收縮腦血管作用明顯強于腎上腺素能受體28。
實驗結果顯示對于非腦創傷患者,Dex鎮靜導致的患者CMR下降幅度較大,但是兩組患者鎮靜前后CMR的下降幅度都未達統計學差異。清醒患者往往伴有焦慮,鎮靜能夠降低其腦代謝水平;而昏迷患者可能鎮靜藥物對CMR的影響不明顯。重要的是,鎮靜前后CMR/CBF的比值,以及SjvO2的水平變化都不明顯,這提示無論是否合并腦創傷,Dex鎮靜并不會導致腦缺血。
本研究有一些缺陷。首先,研究中采用的多普勒超聲測量血流量的方法精確度不高;其次本研究為單中心,研究對象數量較少;第三,本研究未評估顱內壓和腦灌注壓,它們對CBF有很大影響。有研究顯示Dex對神經外科手術后患者的顱內壓和腦灌注壓無明顯影響13。本研究未對患者的預后進行隨訪,以評估Dex鎮靜的安全性。
綜上所述,Dex鎮靜時,腦創傷患者的CBF下降程度明顯小于非腦創傷患者,亦不會引起CMR/CBF比值的改變。這些結果提示腦創傷患者應用Dex鎮靜是安全的。未來需要進一步研究Dex影響CBF的機制,以及更大樣本的研究對象和更長的隨訪時間。
參考文獻:
[1] Roberts DJ, Hall RI, Kramer AH, et al. Sedation for critically ill adults with severe traumatic brain injury: A systematic review of randomized controlled trials. Critical Care Medicine 2011;39:2743–51.
[2] Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: A randomised trial. Lancet 2010;375:475–80.
[3] Grof TM, Bledsoe KA. Evaluating the use of dexmedetomidine in neurocritical care patients. Neurocritical Care 2010;12:356–61.
[4] Mirski MA, Lewin 3rd JJ, Ledroux S, et al. Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: The Acute Neurological ICU Sedation Trial (ANIST). Intensive Care Medicine 2010;36:1505–13.
[5] Tang JF, Chen PL, Tang EJ, et al. Dexmedetomidine controls agitation and facilitates reliable, serial neurological examinations in a non-intubated patient with traumatic brain injury. Neurocritical Care 2011;15:175–81.
[6] Chi OZ, Hunter C, Liu X, et al. The effects of dexmedetomidine on regional cerebral blood flow and oxygen consumption during severe hemorrhagic hypotension in rats. Anesthesia & Analgesia 2011;113:349–55.
[7] Nakano T, Okamoto H. Dexmedetomidine-induced cerebral hypoperfusion exacerbates ischemic brain injury in rats. Journal of Anesthesia 2009;23:378–84.
[8] Prielipp RC, Wall MH, Tobin JR, et al. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesthesia & Analgesia 2002; 95:1052–9.
[9] Drummond JC, Dao AV, Roth DM, et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology 2008;108: 225–32.
[10] Ogawa Y, Iwasaki K, Aoki K, et al. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology 2008;109:642–50.
[11] McPherson RW, Koehler RC, et al. Intraventricular dexmedetomidine decreases cerebral blood flow during normoxia and hypoxia in dogs. Anesthesia & Analgesia 1997;84:139–47.
[12] Karlsson BR, Forsman M, Roald OK, et al. Effect of dexmedetomidine, a selective and potent alpha 2-agonist, on cerebral blood flow and oxygen consumption during halothane anesthesia in dogs. Anesthesia & Analgesia 1990;71:125–9.
[13] Aryan HE, Box KW, Ibrahim D, et al. Safety and efficacy of dexmedetomidine in neurosurgical patients. Brain Injury 2006;20:791–8.
[14] DeWitt DS, Prough DS. Traumatic cerebral vascular injury: The effects of concussive brain injury on the cerebral vasculature. Journal of Neurotrauma 2003;20:795–825.
[15] Chesnut RM, Marshall LF, Klauber MR, et al. The role of secondary brain injury in determining outcome from severe head injury. Journal of Trauma 1993;34:216–22.
[16] Talke P, Richardson CA, Scheinin M, et al. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesthesia & Analgesia 1997;85:1136–42.
[17] Jaeger M, Schuhmann MU, Soehle M, et al. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Critical Care Medicine 2006;34:1783–88.
[18] Albayrak R, Fidan F, Unlu M, et al. Extracranial carotid Doppler ultrasound evaluation of cerebral blood flow volume in COPD patients. Respiratory Medicine 2006;100:1826–33.
[19] Farag E. Dexmedetomidine in the neurointensive care unit. Discovery Medicine 2010;9:42–5.
[20] Paris A, Mantz J, Tonner PH, et al. The effects of dexmedetomidine on perinatal excitotoxic brain injury are mediated by the alpha2A-adrenoceptor subtype. Anesthesia & Analgesia 2006;102:456–61.
[21] Engelhard K, Werner C, Kaspar S, et al. Effect of the alpha2-agonist dexmedetomidine on cerebral neurotransmitter concentrations during cerebral ischemia in rats. Anesthesiology 2002;96:450–7.
[22] Huang R, Chen Y, Yu AC, et al. Dexmedetomidine-induced stimulation of glutamine oxidation in astrocytes: A possible mechanism for its neuroprotective activity. Journal of Cerebral Blood Flow & Metabolism 2000;20:895–8.
[23] Sanders RD, Xu J, Shu Y, et al. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology 2009;110:1077–85.
[24] Engelhard K, Werner C, Eberspacher E, et al. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(t)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesthesia & Analgesia 2003;96:524–31.
[25] Ho SS, Chan YL, Yeung DK, et al. Blood flow volume quantification of cerebral ischemia: Comparison of three noninvasive imaging techniques of carotid and vertebral arteries. American Journal of Roentgenology 2002;178:551–6.
[26] Schebesch KM, Woertgen C, Schlaier J, et al. Doppler ultrasound measurement of blood flow volume in the extracranial internal carotid artery for evaluation of brain perfusion after aneurysmal subarachnoid hemorrhage. Neurological Research 2007;29:210–4.
[27] Gill RW. Measurement of blood flow by ultrasound: Accuracy and sources of error. Ultrasound in Medicine & Biology 1985;11: 625–41.
[28] Iida H, Ohata H, Iida M, et al. Direct effects of alpha1- and alpha2-adrenergic agonists on spinal and cerebral pial vessels in dogs. Anesthesiology 1999;91:479–85.
(上海市松江區中心醫院急診危重病科 201600)