999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

重視探索能力培養(yǎng) 優(yōu)化高中數(shù)學(xué)學(xué)習(xí)

2021-11-03 19:31:19夏明
關(guān)鍵詞:價值觀

夏明

[摘? 要] 在新課改的影響下,教育更關(guān)注于學(xué)生綜合能力的提升,更重視學(xué)生數(shù)學(xué)思維能力的提高. 探索思維能力因其有助于學(xué)生提出、分析和解決問題,有助于學(xué)生看清問題的本質(zhì)和發(fā)現(xiàn)一般規(guī)律,因此,其已成為數(shù)學(xué)的重點研究課題. 文章從知識的生成過程引導(dǎo)學(xué)生關(guān)注探究,從“變式”和“一題多解”中感悟探索的樂趣,通過經(jīng)歷錯誤和挫折培養(yǎng)學(xué)生的探索精神,樹立正確的價值觀.

[關(guān)鍵詞] 綜合能力;數(shù)學(xué)思維能力;價值觀

在高考中,因探索類問題更具開放性,蘊含的知識量更大,知識面更廣,更能考查學(xué)生的綜合能力,而得到了考官的青睞. 因此,若想在高考中取得好的成績,就必須培養(yǎng)學(xué)生的探索能力. 同時,通過探索往往可以使學(xué)生透過特殊發(fā)現(xiàn)一般的規(guī)律,通過現(xiàn)象發(fā)現(xiàn)問題的本質(zhì),其為更深入的學(xué)習(xí)方式,顯然這有利于學(xué)生解決問題能力的提升. 另外,通過探索,讓學(xué)生知道通往成功需要經(jīng)歷錯誤和挫折,只有不畏艱辛、不畏艱險才能獲得成功,從而樹立正確的人生觀和價值觀. 因此,學(xué)生探索思維能力的提升已成為數(shù)學(xué)教學(xué)的重點內(nèi)容之一,筆者就關(guān)于如何提升學(xué)生的探索思維能力,談了自己的幾點認識.

[?]借知識的生成過程體驗探索的樂趣

數(shù)學(xué)教學(xué)不僅是知識的傳授過程,還是學(xué)生數(shù)學(xué)思維生成和發(fā)展的過程,因此,在教學(xué)中應(yīng)改變簡單的“灌輸式”教學(xué)模式,讓學(xué)生參與到知識的發(fā)現(xiàn)、發(fā)展到生成過程中,從而讓學(xué)生學(xué)會思考,懂得探索. 但讓學(xué)生可以積極探索,就需要設(shè)計激發(fā)學(xué)生思維的問題情境,讓學(xué)生從一個被動接受者變?yōu)橹鲃犹骄康陌l(fā)現(xiàn)者,從而培養(yǎng)學(xué)生的探索思維能力.

例1:二面角定義

師:現(xiàn)在請同學(xué)拿出一張紙,將其對折,這樣會有幾個平面呢?

生齊聲答:兩個.

師:兩平面是什么關(guān)系呢?

生1:相交.

師:兩平面相交的交線是什么?

生2:折線.

師:現(xiàn)在下面的面不動,將上面的面轉(zhuǎn)動,這兩個面的位置是否發(fā)生變化了呢?

生3:兩個面的位置不同了.

師:發(fā)生變化后,用什么來區(qū)別其變化程度呢?

生4:面角.

在教學(xué)過程中,教師通過讓學(xué)生動手做,得到兩個平面,接下來用問題一步步地引導(dǎo),讓學(xué)生關(guān)注兩個面的變化,從而引出“二面角”. 因為有動手的實驗和問題的引領(lǐng),學(xué)生的參與積極性高漲,思維更加活躍,在不斷地探索中加深了對概念的理解,讓學(xué)生體驗了探索的快樂.

[?]利用例題的演變激發(fā)探索的熱情

課本的例題從本節(jié)或本章內(nèi)容出發(fā),因此其解題所涉及的知識點和解決思路相對比較清晰和集中,因此若在例題中加入探索的內(nèi)容,需要教師仔細推敲,才能使探索流暢自然,從而潛移默化地激發(fā)學(xué)生的探索熱情.

例2:已知數(shù)列{a}的第1項是1,第2項是2,后面的各項為a=a+a(n>2).

(1)寫出數(shù)列{a}的前5項;

(2)利用上面的數(shù)列,通過公式b=構(gòu)造一個新的數(shù)列,試寫出數(shù)列的前5項.

師:請大家自主探究一下,前5項的值分別為多少呢?.

生1:分別為1,2,3,5,8.

師:很好,大家有不同的意見嗎?(學(xué)生表示都贊同該答案)

師:若第(1)問改為前9項結(jié)果是多少呢?(教師給學(xué)生足夠的時間計算思考)

生2:1,2,3,5,8,13,21,33,54. (有些學(xué)生還在一個個計算,而眼尖的學(xué)生已經(jīng)發(fā)現(xiàn)了規(guī)律,數(shù)列{a}實為簡單的遞推公式給出的數(shù)列)

師:若將a=a+a(n>2)變?yōu)閍=a+a(n≥2),寫出這個數(shù)列的前9項,并觀察其規(guī)律寫出數(shù)列的第2021項.

生3:通過計算可以發(fā)現(xiàn)其值分別1,2,1,-1,-2,-1,1,2,1,即從第7項開始重復(fù).

師:很好,不僅給出了答案,而且還發(fā)現(xiàn)了規(guī)律,這與我們之前學(xué)的什么內(nèi)容相似呢?

生4:周期數(shù)列,其周期為6.

規(guī)律發(fā)現(xiàn)后,第2021項也就迎刃而解了. 為了讓學(xué)生進一步理解該知識,教師又讓學(xué)生改變第1項和第2項的值,通過猜測和計算發(fā)現(xiàn)蘊含其中的性質(zhì). 通過該過程的探索和觀察,讓學(xué)生對數(shù)列的周期性產(chǎn)生了濃厚的興趣,為日后復(fù)雜內(nèi)容的學(xué)習(xí)奠定了基礎(chǔ).

[?]憑借“一題多解”增強學(xué)生的探索意識

一題多解是培養(yǎng)學(xué)生思維能力的常用手段,在教師的引導(dǎo)下,讓學(xué)生對“多解”進行探索,從而誘發(fā)學(xué)生對“一題”進行多角度的觀察和思考. 在此過程中,要以學(xué)生為主,充分調(diào)動學(xué)生的積極性,從而在追求“多解”的過程中形成探索能力.

例3:已知S是等差數(shù)列{a}的前n項和,若a=a(a>0)且S=S,試求S的最大值及此時n的值.

題目分析:由題意可知等差數(shù)列{a}的前n項和S是n的二次函數(shù). 方法(1),學(xué)生首先想到的是根據(jù)“配方法”而求得其基本量d=-<0,從而寫出S的解析式,結(jié)合定義域進行求解. 方法(2),教師引導(dǎo)學(xué)生進行過程的回顧和反思,并引導(dǎo)學(xué)生通過函數(shù)單調(diào)性的角度進行思考,通過對數(shù)列最后一個非負項的探究進行求解. 方法(3),由方法(1)引導(dǎo)學(xué)生通過對稱軸的思路進行繼續(xù)探索,從而根據(jù)S=S,求得其對稱軸為x=,以此思路進行求解. 方法(4),教師引導(dǎo)學(xué)生在方法(2)的基礎(chǔ)上,利用等差數(shù)列的性質(zhì)進行探索,從而發(fā)現(xiàn)a+a=0,而a>0,a<0,這樣也可以得到答案.

通過多種解法的應(yīng)用,學(xué)生對關(guān)于等差數(shù)列{a}的前n項和S的最值問題有了全面的認識,掌握了解決此類問題的解題思路和解題技巧,其有利于學(xué)生解題能力和探索能力的提升.

[?]在錯誤中感悟探索的魅力,在糾錯中提升探索能力

學(xué)習(xí)中都會出現(xiàn)錯誤,而對錯誤的認識和利用可以很好地考查學(xué)生的學(xué)習(xí)態(tài)度. 有部分學(xué)生出現(xiàn)錯誤就僅簡單地進行糾錯處理,缺乏對錯誤的再思考,從而使得后期出現(xiàn)“一錯再錯”的情況;也有部分學(xué)生,對錯誤消極對待,聽之任之,致使沒有將錯誤變成再學(xué)習(xí)的寶貴資源,這兩種對錯誤的態(tài)度都是不可取的,那么如何來面對錯誤呢?筆者認為,當出現(xiàn)錯誤后,學(xué)生需要冷靜思考,查找真正的錯因,進行自我糾錯、自我探究,從而不僅加深了對錯誤的認識,也提升了學(xué)生探索的信心.

例4:已知a+b+c=1,證明:a2+b2+c2≥.

錯解:設(shè)a=-t,b=-2t,c=+3t(t∈R),則將其代入得a2+b2+c2=

-t

+

-2t

+

+3t

=+14t2≥. (即當t=0時,等號成立)

該解法從表面上看無可挑剔,但深思后發(fā)現(xiàn)其犯了一個致命的錯誤. 教師讓學(xué)生們一起探究交流,從而發(fā)現(xiàn)其錯因源于假設(shè). a=-t,b=-2t,c=+3t(t∈R)與a+b+c=1并非代表同一個已知,因為該假設(shè)法實為在原已知上添加了t=-a=-=-的條件.

根據(jù)錯誤,學(xué)生知道只有設(shè)得等價,才不會犯錯,因此要糾正此錯誤需在設(shè)上下功夫,可設(shè)a=+t,b=+t,c=-(t+t)(t,t∈R),之后的證明過程與上面的相同.

對錯誤的認識及對正解的探究都需要發(fā)揚學(xué)生的探索精神,因此,教學(xué)中不能忽視對探索思維和探索意識的培養(yǎng).

[?]通過經(jīng)歷挫折感受探索的魅力

在探索的過程中往往會遇到挫折,因此,在教學(xué)中,要讓學(xué)生摒除畏難情緒和畏難心理,養(yǎng)成知難而進的探索精神. 可以通過引入一些數(shù)學(xué)故事,讓學(xué)生懂得任何一項數(shù)學(xué)研究都需要不斷探索,生活亦是如此,不可能隨便就成功,從而引導(dǎo)學(xué)生養(yǎng)成正確的數(shù)學(xué)觀和價值觀.

例5:已知S是正項數(shù)列{a}的前n項和,若2S=a+,求數(shù)列{a}的通項公式,并加以證明.

探索1:從原遞推公式中消去S,試圖通過探索特殊數(shù)列而得出結(jié)論. 探究后發(fā)現(xiàn)a+

a+

a-1=0(n≥2),探索失敗.

探索2:根據(jù)探索1的結(jié)論,將其看成關(guān)于a的方程,即求得a=

-

a+

+

,探索又失敗了.

在探索意識的作用下,學(xué)生繼續(xù)進行探究,將a=1代入a中,即得a=-1,繼續(xù)代入,得a=-,……,通過堅持不懈地探究從而發(fā)現(xiàn)a=-. 通項公式得出后,證明也就水到渠成了.

問題得以迎刃而解,但學(xué)生對特殊數(shù)列的探索并沒有終止,學(xué)生嘗試從原遞推公式中消去a,從而驚喜地發(fā)現(xiàn)S-S=1,{S}為等差數(shù)列,該結(jié)論的得出無疑為學(xué)生增添了探索的信心和勇氣.

總之,探索不僅是一種思維方法,也是一種學(xué)習(xí)能力和勇攀高峰的決心,通過不斷努力,不僅可以找到解決問題的方法,也可以在解決問題的過程中發(fā)現(xiàn)真理. 因此,在教學(xué)中,要有意識地引導(dǎo)學(xué)生進行探索,這不僅是學(xué)習(xí)的需要,也是培養(yǎng)新型人才的需要.

猜你喜歡
價值觀
我的價值觀
圖說 我們的價值觀
圖說我們的價值觀(三德)
筆繪幸福園里的價值觀
少先隊活動(2020年8期)2020-09-11 06:43:18
筆繪幸福園里的價值觀
少先隊活動(2020年7期)2020-08-14 01:18:16
論當代青年的人生價值觀
需要建立統(tǒng)一的健康價值觀
圖說 我們的價值觀
遵義(2016年6期)2016-07-18 11:31:19
價值觀是人和人之間最深的鴻溝
知名企業(yè)的價值觀
主站蜘蛛池模板: 韩国v欧美v亚洲v日本v| 国产精品亚欧美一区二区 | 午夜福利免费视频| 日韩一级毛一欧美一国产| 99热线精品大全在线观看| 欧美色图第一页| 亚洲第一视频网| 四虎成人精品| 亚洲自偷自拍另类小说| 又黄又湿又爽的视频| 国产不卡一级毛片视频| 香蕉国产精品视频| 毛片一区二区在线看| a毛片免费在线观看| 在线看片中文字幕| 国产毛片不卡| 婷五月综合| 国产精品人人做人人爽人人添| 国产精品成人一区二区不卡| 欧美天堂在线| 91无码网站| 日韩欧美国产区| 精品久久人人爽人人玩人人妻| 欧美高清视频一区二区三区| 国产日韩AV高潮在线| 精品伊人久久久香线蕉| 国产欧美视频在线| 亚洲全网成人资源在线观看| 97国产成人无码精品久久久| www.狠狠| 国产精品自拍合集| 一区二区三区四区在线| 91福利免费| 亚欧美国产综合| 欧美日本在线播放| 久久一本精品久久久ー99| 黄色片中文字幕| 亚洲无码精彩视频在线观看| 九九香蕉视频| 久久99精品久久久久纯品| 亚洲综合极品香蕉久久网| 欧美无遮挡国产欧美另类| 精品国产Av电影无码久久久| 999国内精品视频免费| 高h视频在线| 97av视频在线观看| 精品国产免费观看| 亚洲精品无码抽插日韩| 久久夜色撩人精品国产| 日本亚洲国产一区二区三区| 国产成人精品一区二区秒拍1o| 99久久国产综合精品女同| 无码在线激情片| 日本日韩欧美| 又大又硬又爽免费视频| 粉嫩国产白浆在线观看| 男女男精品视频| 欧美午夜网站| 亚洲Aⅴ无码专区在线观看q| 热久久这里是精品6免费观看| 国产麻豆福利av在线播放| 精品午夜国产福利观看| 国内精自视频品线一二区| 久久香蕉国产线看观| 青草精品视频| 无码区日韩专区免费系列| 亚洲色图欧美激情| 欧美日本二区| 老司机久久99久久精品播放| 国产幂在线无码精品| 亚洲欧美人成电影在线观看| 国产亚洲精品自在线| 在线精品自拍| 91在线精品麻豆欧美在线| 国产麻豆永久视频| 久久男人资源站| 毛片免费试看| 中文字幕有乳无码| 中国一级特黄大片在线观看| 国产精品视频导航| 在线国产你懂的| 小蝌蚪亚洲精品国产|