999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A note on Tensor-Matrix based on Einstein product

2022-01-07 08:54:00JINXinXUJinli

JIN Xin, XU Jinli

(College of Science, Northeast Forestry University, Harbin 150080, China)

Abstract: The relationship between matrices and tensor based on Einstein product is investigated. All linear isomorphisms between tensor spaces and matrix spaces preserving Einstein product are obtained. The result generalizes transformations given by Brazell et al (equation (2.5) of [1]).

Keywords: mapping problem; Einstein product; multilinear system; matrix

0 Introduction

For tensorsA=(Ai1…ipk1…kq)∈Tm1×…×mp×n1×…×nq(),B=(Bk1…kqj1…jr)∈Tn1×…×nq×l1×…lr(), the Einstein productA*qBof tensor inAandBis a tensor inC∈Tm1×…×mp×l1×…×lr() defined by

An alternative product of two tensorsA∈Tn1×…×nd() of orderd≥2 andB∈Tn1×…×nd() of orderd≥2 is introduced in references [2-3] and various topics such as the inverse, rank, similarity, the modal-k product and congruence under this product can be found in references [4-6]. For a survey of many interesting topics of tensors, including linear maps of tensor products , refer to references [7-9].

Brazell introduced a class of bijective linear transformationsf[1],

f:Tm1×…×mp×n1×…×nq()→M(m1×…×mp)×(n1×…×nq)()

via

(1)

This mapping is also the matrix unfolding of tensors in signal processing applications, e.g., see reference [10]. It is easy to see that

Tm1×…×mp×n1×…×nq()()

Let Γm,nbe all nonsingular linear transfers fromTm1×…×mp×n1×…×nq() toM(m1×…×mp)×(n1×…×nq)(),and the matrix unfoldingfand tensor foldingf-1depend onm1,…,mp,n1,…,nq.

For allA∈Tm1×…×mp×n1×…×nq(),B∈Tn1×…×nq×l1×…lr(), one can check that

f3(A*qBp)=f1(A)·f2(B)

(2)

wheref1,f2,f3are defined in (1), and·refers to the usual matrix multiplication. In recent years, results of tensor via Einstein product such as multilinear SVD[1], generalized inverse[11]are studied by (1) and (2). A natural question is what are all possible forms of bijective linear transformations satisfying (2).

In this note, we answer this question. For clarity, let

α:[m1]×…×[mp]→[m1×…×mp]
β:[n1]×…×[nq]→[n1×…×nq]
γ:[l1]×…×[lr]→[l1×…×lr]

be bijective maps for allm,n,lwhich are integers greater than or equal to 2. We defineψα,β∈Γm,nby

ψα,β(εi1…ipk1…kq)=Eα(i1…ip),β(k1…kq)

(3)

whereεi1…ipk1…kqis of 1 in (i1…ipk1…kq)-th entry and 0 otherwise andEα(i1…ip),β(k1…kq)is of 1 in (α(i1…ip),β(k1…kq))-th entry and 0 otherwise. Similarly, we can defineψβ,γ∈Γn,landψα,γ=Γm,l.Our main result is:

Theorem1(Main Theorem) Letφ1∈Γm,n,φ2∈Γn,l,φ3∈Γm,l.If

φ3(A*qB)=φ1(A)φ2(B)

for allA∈Tm1×…×mp×n1×…×nq(),B∈Tn1×…×nq×l1×…×lr(), then there exist bijective maps

α:[m1]×…×[mp]→[m1×…×mp],β:[n1]×…×[nq]→[n1×…×nq],γ:[l1]×…×[lr]→[l1×…×lr] and invertible matricesP∈Mm×m(),R∈Mn×n(),Q∈Ml×l()such that

φ1(A)=Pψα,β(A)R

φ2(B)=R-1ψβ,γ(B)Q

φ3(C)=Pψα,γ(C)Q

for allA∈Tm1×…×mp×n1×…×nq(),B∈Tn1×…×nq×l1×…×lr(),C∈Tm1×…×mp×l1×…×lr().

1 The proof of main result

Lemma1Letψα,β,ψρ,γbe defined as (3) andφ3∈Γm,l. If

φ3(A*qB)=ψα,β(A)ψρ,γ(B)

for allA∈Tm1×…×mp×n1×…×nq(),B∈Tn1×…×nq×l1×…×lr(), thenβ=ρa(bǔ)ndφ3=ψα,γ.

ProofSuppose (i1…ip)∈[m1]×…×[mp],(j1…jr)∈[l1]×…×[lr]and(k1…kq)∈[n1]×…×[nq]. Sinceφ3is bijective, we obtain

0≠φ3(εi1…ipj1…jr)=φ3(εi1…ipk1…kq*qεk1…kqj1…jr)

=ψα,β(εi1…ipk1…kq)ψρ,γ(εk1…kqj1…jr)

=Eα(i1…ip),β(k1…kq)Eρ(k1…kq),γ(j1…jr)

=δβ(k1…kq),ρ(k1…kq)Eα(i1…ip),γ(j1…jr)

Thusβ(k1…kq)=ρ(k1…kq) for all (k1…kq)∈[n1]×…×[nq], that isβ=ρa(bǔ)nd

φ3(εi1…ipj1…jr)=Eα(i1…ip),γ(j1…jr)=ψα,γ(εi1…ipj1…jr)

Hence,φ3=ψα,γ.

Conclusion1Letψα,β,ψβ,γandψα,γbe defined as (3), then

for allA∈Mm×n(),B∈Mn×l().

ProofThe conclusion follows from

Lemma2(Theorem 3.3 of reference [12]) Supposeφ:Mm×n()→Mm×n() is a linear transformation such that

rankφ(A)=k?rank(A)=k

wherek≤min{m,n}. Then there exist invertible matricesP∈Mm×m(),R∈Mn×n() such that

φ(A)=PAR,?A∈Mm×n()

orm=n≥2

φ(A)=PATR,?A∈Mm×n()

Lemma3Supposeg1,g2,g3are bijective linear transformations onMm×n(),Mn×l(),Mm×l(), respectively. If

g3(AB)=g1(A)g2(B)

for allA∈Mm×n(),B∈Mn×l(),C∈Mm×l(). Then there exist invertible matricesP∈Mm×m(),R∈Mn×n(),Q∈Ml×l() such that

g1(A)=PAR,?A∈Mm×n()

g2(B)=R-1BQ,?B∈Mn×l()

g3(C)=PCQ,?C∈Mm×l()

ProofFirstly, we prove thatg1preserves maximal rank onMm×n() in both directions.

Case 1:m≤n. We chooseA∈Mm×n() with rank(A)=m, Then

{AB:B∈Mn×l()}=Mm×l()

Sinceg3is bijective,g3(AB)=g1(A)g2(B) can run over all the matrices inMm×l(). Thus, rank(g1(A))=m. Contrarily, if rank(g1(A))=m, theng1(A)g2(B)=g3(AB) can be an arbitrary matrix inMm×l(). Due to the bijectivty ofg3,ABcan be an arbitrary matrix inMm×l(), and hence, rank(A)=m.

Case 2:m>n. We chooseAwith rank(A)=nand suppose rank(g1(A))≠n. Then there existsX1≠X2∈Mn×l() such that

g1(A)X1=g1(A)X2

Sinceg2is bijective, we obtainB1≠B2∈Mn×l() such thatg2(Bi)=Xi,i=1,2.It follows from

g3(AB1)=g1(A)g2(B1)=g1(A)X1=g1(A)g2(B2)=g3(AB2)

and the bijectivity ofg3thatAB1=AB2. By the assumption of rank(A)=n, we can getB1=B2, a contradiction. Contrarily, if rank(g1(A))=nand rank(A)

g1(A)g2(B1)=g3(AB1)=g3(AB2)=g1(A)g2(B2)

Note that rank(g1(A))=n, henceg2(B1)=g2(B2). Sinceg2is bijective,B1=B2is contradictory.

By Lemma 2, there exist invertible matricesP∈Mm×m() andR∈Mn×n() such that

g1(A)=PAR, ?A∈Mm×n()

(4)

orm=n≥2

g1(A)=PATR, ?A∈Mm×n()

(5)

Similarly, we can prove thatgpreserves maximal rank onMn×l() in both directions, and hence , there exist invertible matricesS∈Mn×n(),Q∈Ml×l() such that

g2(B)=SBQ, ?B∈Mn×l()

(6)

orn=l≥2

g2(B)=SBTQ, ?B∈Mn×l()

(7)

We next prove that (4) and (6) are the only cases, others will not happen.

If (5) and (6) hold, letA=Eii,B=Ej1,i,j∈[n],RS=U=(uij)n×n. It follows from

δijg3(Ei1)=g3(EiiEj1)=PEiiUEj1Q=uijPEi1Q

thatuij=0,?i≠j. SetA=E12,B=E21, then

0≠g3(E11)=PE21diag(u11,…,unn)E21Q=0

which is a contradiction.

If (4) and (7) hold, letA=E1i,B=Ejj,i,j∈[n],RS=U=(uij)n×n. It follows from

δijg3(E1j)=g3(E1iEjj)=PE1iUEjjQ=uijPE1jQ

thatuij=0,?i≠j. SetA=E12,B=E21, then

0≠g3(E11)=PE12diag(u11,…,unn)E12Q=0

Similarly, one can prove that (5), (7) will not happen.

Next , we assume that (4), (6) hold. LetRS=U=(uij)n×n. TakingA=E1i,B=Ej1,i,j∈[n], we obtain

δijg3(E11)=g3(E1iEj1)=PE1iUEj1Q=uijPE11Q

Hence

uij=0,?i≠j

and

ujj=u11,?j∈[n]

Therefore we haveRS=λI, for someλ≠0. ReplaceQbyλ-1Q, It follows from (4) and (6) that

g1(A)=PAR, ?A∈Mm×n()

and

g2(B)=R-1BQ, ?B∈Mn×l()

Hence

g3(Eij)=g3(Ei1E1j)=PEijQ, ?i∈[m],j∈[l]

We get

g3(C)=PCQ, ?C∈Mm×l()

for anyA∈Mm×n(),B∈Mn×l().

By Lemma 3, there exist invertible matricesP∈Mm×m(),R∈Mn×n(),Q∈Ml×l() such that

g1(A)=PAR,?A∈Mm×n()

g2(B)=R-1BQ,?B∈Mn×l()

g3(C)=PCQ,?C∈Mm×l()

and the theorem follows.

Domestic studies on linear preserving problem began in 1989[13], for more research on preserving problem and tensor refer to references [14-17] and their references.

主站蜘蛛池模板: 蜜桃视频一区二区| 伊人天堂网| 呦女亚洲一区精品| 日本手机在线视频| 曰AV在线无码| 在线国产你懂的| 在线亚洲精品自拍| 成人午夜视频网站| 国产日韩欧美视频| 全部毛片免费看| 国产精品永久不卡免费视频| 青草视频网站在线观看| 久草视频一区| 久久精品国产精品青草app| 欧美成人h精品网站| 欧美三級片黃色三級片黃色1| 老司机精品99在线播放| 国产尤物在线播放| 欧美在线国产| av无码久久精品| 九九九精品成人免费视频7| 国产一区二区三区夜色| 精品久久777| 久久亚洲黄色视频| 真实国产精品vr专区| 九九香蕉视频| 欧美日本在线观看| V一区无码内射国产| 72种姿势欧美久久久大黄蕉| 国产高清在线丝袜精品一区| 亚洲成A人V欧美综合天堂| 久久综合丝袜日本网| 亚洲人成影院在线观看| 国产网友愉拍精品视频| 99热最新网址| 久久久久国色AV免费观看性色| 无码福利视频| 国产成人综合亚洲欧美在| 亚洲一区二区三区在线视频| 最新日韩AV网址在线观看| 67194成是人免费无码| 日韩麻豆小视频| 伊人激情久久综合中文字幕| 日本午夜三级| 国产伦片中文免费观看| 九九久久精品免费观看| 久草性视频| 国产成人高清精品免费5388| 日韩精品资源| 日韩欧美中文| 亚洲免费人成影院| 最新国产高清在线| 人妻少妇乱子伦精品无码专区毛片| 69国产精品视频免费| 午夜小视频在线| 91探花国产综合在线精品| 一级毛片免费的| 欧美成人精品欧美一级乱黄| 久久人搡人人玩人妻精品一| 精品91自产拍在线| 麻豆a级片| 亚洲精品视频免费| 亚洲国产成人综合精品2020| 国产网站在线看| 91福利一区二区三区| 久久精品最新免费国产成人| 亚洲国产成人精品一二区| 无码一区中文字幕| 中文字幕无码电影| 少妇人妻无码首页| 91国内外精品自在线播放| 久久99蜜桃精品久久久久小说| 在线免费a视频| 麻豆AV网站免费进入| 91麻豆精品国产高清在线| 久青草免费在线视频| 国产激情无码一区二区免费| 国产正在播放| 91视频精品| 少妇精品网站| 一级毛片在线免费视频| 精品久久国产综合精麻豆|