郜雪,逄淑超,閆波,3,4△
基因啟動(dòng)子區(qū)的單核苷酸多態(tài)性與擴(kuò)張型心肌病的相關(guān)性分析*
郜雪1,逄淑超2,閆波2,3,4△
(1山東大學(xué)齊魯醫(yī)學(xué)院,山東 濟(jì)南 250014;2濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院心血管疾病分子遺傳學(xué)中心,山東 濟(jì)寧 272029;3山東省中美轉(zhuǎn)化醫(yī)學(xué)合作研究中心,山東 濟(jì)寧 272029;4濟(jì)寧醫(yī)學(xué)院精準(zhǔn)醫(yī)學(xué)研究院,山東 濟(jì)寧 272029)
探討基因啟動(dòng)子區(qū)的單核苷酸多態(tài)性(SNP)與擴(kuò)張型心肌?。―CM)的相關(guān)性。采用病例-對(duì)照研究方法,收集136例DCM患者和210例健康對(duì)照。采用PCR和Sanger測(cè)序的方法獲得基因啟動(dòng)子區(qū)的SNPs。通過(guò)細(xì)胞轉(zhuǎn)染和電泳遷移率變動(dòng)分析(EMSA)對(duì)基因啟動(dòng)子區(qū)的SNPs進(jìn)行遺傳功能分析。采用卡方檢驗(yàn)和兩獨(dú)立樣本檢驗(yàn)對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析。使用SNPStats在線軟件進(jìn)行相關(guān)性分析。校正混雜因素后,rs73099190在共顯性遺傳模型和超顯性遺傳模型中的TC基因型和顯性遺傳模型中的TC+CC基因型均與DCM顯著相關(guān)(OR=1.96,95% CI: 1.20~3.20,=0.019; OR=1.98,95% CI: 1.22~3.24,=0.006; OR=1.86,95% CI: 1.15~3.03,=0.012)。轉(zhuǎn)染結(jié)果顯示,基因啟動(dòng)子區(qū)的SNPs顯著改變了基因啟動(dòng)子的轉(zhuǎn)錄活性(<0.01)。進(jìn)一步EMSA實(shí)驗(yàn)表明,rs1191745927和rs73099190影響了基因啟動(dòng)子與轉(zhuǎn)錄因子的結(jié)合。DCM患者基因啟動(dòng)子的變異可能影響轉(zhuǎn)錄因子的結(jié)合,進(jìn)而改變了基因的轉(zhuǎn)錄活性,可能作為罕見(jiàn)的低頻危險(xiǎn)因素促進(jìn)DCM的發(fā)生發(fā)展。
擴(kuò)張型心肌??;基因;啟動(dòng)子;單核苷酸多態(tài)性
擴(kuò)張型心肌病(dilated cardiomyopathy,DCM)是一種以心力衰竭為終末階段的心臟疾病,嚴(yán)重影響人類健康。同時(shí),DCM也是心源性猝死和心臟移植的主要原因[1],其主要的病理機(jī)制為心室重塑和心肌纖維化,從而導(dǎo)致心臟功能受損。
基因是亞家族的成員之一,主要在心臟中表達(dá)[2]。在胚胎發(fā)育早期,基因在心臟祖細(xì)胞及心臟管的心肌和室間隔中表達(dá),后期在心臟流出道和房室管的心內(nèi)膜墊、心房及心室中表達(dá)[2-5]。在心臟中,TBX20轉(zhuǎn)錄因子主要通過(guò)與發(fā)育心臟不同區(qū)域的廣泛轉(zhuǎn)錄網(wǎng)絡(luò)相互作用,協(xié)調(diào)心肌細(xì)胞的增殖、分化和心臟腔室形成[6-7]。TBX20與NKX2.5相互作用可能促進(jìn)心源性祖細(xì)胞的增殖和分化[8]。TBX20與、和基因序列結(jié)合并抑制其表達(dá),進(jìn)而促進(jìn)心肌細(xì)胞增殖[9]。同時(shí),TBX20與Isl1和Gata4協(xié)同作用,激活和,維持右心室和流出道正常形成[10]。染色質(zhì)免疫沉淀分析表明,TBX20直接與啟動(dòng)子序列中保守的T半?yún)^(qū)結(jié)合,負(fù)調(diào)控表達(dá)[10]。TBX20負(fù)調(diào)控TBX5和TBX2介導(dǎo)的轉(zhuǎn)錄功能,為心臟形態(tài)發(fā)生奠定基礎(chǔ)[7-11]。同時(shí),TBX20直接調(diào)節(jié)基因的表達(dá),促進(jìn)心房建立,并且直接調(diào)節(jié)、和心肌細(xì)胞必需基因(、和)[12-14]。在上游事件中,受Nrg1劑量依賴性抑制,從而在室壁發(fā)育和室壁小梁形成中發(fā)揮作用[11]。同時(shí),AP-2 gamma(Tfap2c)也被認(rèn)為是的轉(zhuǎn)錄抑制因子[15]。體外啟動(dòng)子分析表明,BMP10能夠通過(guò)啟動(dòng)子近端區(qū)域保守的Smad結(jié)合位點(diǎn)誘導(dǎo)啟動(dòng)子活性,表明是BMP10的下游靶點(diǎn)[16]。此外,是早期房室墊形成和心內(nèi)膜內(nèi)皮-間充質(zhì)轉(zhuǎn)化所必需的,并且對(duì)室壁的發(fā)育和成熟及瓣膜的形成有重要作用[6,17]。
然而,基因啟動(dòng)子區(qū)域單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)與DCM的關(guān)系尚未被報(bào)道。因此,本研究采用病例-對(duì)照的研究方法分析兩者的相關(guān)性,并進(jìn)行了機(jī)制探索,以期為DCM的預(yù)防、診斷和治療提供遺傳學(xué)基礎(chǔ)。
選取2018年12月~2021年6月在濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院心內(nèi)科就診并確診為DCM的患者136例為病例組,其中男性121例,女性15例,年齡為(53±13)歲。選取同時(shí)期在濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院健康體檢中心體檢的健康者210例為對(duì)照組,其中男性136例,女性74例,年齡為(45±12)歲。病例組和對(duì)照組均為漢族人群并且沒(méi)有血緣關(guān)系。DCM患者均通過(guò)病史、臨床表現(xiàn)、體格檢查、心電圖和超聲心動(dòng)圖進(jìn)行診斷。所有DCM患者的診斷依據(jù)世界衛(wèi)生組織(WHO)制定的DCM診斷標(biāo)準(zhǔn)。有DCM病史或家族史或其他心臟病家族史的對(duì)照被排除。本研究經(jīng)濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院人類倫理委員會(huì)批準(zhǔn)并獲得所有參與者的知情同意。
2.2引物設(shè)計(jì)根據(jù)NCBI數(shù)據(jù)庫(kù)中基因序列(GenBank: NG_015805)設(shè)計(jì)引物。選取基因轉(zhuǎn)錄起始位點(diǎn)上游1 032個(gè)堿基對(duì)序列和轉(zhuǎn)錄起始位點(diǎn)下游415個(gè)堿基對(duì)序列進(jìn)行分析?;蜣D(zhuǎn)錄起始位點(diǎn)位于g.5001(+1)。使用Primer Premier 5.0軟件設(shè)計(jì)引物,經(jīng)NCBI中Primer-BLAST分析,選取高特異性引物(上游引物序列為5'-CGACTGGCTGGAAAAGAGAACA-3',下游引物序列為5'-GGAGACAAAGACCCGAAACAC-3')由上海生工生物有限公司合成。
2.3目的片段擴(kuò)增PCR體系為50 μL:模板2.5 μL,上游引物(10 μmol/L)1 μL,下游引物(10 μmol/L)1 μL,酶0.5 μL,dNTP Mix 8 μL,GC buffer I 25 μL,雙蒸水12 μL。反應(yīng)條件為:95 ℃預(yù)變性3 min; 95 °C變性30 s,60 °C退火30 s,72 ℃延伸50 s,共35個(gè)循環(huán); 72 ℃延伸5 min,4 ℃暫時(shí)保存。經(jīng)20 g/L的瓊脂糖凝膠電泳判斷目的條帶。
將合格的PCR產(chǎn)物送往上海生工生物有限公司進(jìn)行Sanger測(cè)序。使用DNAMAN軟件將測(cè)序結(jié)果與野生型序列進(jìn)行比對(duì)。同時(shí),使用色譜軟件Chromas進(jìn)行核對(duì)和基因型統(tǒng)計(jì)。
2.4新生大鼠心肌細(xì)胞(neonatal rat cardiomyocytes,NRCMs)提取SPF級(jí)SD大鼠2只,購(gòu)自濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司,許可證號(hào)為SCXK(魯)2019-0003。動(dòng)物在標(biāo)準(zhǔn)環(huán)境中飼養(yǎng),控制溫度(20~25 ℃)、濕度(40%~0%)和光照條件(12 h光照/黑暗)。該研究得到了濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院動(dòng)物倫理委員會(huì)批準(zhǔn)。選取出生1~3 d的SD大鼠(雌雄混合)進(jìn)行心肌細(xì)胞提取。用75%乙醇消毒新生SD大鼠并剪出心臟,將心臟放入PBS(含雙抗)中擠出多余的血液和非心臟組織。在新的含雙抗的PBS中將心臟剪碎。剪碎的心臟組織在錐形瓶中用0.25%胰酶消化2 min,丟棄上清液,重復(fù)消化1次。用0.25%的胰酶消化80 s,并將上清液吸入到終止培養(yǎng)液(14%胎牛血清和1%雙抗)中終止消化。重復(fù)消化直至組織消化完全。將含組織消化液的培養(yǎng)液用70 μm細(xì)胞過(guò)濾器過(guò)濾到新的離心管中,228×離心10 min后棄上清。用低糖培養(yǎng)液(10%胎牛血清和1%雙抗)懸浮并接種到培養(yǎng)皿中,放入37 ℃、5% CO2培養(yǎng)箱中進(jìn)行差速貼壁。1.5 h后收集含有NRCMs細(xì)胞的上層培養(yǎng)液接種到6孔板中。24 h后更換新的培養(yǎng)液,36~48 h進(jìn)行轉(zhuǎn)染。
2.5雙螢光素酶報(bào)告法分析采用含有I和I酶切位點(diǎn)的引物[上游引物序列為5'-(I)CGACTGGCTGGAAAAGAGAACA-3';下游引物序列為5'-(I)GGAGACAAAGACCCGAAACAC-3']構(gòu)建表達(dá)載體,以分析基因啟動(dòng)子的功能。不含基因啟動(dòng)子的表達(dá)載體(pGL3-Basic)作為陰性對(duì)照。海腎熒光素酶報(bào)告基因質(zhì)粒(pRL-TK; Promega)作為內(nèi)參照。將HEK-293細(xì)胞和NRCMs接種到6孔板中,待融合度達(dá)到70%~90%時(shí)進(jìn)行細(xì)胞轉(zhuǎn)染。36~48 h后使用雙螢光素酶報(bào)告基因檢測(cè)系統(tǒng)檢測(cè)轉(zhuǎn)染細(xì)胞的雙螢光素酶活性。螢火蟲(chóng)螢光素酶活性與海腎螢光素酶活性的比值代表基因啟動(dòng)子的活性。野生型基因啟動(dòng)子的活性設(shè)定為100%。
2.6核提取物的制備和電泳遷移率變動(dòng)分析(electrophoretic mobility shift assay,EMSA)使用NE-PER?核和胞質(zhì)提取試劑(Thermo Scientific)從培養(yǎng)的HEK-293細(xì)胞和NRCMs中提取核提取物。使用前保存在-80 ℃冰箱中。設(shè)計(jì)含SNP位點(diǎn)的生物素化雙鏈寡核苷酸探針(30 bp)。使用LightShift?化學(xué)發(fā)光EMSA試劑盒(Thermo Fisher Scientific)進(jìn)行EMSA實(shí)驗(yàn)。
細(xì)胞轉(zhuǎn)染實(shí)驗(yàn)獨(dú)立重復(fù)3次,轉(zhuǎn)染結(jié)果用均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示,并采用檢驗(yàn)對(duì)轉(zhuǎn)染結(jié)果進(jìn)行統(tǒng)計(jì)分析。定量資料用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,并用檢驗(yàn)進(jìn)行統(tǒng)計(jì)分析。定性資料用卡方檢驗(yàn)進(jìn)行統(tǒng)計(jì)分析?;蛐图暗任换蛟贒CM 組和對(duì)照組的頻率分布用R×C卡方檢驗(yàn)進(jìn)行分析。使用SPSS 25.0軟件進(jìn)行統(tǒng)計(jì)分析。使用SNPStats (https://www.snpstats.net/start.htm)進(jìn)行SNPs和DCM風(fēng)險(xiǎn)之間的關(guān)聯(lián)研究。使用TRANSFAC (https://portal.genexplain.com/)預(yù)測(cè)變異位點(diǎn)是否影響了基因啟動(dòng)子與其他轉(zhuǎn)錄因子的結(jié)合。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
DCM組的年齡和男性比例顯著高于對(duì)照組(<0.01);與對(duì)照組相比,DCM組糖尿病患病率和吸煙率顯著升高(<0.05或<0.01);雖然高血壓患病率在兩組中無(wú)顯著差異(>0.05),但DCM組的收縮壓顯著低于對(duì)照組(<0.01),這可能與心力衰竭導(dǎo)致的射血分?jǐn)?shù)降低有關(guān),見(jiàn)表1。
上完課,我離開(kāi)學(xué)校,放眼望去,眼前陌生的大街旁是一棟棟高聳入云的大廈。摸了摸空空如也的肚子,我走進(jìn)了一家餐廳,菜單里面全是:松節(jié)油加電池、汽油加電、輕鐵加能量……

表1 臨床特征分析
DBP: diastolic blood pressure; SBP: systolic blood pressure.
測(cè)序結(jié)果顯示,rs336284和rs73099190均有雜合變異和純合變異,而rs1191745927只有雜合變異,見(jiàn)圖1。Hardy-Weinberg平衡檢驗(yàn)結(jié)果顯示,SNPs在對(duì)照組中符合Hardy-Weinberg平衡(>0.05),表明對(duì)照組來(lái)自遺傳平衡的群體,具有良好的代表性。

Figure1.Sequencing chromatograms of the SNPs[g.4740 T>C (rs336284),g.4949 C>T (rs1191745927)and g.5295 T>C (rs73099190)]. A: g.4740 T>C (rs336284); B: g.4949 C>T (rs1191745927); C: g.5295 T>C (rs73099190). All sequence orientations of the SNPs are forward. The top panels show wild-type,the middle show heterozygous,and the bottom show homozygous. Arrows indicate the polymorphism.
基因型分析顯示,rs336284在兩組中的基因型和等位基因頻率分布無(wú)顯著差異(>0.05),但DCM組rs336284的CC+TC基因型頻率高于對(duì)照組(=0.041);rs73099190基因型在兩組中的頻率分布有顯著差異(=0.003),進(jìn)一步分析顯示,rs73099190的CC+TC基因型頻率在DCM組顯著高于對(duì)照組(=0.005),且rs73099190的等位基因頻率在兩組中也有顯著差異(=0.020),見(jiàn)表2。

表2 SNPs的基因型和等位基因頻率分析
使用SNPStats在線分析軟件對(duì)rs73099190和rs336284進(jìn)行5種遺傳模型(共顯性、顯性、隱性、超顯性和加性)分析,結(jié)果顯示:在調(diào)整年齡和性別后,rs73099190的TC基因型在共顯性遺傳模型和超顯性遺傳模型中與DCM的發(fā)生有相關(guān)性(OR=1.96,95% CI: 1.20~3.20,=0.019; OR=1.98,95% CI: 1.22~3.24,=0.006)。在顯性遺傳模型中,rs73099190的TC+CC基因型與DCM的發(fā)生有相關(guān)性(OR=1.86,95% CI: 1.15~3.03,=0.012)。這表明在上述遺傳模型中TC或TC+CC基因型與DCM風(fēng)險(xiǎn)相關(guān)。通過(guò)分析未見(jiàn)rs336284與DCM存在相關(guān)性。
由于rs1191745927只出現(xiàn)在1個(gè)DCM樣本中,且該樣本中同時(shí)含有rs336284和rs73099190位點(diǎn),因此將3個(gè)SNPs[g.4740 T>C (rs336284)、g.4949 C>T (rs1191745927)和g.5295 T>C (rs73099190)]構(gòu)建為1個(gè)表達(dá)載體(pGL3-g.4740C+g.4949T+g.5295C)。在HEK-293細(xì)胞和NRCMs中,pGL3-g.4740C+g.4949T+g.5295C均顯著增加了基因啟動(dòng)子的轉(zhuǎn)錄活性(<0.01),見(jiàn)圖2。這也表明SNP對(duì)基因啟動(dòng)子的作用不具有組織特異性。

Figure 2.Relative transcriptional activity of TBX20 gene promoter in HEK-293 cells and NRCMs. Empty vector pGL3-Basic was used as a negative control. Transcriptional activity of the wild-type TBX20 gene promoter was designed as 100%. Mean±SEM. n=9. **P<0.01 vs pGL3-WT.
TRANSFAC在線數(shù)據(jù)庫(kù)預(yù)測(cè)結(jié)果顯示,rs336284可能產(chǎn)生了熱休克轉(zhuǎn)錄因子4(heat shock transcription factor 4,HSF4)的結(jié)合位點(diǎn),修飾了鋅指蛋白614(zinc finger protein 614,ZNF614)的結(jié)合位點(diǎn);rs1191745927可能產(chǎn)生了信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子1(signal transducer and activator of transcription 1,STAT1)、ETS轉(zhuǎn)錄因子ERG和ETS轉(zhuǎn)錄因子ELK-1的結(jié)合位點(diǎn),修飾了Kruppel樣因子6(Kruppel-like factor 6,KLF6)的結(jié)合位點(diǎn)。rs73099190可能產(chǎn)生了E2F轉(zhuǎn)錄因子1(E2F transcription factor 1,E2F-1)的結(jié)合位點(diǎn)。
EMSA結(jié)果顯示,SNP g.4949C>T (rs1191745927)創(chuàng)建了未知轉(zhuǎn)錄因子的結(jié)合位點(diǎn);SNP g.5295 T>C (rs73099190)增強(qiáng)或產(chǎn)生了未知轉(zhuǎn)錄因子的結(jié)合位點(diǎn);而SNP g.4740 T>C (rs336284)沒(méi)有影響轉(zhuǎn)錄因子的結(jié)合,見(jiàn)圖3。這表明rs1191745927和rs73099190通過(guò)改變轉(zhuǎn)錄因子的結(jié)合影響基因啟動(dòng)子的轉(zhuǎn)錄活性,進(jìn)而影響基因的表達(dá)水平。

Figure 3.EMSA results of SNPs[g.4740 T>C (rs336284),g.4949 C>T (rs1191745927) and g.5295 T>C(rs73099190)]. A: g.4740 T>C (rs336284); B: g.4949 C>T (rs1191745927); C: g.5295 T>C (rs73099190). The free probe was marked at the bottom. The affected binding for an unknown transcription factor was marked with an open arrow.
啟動(dòng)子是DNA序列中的調(diào)控元件,它可以通過(guò)轉(zhuǎn)錄結(jié)合位點(diǎn)將轉(zhuǎn)錄因子招募到DNA序列中,從而使細(xì)胞能夠精確控制基因轉(zhuǎn)錄的時(shí)間和位置[18]。因此,即使基因本身沒(méi)有突變,調(diào)控元件DNA序列的變化也會(huì)改變轉(zhuǎn)錄因子的結(jié)合親和力,從而改變甚至減弱調(diào)控基因的表達(dá)。因此,致病突變也可以定位于非編碼區(qū)。
基因定位于人類第7號(hào)染色體p14~p15的短臂區(qū)域,是心臟發(fā)育的重要基因。研究表明基因敲除小鼠表現(xiàn)為嚴(yán)重的室壁發(fā)育不良,并伴有心環(huán)缺陷,甚至死亡[19]。而且,TBX20以劑量依賴的方式調(diào)節(jié)基因的表達(dá)[20]?;蛲耆贸∈笏烙贓9,表現(xiàn)為心臟形成缺陷,包括流出道和右心室發(fā)育不良;中度敲除小鼠死于E11~E12,心臟呈環(huán)狀,右室發(fā)育不良,心肌薄,致密層和心內(nèi)膜細(xì)胞凋亡增加,增值減少;輕度敲除導(dǎo)致持續(xù)性動(dòng)脈干(未分隔的流出道)和右心室發(fā)育不良[20]。同時(shí),基因完全和中度敲除小鼠的上皮向間充質(zhì)轉(zhuǎn)化受損,導(dǎo)致心內(nèi)膜墊形成障礙[20]。此外,心肌中過(guò)表達(dá)也會(huì)導(dǎo)致DCM,表現(xiàn)出心室過(guò)度小梁化和異常的肌隔[16]。基因在維持成人心臟功能、內(nèi)穩(wěn)態(tài)以及生理和病理生理適應(yīng)中也具有重要作用。在成人心肌細(xì)胞中,基因條件性敲除表現(xiàn)為嚴(yán)重的DCM、心律失常和心力衰竭[21]。成年心肌梗死小鼠過(guò)表達(dá)導(dǎo)致心肌梗死邊緣區(qū)的心肌細(xì)胞增殖和毛細(xì)血管密度增加,顯著提高了心肌梗死后4周的存活率,改善了心功能,減小了梗死面積[9]。
本研究針對(duì)基因啟動(dòng)子區(qū)域的SNPs進(jìn)行基因型、等位基因、基因表達(dá)調(diào)控及轉(zhuǎn)錄活性分析,旨在通過(guò)比較人類遺傳信息的差異性和相似性,探究DCM的遺傳機(jī)制,推動(dòng)精準(zhǔn)醫(yī)學(xué)在DCM中的發(fā)展。我們對(duì)3個(gè)SNPs (rs336284、rs1191745927和rs73099190)進(jìn)行分析顯示,rs73099190的TC基因型可能是DCM的危險(xiǎn)基因型。結(jié)合EMSA、細(xì)胞轉(zhuǎn)染和TRANSFAC預(yù)測(cè)結(jié)果,我們推測(cè)rs1191745927可能產(chǎn)生了STAT1轉(zhuǎn)錄因子、ERG轉(zhuǎn)錄因子和ELK-1轉(zhuǎn)錄因子的結(jié)合位點(diǎn),修飾了KLF6轉(zhuǎn)錄因子的結(jié)合位點(diǎn);rs73099190可能產(chǎn)生了E2F-1轉(zhuǎn)錄因子的結(jié)合位點(diǎn)。
STAT1是STATs家族的成員之一,它參與細(xì)胞增殖、分化、遷移、凋亡和免疫調(diào)節(jié)等多種生物反應(yīng)[22]。在細(xì)胞信號(hào)途徑中STAT1蛋白被磷酸化激活,然后轉(zhuǎn)移到細(xì)胞核,并在細(xì)胞核中激活靶基因。然而,有報(bào)道稱未磷酸化的STAT1可以直接調(diào)控基因表達(dá)[23]。ERG屬于ETS轉(zhuǎn)錄因子之一,具有DNA結(jié)合域(ETS域)和相互作用結(jié)構(gòu)域。ERG可以作為轉(zhuǎn)錄激活因子、抑制因子或兩者兼有,這取決于靶基因或翻譯后修飾,在組織特異性過(guò)程(包括造血、血管生成和血管炎癥)的調(diào)控中發(fā)揮重要作用[24-26]。全面敲除在內(nèi)皮細(xì)胞中顯著表達(dá)的基因,會(huì)導(dǎo)致心血管缺陷,并且胚胎死于E11.5。這些胚胎的心臟缺陷與心臟瓣膜形態(tài)發(fā)生過(guò)程中心內(nèi)膜-間充質(zhì)轉(zhuǎn)化失敗有關(guān),可能與ERG依賴的轉(zhuǎn)錄因子Snail家族的調(diào)節(jié)有關(guān)[27]。轉(zhuǎn)錄激活因子ELK-1也是ETS家族成員之一,在調(diào)節(jié)細(xì)胞分化和增值中發(fā)揮重要作用。ELK-1的轉(zhuǎn)錄活性表現(xiàn)為羧基末端絲氨酸或蘇氨酸殘基的去SUMO化和磷酸化[28]。ELK-1轉(zhuǎn)錄因子可以快速激活多種基因的轉(zhuǎn)錄[29]。此外,KLF6與細(xì)胞增殖、分化和凋亡相關(guān)[30];E2F-1導(dǎo)致心肌細(xì)胞在細(xì)胞周期的G2/M期積累,越過(guò)G1/S檢查點(diǎn),繼而增加凋亡率和死亡率[31]。結(jié)合轉(zhuǎn)染結(jié)果和EMSA結(jié)果,我們推測(cè)STAT1、ERG和ELK-1作為一種轉(zhuǎn)錄激活因子作用于相應(yīng)的轉(zhuǎn)錄因子結(jié)合位點(diǎn),促進(jìn)了基因的轉(zhuǎn)錄。然而,仍然需要對(duì)轉(zhuǎn)錄因子進(jìn)行進(jìn)一步鑒定。
綜上所述,基因啟動(dòng)子變異可能影響轉(zhuǎn)錄因子的結(jié)合,改變基因的轉(zhuǎn)錄活性,進(jìn)而影響DCM的發(fā)生和發(fā)展。而EMSA實(shí)驗(yàn)和相關(guān)性分析顯示rs336284與DCM無(wú)相關(guān)性。因?yàn)閞s1191745927僅存在于1個(gè)樣本中,我們未進(jìn)行其相關(guān)性分析,后續(xù)我們會(huì)繼續(xù)增加樣本量,并進(jìn)一步明確轉(zhuǎn)錄因子,為探索DCM的發(fā)病機(jī)制提供遺傳學(xué)依據(jù)。
[1] Taylor DO,Edwards LB,Boucek MM,et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report--2007[J]. J Heart Lung Transplant,2007,26(8):769-781.
[2] Meins M,Henderson DJ,Bhattacharya SS,et al. Characterization of the humangene,a new member of the T-box gene family closely related to thegene[J]. Genomics,2000,67(3):317-332.
[3] Kraus F,Haenig B,Kispert A. Cloning and expression analysis of the mouse T-box gene[J]. Mech Dev,2001,100(1):87-91.
[4] Ahn DG,Ruvinsky I,Oates AC,et al.,a new vertebrate T-box gene expressed in the cranial motor neurons and developing cardiovascular structures in zebrafish[J].Mech Dev,2000,95(1/2):253-258.
[5] Carson CT,Kinzler ER,Parr BA.,a novel T-box gene,is expressed during early stages of heart and retinal development[J]. Mech Dev,2000,96(1):137-140.
[6] Stennard FA,Costa MW,Elliott DA,et al. Cardiac T-box factor Tbx20 directly interacts with Nkx2-5,GATA4,and GATA5 in regulation of gene expression in the developing heart[J]. Dev Biol,2003,262(2):206-224.
[7] Brown DD,Martz SN,Binder O,et al. Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis[J]. Development,2005,132(3):553-563.
[8] Prall OW,Menon MK,Solloway MJ,et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation[J]. Cell,2007,128(5):947-959.
[9] Xiang FL,Guo MZ,Yutzey KE. Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction[J].Circulation,2016,133(11):1081-1092.
[10] Cai CL,Zhou W,Yang L,et al. T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis[J]. Development,2005,132(10):2475-2487.
[11] Stennard FA,Costa MW,Lai D,et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development,and is essential for adult heart integrity,function and adaptation[J]. Development,2005,132 (10):2451-2462.
[12] Bersell K,Arab S,Haring B,et al. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury[J]. Cell,2009,138(2):257-270.
[13] Boogerd CJ,Zhu X,Aneas I,et al. Tbx20 Is required in mid-gestation cardiomyocytes and plays a central role in atrial development[J]. Circ Res,2018,123(4):428-442.
[14] Ihara D,Watanabe Y,Seya D,et al. Expression of Hey2 transcription factor in the early embryonic ventricles is controlled through a distal enhancer by Tbx20 and Gata transcription factors[J]. Dev Biol,2020,461(2):124-131.
[15] Hammer S,Toenjes M,Lange M,et al. Characterization of TBX20 in human hearts and its regulation by TFAP2[J]. J Cell Biochem,2008,104(3):1022-1033.
[16] Zhang W,Chen H,Wang Y,et al. Tbx20 transcription factor is a downstream mediator for bone morphogenetic protein-10 in regulating cardiac ventricular wall development and function[J]. J Biol Chem,2011,286(42):36820-36829.
[17] Shelton EL,Yutzey KE. Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression[J]. Dev Biol,2007,302(2):376-388.
[18] Harakalova M,Asselbergs FW. Systems analysis of dilated cardiomyopathy in the next generation sequencing era[J]. Wiley Interdiscip Rev Syst Biol Med,2018,10(4):e1419.
[19] Singh MK,Christoffels VM,Dias JM,et al. Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2[J]. Development,2005,132(12):2697-2707.
[20] Takeuchi JK,Mileikovskaia M,Koshiba-Takeuchi K,et al. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development[J]. Development,2005,132(10):2463-2474.
[21] Shen T,Aneas I,Sakabe N,et al. Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function[J]. J Clin Invest,2011,121(12):4640-4654.
[22] Zhen C,Liu H,Gao L,et al. Signal transducer and transcriptional activation 1 protects against pressure overload-induced cardiac hypertrophy[J]. FASEB J,2021,35 (1):e21240.
[23] Yang J,Stark GR. Roles of unphosphorylated STATs in signaling[J]. Cell Res,2008,18(4):443-451.
[24] Lelièvre E,Lionneton F,Soncin F,et al. The Ets family contains transcriptional activators and repressors involved in angiogenesis[J]. Int J Biochem Cell Biol,2001,33(4):391-407.
[25] Sharrocks AD,Brown AL,Ling Y,et al. The ETS-domain transcription factor family[J]. Int J Biochem Cell Biol,1997,29(12):1371-1387.
[26] Shah AV,Birdsey GM,Randi AM. Regulation of endothelial homeostasis,vascular development and angiogenesis by the transcription factor ERG[J]. Vascul Pharmacol,2016,86:3-13.
[27] Vijayaraj P,Le Bras A,Mitchell N,et al. Erg is a crucial regulator of endocardial-mesenchymal transformation during cardiac valve morphogenesis[J]. Development,2012,139(21):3973-3985.
[28] Jiang R,Gao Q,Chen M,et al. Elk-1 transcriptionally regulates ZC3H4 expression to promote silica-induced epithelial-mesenchymal transition[J]. Lab Invest,2020,100(7):959-973.
[29] Kasza A. Signal-dependent Elk-1 target genes involved in transcript processing and cell migration[J]. Biochim Biophys Acta,2013,1829(10):1026-1033.
[30] Kim GD,Ng HP,Chan ER,et al. Kruppel-like factor 6 promotes macrophage inflammatory and hypoxia response[J]. FASEB J,2020,34(2):3209-3223.
[31] Agah R,Kirshenbaum LA,Abdellatif M,et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium[J]. J Clin Invest,1997,100(11):2722-2728.
Association analysis of single nucleotide polymorphism in promoter region ofgene and dilated cardiomyopathy
GAO Xue1,PANG Shu-chao2,YAN Bo2,3,4△
(1,,250014,;2,,272029,;3,272029,;4,,272029,)
To investigate the correlation between single nucleotide polymorphism (SNP) in promoter region ofgene and dilated cardiomyopathy (DCM).A case-control study recruiting 136 DCM patients and 210 healthy controls was conducted,and SNPs in the promoter region ofgene were obtained by PCR and Sanger sequencing. The genetic function of the SNPs ingene promoter was analyzed by cell transfection and electrophoretic mobility shift assay (EMSA). Chi-square test and-test were used to analyze the data. SNPStats online software was used for correlation analysis.The TC genotype of rs73099190 in codominant model and overdominant model and the TC+CC genotype of rs73099190 in dominant model were significantly correlated with DCM after adjusting confounding factors (OR=1.96,95% CI: 1.20 to 3.20,=0.019; OR=1.98,95% CI: 1.22 to 3.24,=0.006; OR=1.86,95% CI: 1.15 to 3.03,=0.012). Transfection results revealed that the SNPs ingene promoter significantly changed the transcriptional activity ofgene promoter(<0.01). Furthermore,EMSA results showed that rs1191745927 and rs73099190 affected the binding ofgene promoter to transcription factors.Variation ofgene promoter in DCM patients may affect the binding of transcription factors,thus changing the transcriptional activity ofgene,which may contribute to the occurrence and development of DCM as a rare low-frequency risk factor.
Dilated cardiomyopathy;gene; Promoter; Single nucleotide polymorphism
R542.2; R363.2
A
10.3969/j.issn.1000-4718.2022.02.004
1000-4718(2022)02-0215-07
2021-10-11
2021-12-17
[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81870279)
Tel: 17805370113; E-mail: yanbo@mail.jnmc.edu.cn
(責(zé)任編輯:盧萍,羅森)