999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

中醫(yī)藥基于核因子κB信號通路調(diào)控破骨細(xì)胞分化的研究進(jìn)展

2022-04-03 16:53:18唐魁韓陳龍劉平舉李翔翮孔令超盧小龍孫立
世界中醫(yī)藥 2022年4期
關(guān)鍵詞:研究進(jìn)展中醫(yī)藥

唐魁韓 陳龍 劉平舉 李翔翮 孔令超 盧小龍 孫立

摘要中醫(yī)藥治療骨相關(guān)疾病療效顯著,其分子生物學(xué)機(jī)制研究也成為熱點,破骨細(xì)胞分化異常導(dǎo)致一系列骨相關(guān)疾病發(fā)生,中醫(yī)藥通過核因子κB(NFκB)信號通路調(diào)控破骨細(xì)胞分化的研究取得不少進(jìn)展。本文對中醫(yī)藥基于NFκB信號通路的調(diào)控破骨細(xì)胞分化的研究現(xiàn)狀進(jìn)行歸納總結(jié),闡明分子生物學(xué)機(jī)制,指出目前研究不足及未來研究方向,為中醫(yī)藥治療骨相關(guān)疾病拓展思維。

關(guān)鍵詞中醫(yī)藥;核因子κB;信號通路;破骨細(xì)胞;研究進(jìn)展

Research Progress of Regulation of Osteoclast Differentiation

TANG Kuihan,CHEN Long,LIU Pingju,LI Xianghe,KONG Lingchao,LU Xiaolong,SUN Li

(1 Graduate School,Guizhou University of Traditional Chinese Medicine,Guiyang 550001,China; 2 Guizhou Provincial People′s

Hospital,Guiyang 550002,China; 3 Zunyi Hospital of Traditional Chinese Medicine,Zunyi 563100,China)

AbstractTraditional Chinese medicine(TCM)is effective in the treatment of bonerelated diseases,and its molecular biological mechanism has become a hotspot.The abnormal differentiation of osteoclasts leads to a series of bonerelated diseases.Research on the regulation of osteoclast differentiation through NFκB signaling pathway in TCM has made a lot of progress.This paper summarizes the research status of the regulation of osteoclast differentiation based on the NFκB signaling pathway in traditional Chinese medicine,elaborates the molecular biological mechanism,points out the current research deficiencies and future research directions,and expands the thinking for the treatment of bonerelated diseases in TCM.

KeywordsTraditional Chinese medicine; NFκB; Signaling pathway; Osteoclast; Research progress

中圖分類號:R242文獻(xiàn)標(biāo)識碼:Adoi:10.3969/j.issn.1673-7202.2022.04.023

破骨細(xì)胞(Osteoclast,OC)是一種多核巨細(xì)胞,在骨骼發(fā)育和維持中起重要作用,破骨細(xì)胞異常活化時的過度骨吸收打破了骨代謝平衡,從而導(dǎo)致各種骨相關(guān)疾病發(fā)生,如骨質(zhì)疏松、類風(fēng)濕性關(guān)節(jié)炎等[1]。近年來眾多研究發(fā)現(xiàn),部分中藥具有促進(jìn)成骨分化、抑制破骨、抑制成脂分化、抗炎、抗氧化、免疫調(diào)節(jié)等作用,可以恢復(fù)成骨細(xì)胞和破骨細(xì)胞之間的平衡,其過程受到一系列細(xì)胞因子、信號分子的影響和控制。既往研究對象多為補(bǔ)腎壯骨類中藥[2],其分子生物學(xué)機(jī)制也多是基于MAPK、Wnt/βcatenin等信號通路促進(jìn)成骨方向進(jìn)行研究[3],對于調(diào)節(jié)破骨細(xì)胞分化及其分子機(jī)制相關(guān)研究較少,因此,本文對中醫(yī)藥基于經(jīng)典核因子κB(Nuclear Factor KappaB,NFκB)信號通路調(diào)控破骨細(xì)胞分化的研究進(jìn)展進(jìn)行綜述,為中醫(yī)藥調(diào)節(jié)骨平衡、治療骨相關(guān)疾病提供參考。

1NFκB信號通路調(diào)控破骨細(xì)胞分化的機(jī)制

NFκB是哺乳動物體內(nèi)調(diào)控細(xì)胞的增殖、分化、炎癥中重要的轉(zhuǎn)錄因子,參與機(jī)體的炎癥反應(yīng)、免疫應(yīng)答及其他應(yīng)激反應(yīng)。經(jīng)典NFκB信號通路在靜息狀態(tài)下,NFκB與NFκB抑制因子IκBα結(jié)合成復(fù)合物存在于胞質(zhì)中,當(dāng)細(xì)胞受到外來刺激時[如NFκB受體活化因子配體RANKL、腫瘤壞死因子α(TNFα)、白細(xì)胞介素1(IL1)和白細(xì)胞介素6(IL6)等],激活I(lǐng)κBα激酶IKKs,使IκBα發(fā)生磷酸化或泛素化降解并與NFκB分離,隨后NFκB轉(zhuǎn)移到細(xì)胞核內(nèi),調(diào)節(jié)相關(guān)基因轉(zhuǎn)錄,包括誘導(dǎo)破骨細(xì)胞分化[4]。NFκB非經(jīng)典途徑的發(fā)生主要是在腫瘤壞死因子受體腫瘤壞死因子受體(TNFR)家族配體(CD40L、CD30L)、B細(xì)胞激活因子等的誘導(dǎo)下,相應(yīng)受體被激活,可促進(jìn)NFκB誘導(dǎo)激酶NIK活化,進(jìn)而使蛋白激酶IKKa磷酸化,導(dǎo)致NFκB/p100、NFκB/p105被磷酸化降解,分別形成p52/RelB、p50/RelB異源二聚體調(diào)節(jié)下游的基因表達(dá)。激活的NFκB易位到細(xì)胞核并與破骨細(xì)胞相關(guān)基因的啟動子區(qū)結(jié)合,包括核因子激活的T細(xì)胞核因子1蛋白(NFATc1),NFATc1作為NFκB信號通路下游轉(zhuǎn)錄調(diào)節(jié)因子,是破骨細(xì)胞形成的關(guān)鍵[56],抑制NFκB信號通路活化能夠有效抑制破骨細(xì)胞分化,治療破骨細(xì)胞介導(dǎo)的溶骨性疾病如骨質(zhì)疏松。

2中藥基于NFκB信號通路調(diào)控破骨細(xì)胞分化

近年來,人們發(fā)現(xiàn)不論是單味中藥還是復(fù)方制劑,其藥物中活性成分通過調(diào)控不同信號通路調(diào)控骨代謝平衡。隨著研究深入及萃取技術(shù)提高,從中藥中提取活性成分,探討其分子生物機(jī)制成為了目前中藥研究領(lǐng)域的熱點。

2.1單味中藥及其活性成分

2.1.1淫羊藿淫羊藿,味辛、甘,性溫,具有補(bǔ)腎陽、強(qiáng)筋骨、祛風(fēng)濕的功效。淫羊藿苷(Icariin,ICA)是淫羊藿的主要活性成分之一,具有改善心腦血管、調(diào)節(jié)內(nèi)分泌及性腺的功能,可促進(jìn)成骨細(xì)胞的增殖和發(fā)育,增強(qiáng)免疫功能。淫羊藿苷可抑制破骨前體細(xì)胞向破骨細(xì)胞分化,同時降低NFκB、RANKL的基因和蛋白表達(dá),抑制破骨細(xì)胞的活性[7]。Kim等[8]發(fā)現(xiàn)淫羊藿苷通過抑制RANKL調(diào)節(jié)TRAF6/NFκB/ERK信號通路抑制Raw264.7細(xì)胞向破骨細(xì)胞分化。淫羊藿苷在體外同樣具有抑制破骨細(xì)胞的形成和功能[9],機(jī)制是通過抑制IκBα降解,從而抑制RANKL誘導(dǎo)的RAW264.7細(xì)胞中NFκB和MAPK信號通路的激活來實現(xiàn)的。大花淫羊藿苷A(Ikarisoside A)是從淫羊藿分離出的天然黃酮類化合物,具有抗炎作用[10],其通過降低cFos和NFATc1的表達(dá),降低了破骨細(xì)胞分化的主要調(diào)控因子NFATc1的轉(zhuǎn)錄活性[11]。核轉(zhuǎn)錄因子激活蛋白1(AP1)和NFκB結(jié)合位點存在NFATc1基因的啟動子區(qū)域內(nèi)[12],大花淫羊藿苷A抑制NFκB受體激活蛋白配體(RANKL)誘導(dǎo)的NFκB轉(zhuǎn)錄以及IκB和p65的磷酸化,同時抑制了RANKL激活的AKT信號。Xiong等[13]發(fā)現(xiàn)淫羊藿及其衍生物通過抑制IκB激酶IKK激活,抑制NFκB信號通路。Rebhun等[14]也發(fā)現(xiàn)淫羊藿提取物作用于卵巢切除術(shù)后大鼠能改善其骨密度,其機(jī)制是抑制了破骨細(xì)胞分化過程中NFκB信號通路激活。

2.1.2丹參丹參,味苦,性微寒,具有活血祛瘀、通經(jīng)止痛、清心除煩、涼血消癰等功效。丹參酮ⅡA(TanshinoneⅡA,TanⅡA)是丹參中提取的具有抑菌作用的脂溶性菲醌化合物,近年來有研究報道丹參酮ⅡA具有抑制腫瘤細(xì)胞增殖、促進(jìn)凋亡、抑制轉(zhuǎn)移等抗腫瘤作用[15]。早期研究發(fā)現(xiàn),TanⅡA抑制RANKL激活ERK、AKT、NFκB信號通路抑制破骨細(xì)胞骨吸收活性[16]。TanⅡA降低了患有骨質(zhì)疏松癥的小鼠的骨折傾向和骨量減少程度,同時TanⅡA也提高了實驗小鼠的骨強(qiáng)度、骨基質(zhì)中的礦物質(zhì)和膠原[17],其機(jī)制是TanⅡA抑制NFκB和其目標(biāo)基因TNFα、iNOS和COX2的激活,同時促進(jìn)了TRAF1和IAP1/IAP2在骨細(xì)胞中的表達(dá),證實了TanⅡA可能是未來抗骨質(zhì)疏松潛在制劑。Cheng等[18]發(fā)現(xiàn)丹參酮ⅡA通過抑制NFκB、PI3kinase/AKT、MAPK信號通路和轉(zhuǎn)錄因子NFATc1的激活而抑制RANKL誘導(dǎo)的破骨細(xì)胞生成。丹參酮Ⅵ(Tanshinone Ⅵ,TanⅥ)是從丹參中提取的一種二萜類化合物,廣泛應(yīng)用于臨床預(yù)防心臟病、關(guān)節(jié)炎等炎癥相關(guān)疾病,TanⅥ可通過抑制RANKL和NFκB表達(dá)抑RAW 264.7細(xì)胞向破骨細(xì)胞分化[19]。

2.1.3補(bǔ)骨脂補(bǔ)骨脂,味苦、辛,性溫,具有補(bǔ)腎壯陽、固精縮尿、溫脾止瀉、納氣平喘等功效。補(bǔ)骨脂素(Psoralen,PUVA)作為補(bǔ)骨脂的主要成分,具有抑菌、抗腫瘤、止血和心血管作用,并能促進(jìn)骨形成抑制骨吸收,用于治療骨質(zhì)疏松癥[2021],既往研究發(fā)現(xiàn)補(bǔ)骨脂素通過ERK、JNK和p38途徑刺激成骨細(xì)胞增殖的同時,還顯著增加了NFκB的表達(dá),表明補(bǔ)骨脂素可能通過NFκB信號通路誘導(dǎo)細(xì)胞增殖[22]。新補(bǔ)骨脂異黃酮(Neobavaisoflavone,NBIF)是從補(bǔ)骨脂中分離到的異黃酮類化合物,具有顯著的抗炎和抗癌作用。NBIF通過P38/MAPK通路在體外刺激成骨[23],最近Chen等[24]發(fā)現(xiàn)NBIF通過阻止RANKL誘導(dǎo)的TRAF6和cSrc激活,NFκB、MAPKs和AKT通路激活,鈣振蕩和NFATc1轉(zhuǎn)移來抑制破骨細(xì)胞的生成和功能。

2.1.4巴戟天巴戟天,味甘、辛,性微溫,具有補(bǔ)腎陽、強(qiáng)筋骨、祛風(fēng)濕的功效。巴戟甲素(Bajijiasu)從巴戟天藥材中分離得到的低聚糖單體,補(bǔ)腎益腦活性,能顯著增強(qiáng)記憶活動和抗老年癡呆,并能抑制氧化應(yīng)激,抑制破骨細(xì)胞生成[25]。巴戟甲素通過阻止IκBα退化抑制NFκB轉(zhuǎn)錄活動,同時直接影響下游NFATc1激活,抑制破骨細(xì)胞形成和骨吸收[26],提示巴戟甲素對溶骨性骨病具有潛在的作用。

2.1.5大葉骨碎補(bǔ)大葉骨碎補(bǔ),味苦,性溫,具有活血化瘀、補(bǔ)腎壯骨、祛風(fēng)止痛的功效。左旋表兒茶精3OβD吡喃阿洛糖苷[(-)epicatechin 3OβDallopyranoside,ECAP]是大葉骨碎補(bǔ)根莖中含三萜成分,Hsiao等[27]發(fā)現(xiàn),ECAP能降低卵巢切除引起的小鼠骨質(zhì)疏松癥,其機(jī)制是通過抑制和IκBα的磷酸化和核易位,抑制RANKL誘導(dǎo)的NFκB通路的激活,同時抑制NFATc1表達(dá),抑制成熟破骨細(xì)胞的骨吸收活性。

2.1.6續(xù)斷續(xù)斷,味苦、辛,性微溫,具有補(bǔ)肝腎、強(qiáng)筋骨、續(xù)折傷等功效。Zhang等[28]通過系統(tǒng)藥理學(xué)分析證明續(xù)斷可以調(diào)節(jié)成骨細(xì)胞增殖、分化和礦化通過調(diào)節(jié)MAPK、NFκB和TLR4信號通路。其有效成分之一熊果酸(Ursolic Acid,UA)廣泛存在于多種中草藥之中,UA已被證明可誘發(fā)成骨基因的表達(dá)[29],并能通過抑制NFκB和JNK信號通路激活來抑制破骨細(xì)胞的形成。

2.1.7麝香麝香,味辛,性溫,具有開竅醒神、活血通經(jīng)、消腫止痛的功效。麝香酮(Muscone,MUS)是從麝香經(jīng)蒸餾提取得到的活性成分之一,具有抗炎、治療心肌梗死、緩解疼痛和促進(jìn)骨折愈合等作用[3031]。MUS在體外能顯著減少破骨細(xì)胞的數(shù)量和抑制破骨細(xì)胞功能減,其機(jī)制是抑制了RANKL誘導(dǎo)的TRAF6與RANK的結(jié)合,從而阻斷NFκB和MAPK通路,抑制IκBα、p65和p50的磷酸化以及p65的核易位,在體內(nèi)MUS可預(yù)防卵巢切除術(shù)后大鼠的骨丟失,是絕經(jīng)后骨質(zhì)疏松癥的一種潛在的治療藥物[32]。

2.1.8石菖蒲石菖蒲,味辛、苦,性溫,具有化濕開胃、開竅豁痰、醒神益智的功效。石菖蒲中分離的木質(zhì)素類單體Tatarinan O(TO)、Tatarinan N(TN)和Tatarinan T(TT)抑制RANKL誘導(dǎo)的破骨細(xì)胞生成[33],其中Tatarinan N抑制RANKL誘導(dǎo)IκBα下調(diào)、p65的磷酸化和核轉(zhuǎn)移,TN通過阻斷NFκB信號通路減少RANKL誘導(dǎo)的破骨細(xì)胞分化,對骨質(zhì)疏松等疾病可能具有治療作用[34]。

2.1.9遠(yuǎn)志遠(yuǎn)志,味苦、辛,性溫,具有安神益智、祛痰、消腫等功效。遠(yuǎn)志皂苷(Tenuigenin,TNG)系指藥材遠(yuǎn)志中存在的皂苷類物質(zhì),TNG具有抗炎、抗癡呆、抗氧化等多種生物和藥理活性在中醫(yī)中被廣泛應(yīng)用[35],用于治療失眠、神經(jīng)癥、癡呆等。Yang等[36]發(fā)現(xiàn)TNG在體外有效地抑制了RANKL誘導(dǎo)的破骨細(xì)胞形成,機(jī)制是其延緩了IκBα降解并抑制p65的核轉(zhuǎn)位,抑制NFκB的激活,同時在體內(nèi)有效地抑制了破骨細(xì)胞的活性,表明TNG可能有助于預(yù)防或治療骨質(zhì)疏松癥、腫瘤骨轉(zhuǎn)移和炎癥引起的骨丟失等溶骨性疾病。

2.1.10皂莢皂莢,味辛,性溫,微毒,具有祛風(fēng)痰、除濕毒、殺蟲的功效。棘囊酸(Echinocystic Acid,EA)是從皂莢果實中分離得到的一種五環(huán)三萜化合物,具有強(qiáng)大的抗氧化、抗炎和抗腫瘤特性[37]。Yang等[38]通過RANKL誘導(dǎo)骨髓巨噬細(xì)胞向破骨細(xì)胞分化,但經(jīng)過EA預(yù)處理后,其p65的磷酸化和IκBα的降解受到抑制,表明EA可以抑制NFκB通路的激活抑制破骨細(xì)胞生成。

2.1.11甘草甘草,味甘,性平,具有補(bǔ)脾益氣、清熱解毒、祛痰止咳、緩急止痛、調(diào)和諸藥的功效。甘草酸(Glycyrrhizic,Gly)甘草酸是甘草中最主要的活性成分之一,屬于三萜化合物,具有肝保護(hù)作用和抗炎作用[39]。Ramli等[40]報道Gly對糖皮質(zhì)激素誘導(dǎo)的骨質(zhì)疏松癥療效顯著。Yin等[41]發(fā)現(xiàn)Gly能抑制破骨細(xì)胞的形成和骨吸收功能,并能改善卵巢切除術(shù)后小鼠的骨質(zhì)疏松,機(jī)制主要是通過抑制RANKL誘導(dǎo)NFκB和ERK通路激活。

2.1.12人參人參,味甘、微苦,性微溫,具有大補(bǔ)元氣、補(bǔ)脾益肺、生津止渴、安神定志等功效。人參皂苷(Ginsenoside,GSS)是人參主要活性成分,具有抗衰老、抗癌、調(diào)節(jié)免疫系統(tǒng)等[42]。先前研究表明,GSS在去卵巢的大鼠中具有抗骨質(zhì)疏松活性[43]。Cheng等[44]發(fā)現(xiàn)人參皂苷Rb1抑制了RANKL誘導(dǎo)NFκB的激活,阻止了p65的核移位,同時抑制NFκB下游因子cfos和NFATc1水平,抑制JNK和p38的磷酸化,認(rèn)為人參皂苷Rb1可以作為一種潛在的預(yù)防和治療絕經(jīng)后骨質(zhì)疏松癥的中藥。

2.1.13黃芪黃芪,味甘,性微溫,具有補(bǔ)氣固表、托毒排膿、利尿、生肌的功效。毛蕊異黃酮(Calycosin)是黃芪中提取得到的黃酮類化合物,具有抗腫瘤、抗炎的作用[45],并具有成骨能力[46]。毛蕊異黃酮能夠抑制破骨細(xì)胞分化和骨吸收[47],其機(jī)制是抑制NFATc1表達(dá)和RANKL誘導(dǎo)的NFκB、MAPKs信號通路激活,表明毛蕊異黃酮具有治療骨質(zhì)流失相關(guān)疾病的潛力。紅芪是豆科植物多序巖黃芪的干燥根,紅芪提取物中毛蕊異黃酮能夠促進(jìn)骨髓間充質(zhì)干細(xì)胞和顱骨成骨細(xì)胞的成骨分化活性[48],是良好的骨誘導(dǎo)活性因子。

2.1.14柴胡柴胡,味辛、苦,性微寒,具有和解表里、疏肝解郁、升陽舉陷、退熱截瘧的功效。柴胡皂苷(Saikosaponin)是柴胡的主要化學(xué)成分和生物活性成分,具有抗炎、免疫調(diào)節(jié)、抗菌和抗病毒作用。Zhou等[49]發(fā)現(xiàn)柴胡皂苷a(Saikosaponin a,SSa)顯著抑制RANKL誘導(dǎo)的IkBα的磷酸化以及NFκB/p65的磷酸化,表明SSa通過抑制Iκb激酶(IKK)抑制RANKL誘導(dǎo)的破骨細(xì)胞形成,SSa有可能成為治療骨質(zhì)疏松等破骨細(xì)胞相關(guān)疾病的潛在藥物。

2.1.15姜黃姜黃,味辛、苦,性溫,具有破血行氣、通經(jīng)止痛的功效。姜黃素(Curcumin)是從姜科姜黃屬植物姜黃、郁金、莪術(shù)等的根莖中提取出來的一種脂溶性多酚類化合物,在姜黃中含量最高,具有抗炎、抗氧化、抗菌、增強(qiáng)免疫功能、促進(jìn)血液循環(huán)等作用[50]。早期研究發(fā)現(xiàn)姜黃素能通過抑制NFκB信號通路活化而抑制RAW264.7破骨細(xì)胞形成,這過程與抑制IKK的活化、IκBα的磷酸化及降解有關(guān)[51]。徐子涵[52]發(fā)現(xiàn)姜黃素通過抑制Ird3a的磷酸化和Ird3a的降解,減少了p65的核易位,從而抑制NFκB活化,進(jìn)而達(dá)到抑制RA患者破骨細(xì)胞生成的作用。姜黃素類似合成物UBS109也可以刺激成骨細(xì)胞中Smad4的核移位,抑制破骨前細(xì)胞中p65的核移位從而抑制NFκB活性[53]。

2.1.16蓮子心蓮子心,味苦,性寒,具有清心安神、交通心腎、澀精止血的功效。甲基蓮心堿(Neferine,Nef)是從蓮子心中提取出的一種雙芐基異喹啉類生物堿,具有降壓擴(kuò)血管,抗血小板聚集,抗氧化等作用[54],甲基蓮心堿通過抑制IκBα降解從而抑制RANKL誘導(dǎo)NFκB信號通路的激活,同時還可以促進(jìn)MC3T3E1胚胎成骨細(xì)胞的成骨分化和骨結(jié)節(jié)形成,并呈劑量依賴性[55]。證明甲基蓮心堿在防治破骨細(xì)胞介導(dǎo)的溶骨性疾病方面顯示出治療潛力。

2.1.17百部百部,味甘、苦,性微溫,具有潤肺下氣止咳、殺蟲滅虱的功效。新對葉百部堿(Neotuberostemonine,NTS)是百部科植物的活性化合物之一,常用于治療慢性咳嗽、哮喘等呼吸系統(tǒng)疾病[56]。Yun等[57]發(fā)現(xiàn)NTS可降低RAW264.7細(xì)胞p65的磷酸化水平,同時降低了破骨細(xì)胞發(fā)生的轉(zhuǎn)錄因子NFATc1的表達(dá),表明NTS通過阻斷NFκB通路抑制RANKL介導(dǎo)的破骨細(xì)胞形成。

2.1.18穿心蓮穿心蓮,味苦,性寒,具有清熱解毒、涼血消腫的功效。穿心蓮內(nèi)酯(Andrographolide,AP)是穿心蓮的是中藥穿心蓮的主要有效成分之一,屬于二萜內(nèi)酯類化合物,具有抗菌、抗炎、抗病毒、抗腫瘤及免疫調(diào)節(jié)等作用。既往研究發(fā)現(xiàn)穿心蓮內(nèi)酯不僅能夠抑制RANKL誘導(dǎo)的破骨前體細(xì)胞破骨分化[58],同時也具有促進(jìn)成骨分化,增加骨合成代謝的作用[59]。穿心蓮內(nèi)酯通過影響NFκB信號通路進(jìn)而抑制破骨細(xì)胞代謝[60],在促進(jìn)成骨方面,丁丁等[61]發(fā)現(xiàn)穿心蓮內(nèi)酯能夠抑制TNFα對BMSCs引起的p65入核及NFκB信號通路的激活從而保護(hù)和促進(jìn)成骨分化。

2.1.19冬凌草冬凌草,味苦、甘,性微寒,具有清熱解毒、活血止痛的功效。冬凌草甲素(Oridonin,ORI)是從冬凌草中提取出來的一種四環(huán)二萜類的天然有機(jī)化合物,具有抗腫瘤、抗炎、抗微生物等多種藥理和生理作用[62],ORI通過抑制破骨細(xì)胞分化來調(diào)節(jié)骨代謝,其機(jī)制是下調(diào)破骨細(xì)胞形成過程中NFκB通路的轉(zhuǎn)錄輔激活因子(Ifrd1)的表達(dá)和IκBα磷酸化,進(jìn)而影響破骨細(xì)胞形成過程中p65的核移位,因此Xie等[63]認(rèn)為ORI具有雙重活性,促進(jìn)骨形成的同時能抑制骨吸收。

2.1.20龍膽龍膽,味苦,性寒,具有清熱燥濕解讀、清瀉肝膽的功效。龍膽苦苷(Gentiopicroside)是傳統(tǒng)中草藥龍膽的主要活性成分,已被證明具有多種生物學(xué)特性,包括抗傷害感受、抗炎和保護(hù)肝臟的活性。Chen等[64]發(fā)現(xiàn)龍膽苦苷通過抑制p65的磷酸化,有效抑制RANKL刺激的骨髓巨噬細(xì)胞中破骨細(xì)胞形成相關(guān)標(biāo)記基因的表達(dá),認(rèn)為其可能是一種很有前途的治療骨質(zhì)疏松癥的藥物。

2.1.21絞股藍(lán)絞股藍(lán),味苦,性寒,具有消炎解毒、止咳祛痰的功效,廣泛用于治療慢性炎癥、動脈粥樣硬化和肝病。絞股藍(lán)皂苷(Gypenoside,GP)是絞股藍(lán)中最具藥理活性的成分之一,具有神經(jīng)保護(hù)、抗癌、抗氧化、抗炎、抗糖尿病等作用[65]。Han等[66]首次發(fā)現(xiàn)GP顯著抑制破骨細(xì)胞的形成,同時通過調(diào)節(jié)GP抑制RANKL誘導(dǎo)的NFκB、MAPK信號通路激活和AKT在原發(fā)骨髓巨噬細(xì)胞(BMMs)的磷酸化。

2.1.22黃芩黃芩,味苦,性寒,具有清熱燥濕、瀉火解毒、止血、安胎等功效。野黃芩苷(Scutellarein,Scu)是從黃芩中分離到的黃酮類物質(zhì),具有神經(jīng)保護(hù)作用及抗炎作用[67]。Scu可以預(yù)防LPS誘導(dǎo)的炎性骨溶解,通過抑制NFATc1、NFκB以及相關(guān)破骨細(xì)胞標(biāo)記基因(Ctsk9、Mmp9、Acp5、Atp6v0d2等)表達(dá),從而抑制體外破骨細(xì)胞的形成和功能以及體內(nèi)骨丟失[68],Scu可能成為治療炎癥性骨溶解的一種潛在的治療藥物。

2.1.23芍藥芍藥分為赤芍與白芍,白芍味苦、酸,性微寒,具有養(yǎng)血調(diào)經(jīng)、斂陰止汗、柔肝止痛、平抑肝陽的功效;赤芍味苦,性微寒,具有清熱涼血、散瘀止痛的功效。芍藥苷(Paeoniflorin)是從芍藥的干根中分離出來的主要成分,具有抗炎鎮(zhèn)痛、利尿、免疫調(diào)節(jié)、抗過敏和抗氧化等功能[69]。芍藥苷可以提高成骨細(xì)胞活性,抑制破骨細(xì)胞活性,減少去卵巢引起的骨質(zhì)疏松癥,其機(jī)制是抑制p65核轉(zhuǎn)移抑制NFκB信號通路活性,從而抑制NFATc1激活,同時刺激成骨相關(guān)標(biāo)記基因(ALP、Osteocalcin、OPN和Runx2)表達(dá)[70]。

2.1.24狼毒大戟狼毒大戟,味辛,性平,具有散結(jié)、殺蟲的功效,常外用于淋巴結(jié)結(jié)核、皮癬。巖大戟內(nèi)酯B(Jolkinolide B,JB)是狼毒大戟中提取出的二萜類化合物,Ma等[71]發(fā)現(xiàn)JB在體外抑制破骨細(xì)胞形成和骨吸收,其機(jī)制是降低了RANKL誘導(dǎo)的破骨細(xì)胞標(biāo)記基因的表達(dá),減弱了RANKL誘導(dǎo)的ERK、p38、JNK和NFκB的激活,為JB可能成為預(yù)防和治療骨溶解的替代藥物提供了證據(jù)。

2.1.25其他佛手柑內(nèi)酯(Bergapten,BP)[72]是廣泛存在于佛手、當(dāng)歸、北沙參、蛇床子和歐防風(fēng)等傳統(tǒng)中草藥中的一種香豆素衍生物,具有抗炎、抗癌的作用,可以防止脂多糖誘導(dǎo)的破骨細(xì)胞生成,抑制骨吸收[73]。BP抑制了RANKL誘導(dǎo)的NFκB和JNK信號通路,在mRNA水平上,BP抑制破骨細(xì)胞相關(guān)轉(zhuǎn)錄因子NFATc1和cfos表達(dá),從而影響破骨細(xì)胞分化[74],此外,BP破壞了F肌動蛋白(Factin)環(huán)的形成,抑制骨吸收。銀杏葉常用于斂肺平喘、活血化瘀止痛,近期研究發(fā)現(xiàn)銀杏葉提取物具有促進(jìn)成骨細(xì)胞分化和減少破骨細(xì)胞形成的作用,機(jī)制是顯著降低骨質(zhì)疏松大鼠NFκB水平,抑制破骨從而達(dá)到抗骨質(zhì)疏松作用[75]。墨旱蓮臨床中用于涼血止血,補(bǔ)腎益陰,其提取物可以使RANKL刺激的RAW264.7細(xì)胞中NFκB活化下降,通過調(diào)控RANKL/RANK/NFκB信號通路抑制破骨細(xì)胞骨吸收活性[76]。

2.2中藥復(fù)方中藥復(fù)方依據(jù)“君臣佐使”“整體觀念”等中醫(yī)理論指導(dǎo)進(jìn)行配伍,通過多成分、多靶點協(xié)同治療,在臨床中取得了不錯的療效,研究者們也從多方面探討了中藥復(fù)方調(diào)控破骨細(xì)胞分化的機(jī)制。補(bǔ)腎活血湯具有補(bǔ)腎壯筋,活血止痛之功效,許建國[77]發(fā)現(xiàn)補(bǔ)腎健脾活血湯能增加糖尿病性骨質(zhì)疏松大鼠的骨密度,其機(jī)制是通過抑制NFκB、NFATc1的mRNA表達(dá),同時激活Wnt信號通路,與碳酸鈣和骨化三醇聯(lián)合治療的西藥組比較,補(bǔ)腎活血湯對糖尿病性骨質(zhì)疏松大鼠療效更優(yōu)。云南白藥具有化瘀止血、活血止痛、解毒消腫之功效,不僅用于治療各種類型的創(chuàng)傷,還用于治療上消化道出血和傷口潰瘍、食管炎、細(xì)菌性痢疾等,其機(jī)制目前認(rèn)為與其抗炎、止血、增強(qiáng)免疫等作用有關(guān),炎癥通過促進(jìn)破骨細(xì)胞的形成而誘導(dǎo)骨丟失,最近研究發(fā)現(xiàn)云南白藥能夠通過抑制細(xì)菌脂多糖(LPS)引起的破骨細(xì)胞炎癥而治療炎性骨病[78],其機(jī)制與調(diào)控NFкB、MAPK和Wnt5a信號通路活化和抑制環(huán)氧化酶1(COX1)和COX2的表達(dá)有關(guān)。

3總結(jié)與展望

破骨細(xì)胞在骨發(fā)育、骨形成、骨吸收和骨量調(diào)節(jié)中起著關(guān)鍵作用,正常情況下其與成骨細(xì)胞分化保持平衡狀態(tài),當(dāng)破骨細(xì)胞異常分化時,則會產(chǎn)生一系列骨相關(guān)疾病。既往激素療法、磷酸鹽、降鈣素等治療骨丟失的方法引發(fā)許多不良反應(yīng),如引發(fā)心血管疾病、胃腸道不耐受、頜骨壞死等[79]。中藥具有多途徑、多靶點、不良反應(yīng)小等優(yōu)勢,在調(diào)控骨代謝平衡方面具有良好的臨床療效。此次綜述我們發(fā)現(xiàn),部分中藥及其化學(xué)成分可以通過NFκB信號通路抑制破骨細(xì)胞分化,分子生物機(jī)制主要有抑制IκBα磷酸化,影響破骨細(xì)胞形成過程中p65的核移位,從而抑制NFκB信號通路活性,降低轉(zhuǎn)錄因子NFATc1的表達(dá)等,是炎性骨溶解及骨質(zhì)疏松等骨疾病的潛在治療藥物。

隨著萃取技術(shù)的發(fā)展,越來越多的中藥活性成分被提煉出來進(jìn)行研究,其中主要包括黃酮類化合物、多酚類化合物、醌類化合物和苷類化合物等,但不同中藥及方劑治療相關(guān)疾病過程中,多種活性成分共同作用,不同信號通路之間相互影響,僅針對單一靶點研究具有一定局限性,雖然許多中藥活性成分是通過抑制NFκB信號通路調(diào)控破骨細(xì)胞分化,但也有部分中藥活性成分如葛根素、雷公藤甲素等[8081]可通過NFκB信號通路促進(jìn)成骨,因此中醫(yī)藥對骨相關(guān)疾病的具體治療機(jī)制還需深入探討。既往實驗多以補(bǔ)腎壯骨類中藥作為研究對象,其內(nèi)容也多在促進(jìn)成骨方面進(jìn)行研究,內(nèi)容重復(fù)缺乏新意,即便對調(diào)控破骨細(xì)胞分化、抑制骨溶解、抗骨質(zhì)疏松等方面進(jìn)行研究,研究也主要集中在細(xì)胞水平,動物模型也較為單一,且并未與中醫(yī)藥理論及臨床療效相結(jié)合。此次綜述藥物不僅包含補(bǔ)腎健骨類中藥,還涉及清熱解表、活血化瘀及補(bǔ)益肝脾類中藥,目前中醫(yī)認(rèn)為骨質(zhì)疏松的基本病機(jī)是以腎精虧虛為本,夾雜肝虛、脾虛、血瘀等其他因素[82],主要分為脾腎陽虛、肝腎陰虛、氣滯血瘀3個證型[83],現(xiàn)代分子生物機(jī)制研究結(jié)合中醫(yī)理論,相關(guān)中藥及復(fù)方是否可以通過抑制炎癥介質(zhì),抑制破骨細(xì)胞分化,治療肝、脾虛及氣滯血瘀型骨質(zhì)疏松,也是有待研究的新方向。

參考文獻(xiàn)

[1]Eastell R,O′Neill TW,Hofbauer LC,et al.Postmenopausal osteoporosis[J].Nat Rev Dis Primers,2016,2:16069.

[2]肖亞平,曾杰,焦琳娜,等.補(bǔ)腎中藥對骨質(zhì)疏松癥的治療及其信號通路調(diào)節(jié)作用的研究進(jìn)展[J].中國中藥雜志,2018,43(1):2130.

[3]陳世海,謝興文,李建國,等.Wnt/βcatenin信號通路在補(bǔ)腎中藥靶向治療骨質(zhì)疏松癥中應(yīng)用的研究進(jìn)展[J].中國骨質(zhì)疏松雜志,2019,25(4):559563.

[4]Ma X,Liu Y,Zhang Y,et al.Jolkinolide B inhibits RANKLinduced osteoclastogenesis by suppressing the activation NFκB and MAPK signaling pathways[J].Biochem Biophys Res Commun,2014,445(2):282288.

[5]AbuAmer Y.NFκB signaling and bone resorption[J].Osteoporosis International,2013,24(9):23772386.

[6]Shinohara M,Takayanagi H.Analysis of NFATc1centered transcription factor regulatory networks in osteoclast formation[J].Methods Mol Biol,2014,1164:171176.

[7]Wang F,Liu Z,Lin S,et al.Icariin enhances the healing of rapid palatal expansion induced root resorption in rats[J].Phytomedicine,2012,19(11):10351041.

[8]Kim B,Lee KY,Park B.Icariin abrogates osteoclast formation through the regulation of the RANKLmediated TRAF6/NFκB/ERK signaling pathway in Raw264.7 cells[J].Phytomedicine,2018,51:181190.

[9]Xu Q,Chen G,Liu X,et al.Icariin inhibits RANKLinduced osteoclastogenesis via modulation of the NFκB and MAPK signaling pathways[J].Biochem Biophys Res Commun,2019,508(3):902906.

[10]Kuroda M,Mimaki Y,Sashida Y,et al.Flavonol glycosides from Epimedium sagittatum and their neurite outgrowth activity on PC12h cells[J].Planta Med,2000,66(6):575577.

[11]Choi HJ,Park YR,Nepal M,et al.Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW 264.7 cells via JNK and NFkappaB signaling pathways[J].Eur J Pharmacol,2010,636(13):2835.

[12]Zhou B,Cron RQ,Wu B,et al.Regulation of the murine Nfatc1 gene by NFATc2[J].J Biol Chem,2002,277(12):1070410711.

[13]Xiong D,Deng Y,Huang B,et al.Icariin attenuates cerebral ischemiareperfusion injury through inhibition of inflammatory response mediated by NFκB,PPARα and PPARγ in rats[J].Int Immunopharmacol,2016,30:157162.

[14]Rebhun JF,Du Q,Hood M,et al.Evaluation of selected traditional Chinese medical extracts for bone mineral density maintenance:A mechanistic study[J].J Tradit Complement Med,2019,9(3):227235.

[15]Huang SY,Chang SF,Liao KF,et al.Tanshinone ⅡA Inhibits EpithelialMesenchymal Transition in Bladder Cancer Cells via Modulation of STAT3CCL2 Signaling[J].Int J Mol Sci,2017,18(8):1616.

[16]Kim HH,Kim JH,Kwak HB,et al.Inhibition of osteoclast differentiation and bone resorption by tanshinone ⅡA isolated from Salvia miltiorrhiza Bunge[J].Biochem Pharmacol,2004,67(9):16471656.

[17]Zhu S,Wei W,Liu Z,et al.Tanshinone ⅡA attenuates the deleterious effects of oxidative stress in osteoporosis through the NFκB signaling pathway[J].Mol Med Rep,2018,17(5):69696976.

[18]Cheng L,Zhou S,Zhao Y,et al.Tanshinone ⅡA attenuates osteoclastogenesis in ovariectomized mice by inactivating NFkB and Akt signaling pathways[J].Am J Transl Res,2018,10(5):14571468.

[19]Nicolin V,Dal Piaz F,Nori SL,et al.Inhibition of bone resorption by Tanshinone Ⅵ isolated from Salvia miltiorrhiza Bunge[J].Eur J Histochem,2010,54(2):e21.

[20]Ranasinghe S,Ansumana R,Lamin JM,et al.Herbs and herbal combinations used to treat suspected malaria in Bo,Sierra Leone[J].J Ethnopharmacol,2015,166:200204.

[21]Wang L,Li Y,Guo Y,et al.Herba Epimedii:An Ancient Chinese Herbal Medicine in the Prevention and Treatment of Osteoporosis[J].Curr Pharm Des,2016,22(3):328349.

[22]Li F,Li Q,Huang X,et al.Psoralen stimulates osteoblast proliferation through the activation of nuclear factorκBmitogenactivated protein kinase signaling[J].Exp Ther Med,2017,14(3):23852391.

[23]Don MJ,Lin LC,Chiou WF.Neobavaisoflavone stimulates osteogenesis via p38mediated upregulation of transcription factors and osteoid genes expression in MC3T3E1 cells[J].Phytomedicine,2012,19(6):551561.

[24]Chen H,F(xiàn)ang C,Zhi X,et al.Neobavaisoflavone inhibits osteoclastogenesis through blocking RANKL signallingmediated TRAF6 and cSrc recruitment and NFκB,MAPK and Akt pathways[published online ahead of print,2020 Jun 30].J Cell Mol Med,2020,24(16):90679084.

[25]Chen DL,Zhang P,Lin L,et al.Protective effects of bajijiasu in a rat model of Aβ2535induced neurotoxicity[J].J Ethnopharmacol,2014,154(1):206217.

[26]Hong G,Zhou L,Shi X,et al.Bajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NFκB and NFAT[J].Int J Mol Sci,2017,18(1):203.

[27]Hsiao HB,Wu JB,Lin WC.(-)Epicatechin 3OβDallopyranoside prevent ovariectomyinduced bone loss in mice by suppressing RANKLinduced NFκB and NFATc1 signaling pathways[J].BMC Complement Altern Med,2017,17(1):245.

[28]Zhang W,Xue K,Gao Y,et al.Systems pharmacology dissection of action mechanisms of Dipsaci Radix for osteoporosis[J].Life Sci,2019,235:116820.

[29]Jiang C,Xiao F,Gu X,et al.Inhibitory effects of ursolic acid on osteoclastogenesis and titanium particleinduced osteolysis are mediated primarily via suppression of NFκB signaling[J].Biochimie,2015,111:107118.

[30]Du Y,Ge Y,Xu Z,et al.HypoxiaInducible Factor 1 alpha(HIF1α)/Vascular Endothelial Growth Factor(VEGF) Pathway Participates in Angiogenesis of Myocardial Infarction in MusconeTreated Mice:Preliminary Study[J].Med Sci Monit,2018,24:88708877.

[31]Guo YJ,Luo SH,Tang MJ,et al.Muscone exerts protective roles on alcoholinduced osteonecrosis of the femoral head[J].Biomed Pharmacother,2018,97:825832.

[32]Zhai X,Yan Z,Zhao J,et al.Muscone Ameliorates OvariectomyInduced Bone Loss and Receptor Activator of Nuclear Factorκb LigandInduced Osteoclastogenesis by Suppressing TNF ReceptorAssociated Factor 6Mediated Signaling Pathways[J].Front Pharmacol,2020,11:348.

[33]Zhang Y,Wang Z,Xie X,et al.Tatarinan T,an αasaronederived lignin,attenuates osteoclastogenesis induced by RANKL via the inhibition of NFATc1/cFos expression[J].Cell Biol Int,2019.[20190709].https://onlinelibrary.wiley.com/doi/10.1002/cbin.11197.[publishedOnline ahead of print.July 09,2019].

[34]Zhang Y,Wang Z,Xie X,et al.Tatarinan N inhibits osteoclast differentiation through attenuating NFκB,MAPKs and Ca2+dependent signaling[J].Int Immunopharmacol,2018,65:199211.

[35]Yuan HL,Li B,Xu J,et al.Tenuigenin protects dopaminergic neurons from inflammationmediated damage induced by the lipopolysaccharide[J].CNS Neurosci Ther,2012,18(7):584590.

[36]Yang S,Li X,Cheng L,et al.Tenuigenin inhibits RANKLinduced osteoclastogenesis by downregulating NFκB activation and suppresses bone loss in vivo[J].Biochem Biophys Res Commun,2015,466(4):615621.

[37]Feng X,Zou Z,F(xiàn)u S,et al.Microbial oxidation and glucosidation of echinocystic acid by Nocardia corallina[J].J Mol Catal BEnzym,2010,66(12):219223.

[38]Yang JH,Li B,Wu Q,et al.Echinocystic acid inhibits RANKLinduced osteoclastogenesis by regulating NFκB and ERK signaling pathways[J].Biochem Biophys Res Commun,2016,477(4):673677.

[39]Yasui S,F(xiàn)ujiwara K,Tawada A,et al.Efficacy of intravenous glycyrrhizin in the early stage of acute onset autoimmune hepatitis[J].Dig Dis Sci,2011,56(12):36383647.

[40]Ramli ES,Suhaimi F,Asri SF,et al.Glycyrrhizic acid(GCA) as 11βhydroxysteroid dehydrogenase inhibitor exerts protective effffect against glucocorticoidinduced osteoporosis[J].J Bone Miner Metab,2013,31(3):262273.

[41]Yin Z,Zhu W,Wu Q,et al.Glycyrrhizic acid suppresses osteoclast differentiation and postmenopausal osteoporosis by modulating the NFκB,ERK,and JNK signaling pathways[J].Eur J Pharmacol,2019,859:172550.

[42]You YL,F(xiàn)eng YL,Cai Q,et al.Efficacy of ginsenosides combined with prednisone in patients with systemic lupus erythematosus:a prospective,randomized,doubleblind,placebocontrolled trial[J].Chin J Integr Med,2010,8(8):762766.

[43]Gong YS,Chen J,Zhang QZ,et al.Effect of 17betaoestradiol and ginsenoside on osteoporosis in ovariectomised rats[J].J Asian Nat Prod Res,2006,8(7):649656.

[44]Cheng B,Li J,Du J,et al.Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NFκB and MAPKs pathways[J].Food Chem Toxicol,2012,50(5):16101615.

[45]Zhou Y,Liu QH,Liu CL,et al.Calycosin induces apoptosis in human ovarian cancer SKOV3 cells by activating caspases and Bcl2 family proteins[J].Tumour Biol,2015,36(7):53335339.

[46]Gong AG,Li N,Lau KM,et al.Calycosin orchestrates the functions of DangguiBuxue Tang,a Chinese herbal decoction composing of Astragali Radix and Angelica Sinensis Radix:An evaluation by using calycosinknock out herbal extract[J].J Ethnopharmacol,2015,168:150157.

[47]Quan GH,Wang H,Cao J,et al.Calycosin Suppresses RANKLMediated Osteoclastogenesis through Inhibition of MAPKs and NFκB[J].Int J Mol Sci,2015,16(12):2949629507.

[48]方瑤瑤,薛志遠(yuǎn),楊秀艷,等.紅芪中5種黃酮類成分對大鼠骨髓間充質(zhì)干細(xì)胞和成骨細(xì)胞成骨分化的影響[J].中草藥,2019,50(3):632638.

[49]Zhou C,Liu W,He W,et al.Saikosaponin a inhibits RANKLinduced osteoclastogenesis by suppressing NFκB and MAPK pathways[J].Int Immunopharmacol,2015,25(1):4954.

[50]宋莉平,王宇.姜黃素抗泌尿系統(tǒng)腫瘤的研究進(jìn)展[J].遼寧中醫(yī)雜志,2021,48(2):214217.

[51]Bharti AC,Takada Y,Aggarwal BB.Curcumin(diferuloylmethane) inhibits receptor activator of NFkappa B ligandinduced NFkappa B activation in osteoclast precursors and suppresses osteoclastogenesis[J].J Immunol,2004,172(10):59405947.

[52]徐子涵.姜黃素干預(yù)類風(fēng)濕關(guān)節(jié)炎患者破骨細(xì)胞生成中NFκB信號通路的機(jī)制研究[D].南京:南京中醫(yī)藥大學(xué),2017.

[53]Yamaguchi M,Moore TW,Sun A,et al.Novel curcumin analogue UBS109 potently stimulates osteoblastogenesis and suppresses osteoclastogenesis:involvement in Smad activation and NFκB inhibition[J].Integr Biol(Camb),2012,4(8):905913.

[54]唐小卿,曹建國.甲基蓮心堿的藥理作用[J].中國藥理學(xué)通報,2004,20(1):810.

[55]Chen S,Chu B,Chen Y,et al.Neferine suppresses osteoclast differentiation through suppressing NFκB signal pathway but not MAPKs and promote osteogenesis[J].J Cell Physiol,2019,234(12):2296022971.

[56]Zhang RR,Lu DY,Yang ZY,et al.Simultaneous quantification of six alkaloid components from commercial stemonae radix by solid phase extractionhighperformance liquid chromatography coupled with evaporative light scattering detector[J].Pharmacogn Mag,2015,11(42):360367.

[57]Yun J,Lee KY,Park B.Neotuberostemonine inhibits osteoclastogenesis via blockade of NFκB pathway[J].Biochimie,2019,157:8191.

[58]Wang T,Liu Q,Zhou L,et al.Andrographolide Inhibits OvariectomyInduced Bone Loss via the Suppression of RANKL Signaling Pathways[J].Int J Mol Sci,2015,16(11):2747027481.

[59]Jiang T,Zhou B,Huang L,et al.Andrographolide Exerts ProOsteogenic Effect by Activation of Wnt/βCatenin Signaling Pathway in Vitro[J].Cell Physiol Biochem,2015,36(6):23272339.

[60]Ren YQ,Zhou YB.Inhibition of andrographolide in RAW 264.7 murine macrophage osteoclastogenesis by downregulating the nuclear factorkappaB signaling pathway[J].Genet Mol Res,2015,14(4):1595515961.

[61]丁丁,車千紅,徐櫻溪,等.穿心蓮內(nèi)酯通過抑制TNFα活化的NFκB信號途徑保護(hù)和促進(jìn)成骨分化[J].解剖科學(xué)進(jìn)展,2019,25(3):316319,334.

[62]Yuan Z,Ouyang P,Gu K,et al.The antibacterial mechanism of oridonin against methicillinresistant Staphylococcus aureus(MRSA)[J].Pharm Biol,2019,57(1):710716.

[63]Xie Z,Yu H,Sun X,et al.A Novel Diterpenoid Suppresses Osteoclastogenesis and Promotes Osteogenesis by Inhibiting Ifrd1Mediated and IκBαMediated p65 Nuclear Translocation[J].J Bone Miner Res,2018,33(4):667678.

[64]Chen F,Xie L,Kang R,et al.Gentiopicroside inhibits RANKLinduced osteoclastogenesis by regulating NFκB and JNK signaling pathways[J].Biomed Pharmacother,2018,100:142146.

[65]Jia D,Rao C,Xue S,et al.Purification,characterization and neuroprotective effects of a polysaccharide from Gynostemma pentaphyllum[J].Carbohydr Polym,2015,122:93100.

[66]Han J,Gao W,Su D,et al.Gypenoside inhibits RANKLinduced osteoclastogenesis by regulating NFκB,AKT,and MAPK signaling pathways[J].J Cell Biochem,2018,119(9):73107318.

[67]Ghosh N,Ghosh R,Bhat ZA,et al.Advances in herbal medicine for treatment of ischemic brain injury[J].Nat Prod Commun,2014,9(7):10451055.

[68]Fu F,Shao S,Wang Z,et al.Scutellarein inhibits RANKLinduced osteoclast formation in vitro and prevents LPSinduced bone loss in vivo[J].J Cell Physiol,2019,234(7):1195111959.

[69]Zhou J,Wang J,Li W,et al.Paeoniflorin attenuates the neuroinflammatory response in a rat model of chronic constriction injury[J].Mol Med Rep,2017,15(5):31793185.

[70]Wang Y,Dai J,Zhu Y,et al.Paeoniflorin regulates osteoclastogenesis and osteoblastogenesis via manipulating NFκB signaling pathway both in vitro and in vivo[J].Oncotarget,2018,9(7):73727388.

[71]Ma X,Liu Y,Zhang Y,et al.Jolkinolide B inhibits RANKLinduced osteoclastogenesis by suppressing the activation NFκB and MAPK signaling pathways[J].Biochem Biophys Res Commun,2014,445(2):282288.

[72]Chen G,Xu Q,Dai M,et al.Bergapten suppresses RANKLinduced osteoclastogenesis and ovariectomyinduced osteoporosis via suppression of NFκB and JNK signaling pathways[J].Biochem Biophys Res Commun,2019,509(2):329334.

[73]Zheng M,Ge Y,Li H,et al.Bergapten prevents lipopolysaccharide mediated osteoclast formation,bone resorption and osteoclast survival[J].Int Orthop,2014,38(3):627634.

[74]Chen G,Xu Q,Dai M,et al.Bergapten suppresses RANKLinduced osteoclastogenesis and ovariectomyinduced osteoporosis via suppression of NFκB and JNK signaling pathways[J].Biochem Biophys Res Commun,2019,509(2):329334.

[75]Li ZZ,Li JB,Zhao WL,et al.Potential antiosteoporotic effect of ginkgo biloba extract via regulation of SIRT1NFkB signaling pathway[J].J King Saud Univ Sci,2020,32(4):25132519.

[76]劉艷秋,馬慧朋.墨旱蓮提取物調(diào)控RANKL/RANK/NFκB途徑抑制破骨細(xì)胞骨吸收活性[J].中華中醫(yī)藥雜志,2017,32(2):774777.

[77]許建國.基于Wnt及NFκB信號通路探討補(bǔ)腎健脾活血湯對糖尿病骨質(zhì)疏松大鼠作用機(jī)制的研究[D].濟(jì)南:山東中醫(yī)藥大學(xué),2015.

[78]Ren X,Zhu Y,Xie L,et al.Yunnan Baiyao diminishes lipopolysaccharideinduced inflammation in osteoclasts[J].J Food Biochem,2020,44(6):e13182.

[79]Lin J,Zhu J,Wang Y,et al.Chinese single herbs and active ingredients for postmenopausal osteoporosis:From preclinical evidence to action mechanism[J].Biosci Trends,2017,11(5):496506.

[80]于冬冬,王廣斌,趙丹陽.葛根素通過NFκB通路抑制地塞米松誘導(dǎo)的hFOB1.19人成骨細(xì)胞凋亡[J].中國骨質(zhì)疏松雜志,2015,21(8):929933.

[81]Liu SP,Wang GD,Du XJ,et al.Triptolide inhibits the function of TNFα in osteoblast differentiation by inhibiting the NFκB signaling pathway[J].Exp Ther Med,2017,14(3):22352240.

[82]鄧昶,周明旺,付志斌,等.骨質(zhì)疏松癥的中醫(yī)病因病機(jī)及其治療進(jìn)展[J].中國骨質(zhì)疏松雜志,2017,23(8):11051111.

[83]黃宏興,蔡樺,梁祖建,等.骨質(zhì)疏松癥(骨痿)的中醫(yī)臨床路徑研究[J].中國骨質(zhì)疏松雜志,2019,25(1):1218.

(2020-08-18收稿本文編輯:王明)

基金項目:貴州省中醫(yī)藥管理局中醫(yī)藥、民族醫(yī)藥科學(xué)技術(shù)課題研究資助項目(QZYY2020029)

作者簡介:唐魁韓(1994.09—)男,碩士研究生,醫(yī)師,研究方向:關(guān)節(jié)與創(chuàng)傷,Email:402651874@qq.com

通信作者:孫立(1973.07—)男,博士,主任醫(yī)師,教授,博士研究生導(dǎo)師,研究方向:外科學(xué)、基礎(chǔ)醫(yī)學(xué)、生物醫(yī)學(xué)工程,Email:1060561853@qq.com

猜你喜歡
研究進(jìn)展中醫(yī)藥
MiRNA-145在消化系統(tǒng)惡性腫瘤中的研究進(jìn)展
中醫(yī)藥在惡性腫瘤防治中的應(yīng)用
中醫(yī)藥在治療惡性腫瘤骨轉(zhuǎn)移中的應(yīng)用
重視中醫(yī)藥發(fā)展,發(fā)揮中醫(yī)藥作用
兩會聚焦:中醫(yī)藥戰(zhàn)“疫”收獲何種啟示
離子束拋光研究進(jìn)展
獨腳金的研究進(jìn)展
中成藥(2017年9期)2017-12-19 13:34:44
從《中醫(yī)藥法》看直銷
中醫(yī)藥立法:不是“管”而是“促”
EVA的阻燃研究進(jìn)展
中國塑料(2016年4期)2016-06-27 06:33:22
主站蜘蛛池模板: 久久精品国产国语对白| 色综合国产| 久久久久亚洲av成人网人人软件| 亚洲欧美日韩色图| 亚洲男人的天堂久久香蕉| 午夜欧美在线| 国内熟女少妇一线天| 成人自拍视频在线观看| 九九视频免费看| 国内精品一区二区在线观看 | 亚洲视频欧美不卡| 欧美国产综合色视频| 91亚洲精选| 99re热精品视频国产免费| 亚洲欧美在线综合图区| 亚洲永久视频| 狠狠综合久久久久综| 91小视频在线观看| 男女性午夜福利网站| 97人人模人人爽人人喊小说| 一区二区日韩国产精久久| 狠狠色丁香婷婷综合| 无码一区中文字幕| 国产av无码日韩av无码网站| 国产丰满大乳无码免费播放| 精品亚洲麻豆1区2区3区| 国产91熟女高潮一区二区| 国产国模一区二区三区四区| 日韩无码黄色网站| 国产精品成人一区二区| 伦伦影院精品一区| 欧美激情综合一区二区| 中国精品自拍| 国产精品手机视频一区二区| 国产性生大片免费观看性欧美| 精品五夜婷香蕉国产线看观看| 91年精品国产福利线观看久久 | 蜜臀av性久久久久蜜臀aⅴ麻豆| 久久精品国产999大香线焦| 欧美日一级片| 女人18毛片一级毛片在线| 国产熟女一级毛片| 午夜国产小视频| 国产精品无码影视久久久久久久| 在线不卡免费视频| 国产综合日韩另类一区二区| av大片在线无码免费| 国产精品蜜芽在线观看| 亚洲香蕉在线| 露脸一二三区国语对白| 国产日韩欧美中文| 欧美特级AAAAAA视频免费观看| 成人午夜视频在线| 免费观看男人免费桶女人视频| 午夜影院a级片| 欧美日韩精品一区二区视频| 狠狠ⅴ日韩v欧美v天堂| 九九九国产| 国产微拍一区二区三区四区| 欧美午夜视频在线| 久久免费看片| 91香蕉国产亚洲一二三区| 久久国产高清视频| 婷婷丁香色| a天堂视频| 拍国产真实乱人偷精品| 91欧美在线| www.亚洲一区二区三区| 一区二区三区四区精品视频| 欧美乱妇高清无乱码免费| 成人精品视频一区二区在线 | 国产麻豆91网在线看| 国产一区免费在线观看| 国产精品无码一区二区桃花视频| 亚洲天堂网在线播放| 亚洲综合亚洲国产尤物| 久久毛片网| 精品无码国产一区二区三区AV| 亚洲日本中文字幕乱码中文| 视频二区亚洲精品| 亚洲系列中文字幕一区二区| 国产人妖视频一区在线观看|