摘 要 眼動儀作為一種簡便可靠、能實時追蹤并分析受試者眼球移動情況的設備,已廣泛應用于心理學、眼科學等領域的研究,同時也給臨床診療發展帶來了新契機。目前,眼動儀在神經康復中的應用尚處于起步階段,本文旨在對其應用現狀及研究進展進行綜述,為神經康復策略的探索提供新思路、新方法。
關鍵詞 眼動儀;眼球追蹤技術;神經康復;康復治療;康復教育
中圖分類號 R493 文獻標識碼 A 文章編號 2096-7721(2022)03-0229-06
Abstract As a simple and reliable device that can help to record and analyze real-time eye movement, eye tracker has been widely used in psychology and ophthalmology. It has also brought new opportunities to the development of clinical diagnosis and treatment. At present, the application of eye tracker in neurological rehabilitation is still in its infancy. This paper aims to provide new ideas and methods for neurological rehabilitation by analyzing the current status and progress of eye-tracker in neurological rehabilitation.
Key words Eye-tracker; Eye-tracking technology; Neurological rehabilitation; Rehabilitation therapy; Rehabilitation education
在現實環境中,至少80%的外界信息通過視覺獲得,大腦皮層中60%以上區域與視覺認知功能有關[1]。眼睛的運動與調整,即眼動,反映了大腦對視覺信息的處理與加工規律[2]。因此,眼動信號分析是人類認知研究中最普遍的研究手段之一。眼動儀是一種可以精確定位眼球位置、追蹤眼球運動情況及分析視覺信號的儀
器[3]。其原理主要是通過人眼視覺捕捉系統實時運動攝像頭,通過眼動分析儀器測量眼球的注視點位移和眼-頭位移的相對變化值來記錄眼球位置以及追蹤眼部運動情況[4],然后通過機器人內置的人工智能進行精確分析。眼動儀一般追蹤采集三大典型眼動行為——注視(Fixation)、掃視(Saccade)和瞳孔尺寸(Pupil size)[5],其具體參數包括行為類型、持續時間、注視位置坐標、掃視角度、瞳孔尺寸、瞳孔檢測有效性等[6]。眼動儀收集的數據可生成眼動軌跡圖和熱點圖[7],用以形象生動地描述受試者眼動軌跡、部分凝視點和感興趣區域的視覺關注情況[8]。因此,眼動儀可以協助我們實時追蹤并分析受試者眼球移動情況,已廣泛應用于心理學、眼科學等學科的研究中,但在神經康復中的應用尚處于起步階段。本文旨在對眼動儀在神經康復臨床、人才培養中的應用現狀及研究進展進行綜述,為廣大醫務工作者、醫工交叉研究者提供參考。
1 眼動儀在醫學中的應用
眼動儀是心理學基礎研究的重要儀器,在醫學領域也有著較為廣泛的應用[9]。研究表明,醫生的視覺感知信息與臨床決策過程息息相關[10]。
Mohamad S M等[11]使用眼動機器記錄了眼科醫生和驗光師在診斷眼底照片時的眼球運動,結果發現眼科醫生的掃描路徑更簡單,掃視范圍更大,主要集中在照片的中間區域;而驗光師的掃描路徑較寬,掃視范圍較短,掃視面覆蓋較寬的眼底區域,且集中在一些不相關的眼底區域。兩組之間的診斷效率和視覺搜索模式截然不同,這也揭示了為什么眼科醫師與驗光師會對同一近視病人給出不同的治療方案。YANG H等[12]
研究表明,眼動儀不僅可以定量評估術前和術后眼球震顫情況,還可用于分析手術對眼球運動的改善效果。也有研究發現,瞳孔直徑可以用來描述外科醫生的工作負荷水平[13]。此外,GE F F等[14]發現VR眼動儀在實驗室條件下獲得的平均瞳孔直徑、0平均注視時間和注視點可用于檢測謊言。更有趣的是,營養師利用眼動追蹤系統研究了人們在無意識狀態下對食物的喜好,為更好地制定個性化、合理化的營養學方案提供了客觀、量化的指標[15]。同時,美容整形領域也將眼動分析用作確定整形方案的工具之一[16]。
2 眼動儀在神經康復臨床中的應用
2.1 兒童自閉癥
自閉癥是一種由遺傳和環境因素共同作用導致的復雜疾病[17],其臨床特征是社交溝通困難及異常的重復性行為。患者往往具有非典型的認知特征,例如社交認知受損、執行功能障礙及非典型的感知和信息處理能力等[18]。
眼動儀可作為檢測和治療自閉癥患者的有效臨床儀器[19],對自閉癥患者的眼動數據分析發現,自閉癥患兒對社會刺激的關注明顯減少,也難以處理面部和聲音信息之間的聯動方式[20]。研究表明,眼動儀可以明顯提高視覺在自閉癥診斷中所占權重,利于自閉癥的早期篩查[21],而眼動儀中內置的機器學習的相關算法也可協助降低檢測成本、實現自閉癥患者的標準化診斷[22]。在自閉癥患者的治療方面,學者們運用眼動儀與電描繪眼球追蹤算法來訓練患者,結果發現患兒的注意力定向障礙、眼球運動的速度和準確性明顯改善,自閉癥患者的社交能力明顯提高[23]。同時,醫生也可使用眼動儀獨特的實時視覺反饋功能與基于探頭的追蹤功能對自閉癥患者進行治療[24]。此外,眼動儀還可用于自閉癥兒童的康復教育[25]。
2.2 中樞神經損傷
眼動儀在中樞神經損傷中的應用主要集中在診斷、預后分析和功能康復方面。Cifu D X等[26]人使用頭戴式眼動分析儀器對患者的眼動模式、眼球運動速度和瞳孔開放度進行監測,并結合其他顱腦損傷的體征,實現對輕度顱腦損傷患者的量化診斷。此外,有學者運用眼動儀和配套的運動分析系統研究脊髓損傷患者本體感受器受損情況從而制定治療方案[27]。在神經損傷的預后判斷方面,醫生對中重度顱腦外傷病人給予一定刺激后,觀察其眼動數據來判斷其生存概率[28]。在神經康復治療方面,學者們運用眼動儀對重度顱腦外傷患者進行視覺方面的康復鍛煉,促進了認知功能和其他大腦功能區的復健,并且患者的語言能力也得到較大幅度提升[29]。也有學者將眼動儀應用于閉鎖綜合征患者的康復中[30],通過使用帶有實時反饋光標的眼動儀,引導患者的眼球隨光標運動而運動,從而刺激大腦相關腦區的功能恢復。
2.3 神經退行性疾病
神經退行性疾病由大腦和脊髓的細胞神經元損害所致[31],其病情會隨著時間的推移逐步惡化,嚴重時會導致大腦功能障礙[32]。目前,眼動儀已被廣泛應用于神經退行性疾病的康復診療過程中[33]。研究表明,眼動儀、眼電圖和腦機接口一同被作為肌萎縮性側索硬化患者與外界交流的措施之一[34-35],其便利性及患者依從性比較令人滿意。眼動儀在阿爾茨海默癥的早期篩查研究中也有著顯著優勢,它可通過自帶的三維立體的視覺感官系統評估患者的認知障礙程度,還可憑借執行心理旋轉任務時患者的眼動數據分析來篩查其空間能力損害狀況[36]。此外,眼動儀或頭戴式眼動儀也被用于監測多發性硬化患者的眼睛掃視狀況,從而輔助多發性神經退化的診斷[37]。有學者將眼動儀作為神經退行性疾病中前庭眼反射抑制的評估手段,并結合步態分析,為患者制定個性化的康復方案[38]。研究發現,帕金森患者的眼部震顫并不源于頭部的震顫運動,這在一定程度上為解釋該疾病的成因帶來了突破性進展[39]。因此,眼動儀不僅有助于神經退行性疾病患者與外界的交流,也有助于評估患者的認知障礙及視覺加工信號損害情況。
2.4 腦癱
腦癱主要表現為中樞性運動障礙及姿勢異常,還可伴智力低下、癲癇、感知覺障礙、語言障礙及精神行為異常[40]。眼動儀可以用于腦癱的早期診斷,其方法主要是通過監測受試兒童目光到達目標物體的時間來判斷其罹患腦癱的可能性[41]。此外,眼動儀也被用于腦癱患兒的治療及療效評估。學者們檢測兒童康復治療如格斗訓練中患兒的眼球反應能力,了解其對認知功能的治療效果[42],同時,眼動儀可用于幫助腦癱兒童與外界的交流,且長時間使用后患兒的疲勞報告率較低[43],但高昂的價格限制了其進一步推廣應用[44]。
2.5 其他疾病
眼動儀在檢測重癥肌無力、腦卒中后認知功能障礙、周圍神經損傷中也起著一定作用。研究者應用眼動儀對受試者向上凝視時表現出的眼瞼固定不穩狀況進行捕捉,從而精確識別重癥肌無力患者的疲勞特性,為早期臨床診斷提供量化指標[45]。Singh T等[46]運用集合了眼動儀的上肢康復機器人來檢查健康成年人和中風幸存者在認知功能評估——連線試驗中的視覺搜索特點,結果發現腦卒中患者在測試過程中缺乏整合空間規劃和工作記憶的能力。此外,Oguntosin V等[47]通過定位和跟蹤周圍神經損傷患者在圖形用戶界面上的眼球運動,對康復機器人進行控制,從而實現對受累肢體的康復
訓練。
3 眼動儀在神經康復人才培養中的應用
眼球追蹤技術已經被廣泛應用于定量描述人的認知過程、認知負荷、區分判斷錯誤來源等方面的研究,這項技術也是創建靶向訓練程序的關鍵所在[48]。在對神經康復人才培養過程中,學者們運用剪輯的患者步態視頻,分別對初學者和較有經驗的康復治療師進行步態分析時的觀察點和凝視時間進行記錄,從而得出其視覺搜索策略,并運用該視覺搜索策略對初學者進行訓練[49]。無獨有偶,在康復器具的操作上,學者們利用眼動儀來輔助檢測使用者的眼動軌跡,分析操作者學習認知過程,從而更高效的設計學習任務[50]。因此,眼動儀在康復人才培養中具有廣闊的應用前景,值得進一步推廣[51]。
4 總結與展望
隨著技術改革的不斷深化,康復診療的客觀化、精準化需求日益增加[52]。盡管眼動儀在國內康復科實踐中的應用仍處于起步階段,卻具有廣闊的臨床及科研應用前景。目前,眼動儀在自閉癥的早期篩查、早期干預與治療中的應用在國外已較為成熟,但在國內仍處于萌芽狀態。隨著醫工結合、康工結合的不斷發展,眼動儀將越來越多的與機器人技術、虛擬現實技術、5G技術等高新技術結合,在康復乃至整個醫學領域展示出它獨有的魅力[53]。
參考文獻
[1] QIU W, HUANG Y, KONG L A, et al. Optoelectronic In-Ga-Zn-O memtransistors for artificial vision system [J]. Advanced Functional Materials, 2020, 30(40):"112-120.
[2] Trojano L, Moretta P, Estraneo A. Communicating using the eyes without remembering it: cognitive rehabilitation in a severely brain-injured patient with amnesia, tetraplegia and anarthria [J]. J Rehabil Med, 2009, 41(5): 393-396.
[3] Talukder A, Morookian J M, Monacos S, et al. Eye-tracking architecture for biometrics and remote monitoring [J]. Appl Opt, 2005, 44(5): 693-700.
[4] Harrar V, Le Trung W, Malienko A, et al. A nonvisual eye tracker calibration method for video-based tracking [J]."J Vis, 2018, 18(9): 1-11.
[5] Wyder S, Cattin P C. Eye tracker accuracy: quantitative evaluation of the invisible eye center location [J]. Int J Comput Assist Radiol Surg, 2018, 13(10): 1651-1660.
[6] Stuart S, Hickey A, Vitorio R, et al. Eye-tracker algorithms to detect saccades during static and dynamic tasks: a structured review [J]. Physiol Meas, 2019,"40(2): 02tr1.
[7] Ryan M C, Stucky M, Wakefield C, et al. Interactive clustered heat map builder: an easy web-based tool for creating sophisticated clustered heat maps [J]. F1000Res, 2019, 14(8): 1750.
[8] Nystr?m M, Hooge I, Andersson R. Pupil size influences the eye-tracker signal during saccades [J]. Vision Res, 2016. DOI: 10.1016/j.visres.2016.01.009.
[9] Bin zahid A, Hubbard M E, Lockyer J, et al. Eye tracking as a biomarker for concussion in children [J]. Clinical Journal of Sport Medicine, 2018, 30(5): 433-443.
[10] Al-moteri M O, Symmons M, Plummer V, et al. Eye tracking to investigate cue processing in medical decision-making: A scoping review [J]. Computers in Human Behavior, 2017, 66(1): 52-66.
[11] Mohamad S M, Razali A. An eye tracking analysis on diagnostic performance of digital fundus photography images between ophthalmologists and optometrists [J]. Int J Environ Res Public Health, 2019, 17(1): 30-43.
[12] YANG H, YU T, YAO J, et al. Quantitative assess the efficacy of congenital idiopathic nystagmus surgery by digital eye tracker [J]. Zhonghua Yan Ke Za Zhi, 2015, 51(6): 439-444.
[13] ZHENG B, JIANG X, ATKINS M S. Detection of changes in surgical difficulty: evidence from pupil responses [J]. Surg Innov, 2015, 22(6): 629-635.
[14] GE F F, YANG X Q, CHEN Y X, et al. Application of eye tracker in lie detection [J]. Fa Yi Xue Za Zhi, 2020, 36(2): 229-232.
[15] Tórtora G, Machín L, Ares G. Influence of nutritional warnings and other label features on consumers’ choice: results from an eye-tracking study [J]. Food Res Int, 2019, 119(2): 605-611.
[16] Baker R S, Fields H W, Beck F M, et al. Objective assessment of the contribution of dental esthetics and facial attractiveness in men via eye tracking [J]. Am J Orthod Dentofacial Orthop, 2018, 153(4): 523-533.
[17] Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions [J]. Dialogues Clin Neurosci, 2012, 14(3): 281-292.
[18] Lai M C, Lombardo M V, Baron-Cohen S. Autism [J]. Lancet, 2014, 383(9920): 896-910.
[19] CHEN F, WANG L, PENG G, et al. Development and evaluation of a 3-D virtual pronunciation tutor for children with autism spectrum disorders [J]. PLoS One, 2019, 14(1): e0210858.
[20] Magrelli S, Jermann P, Noris B, et al. Social orienting of children with autism to facial expressions and speech: a study with a wearable eye-tracker in naturalistic settings [J]. Front Psychol, 2013. DOI: 10.3389/fpsyg.2013.00840.
[21] Venker C E, Pomper R, Mahr T, et al. Comparing automatic eye tracking and manual gaze coding methods in young children with autism spectrum disorder [J]. Autism Res, 2020, 13(2): 271-283.
[22] Khosravan N, Celik H, Turkbey B, et al. A collaborative computer aided diagnosis (C-CAD) system with eye-tracking, sparse attentional model, and deep learning [J]. Med Image Anal, 2019. DOI: 10.1016/j.media.2018.10.010.
[23] CHANG W D, CHA H S, KIM D Y, et al. Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis [J]. J Neuroeng Rehabil, 2017, 14(1): 89-102.
[24] Scherf K S, Griffin J W, Judy B, et al. Improving sensitivity to eye gaze cues in autism using serious game technology: study protocol for a phase I randomised controlled trial [J]. BMJ Open, 2018, 8(9): e023682.
[25] Micai M, Vulchanova M, Salda?a D. Reading goals and executive function in autism: an eye-tracking study [J]. Autism Res, 2020. DOI: 10.1002/aur.2447.
[26] Cifu D X, Wares J R, Hoke K W, et al. Differential eye movements in mild traumatic brain injury versus normal controls [J]. J Head Trauma Rehabil, 2015, 30(1):"21-28.
[27] Malik R N, Cote R, Lam T. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury [J]. J Neurophysiol, 2017, 117(1): 36-46.
[28] Mani R, Asper L, Khuu S K. Deficits in saccades and smooth-pursuit eye movements in adults with traumatic brain injury: a systematic review and meta-analysis [J]. Brain INJ, 2018, 32(11): 1315-1336.
[29] Trojano L, Moretta P, Estraneo A, et al. Neuropsychologic assessment and cognitive rehabilitation in a patient with locked-in syndrome and left neglect [J]. Arch Phys Med Rehabil, 2010, 91(3): 498-502.
[30] Tung R C, Vivar-Cruz P W. Locked-In Syndrome [J]. Kans J Med, 2019, 12(2): 56.
[31] Herrero M T, Morelli M. Multiple mechanisms of neurodegeneration and progression [J]. Prog Neurobiol, 2017. DOI: 10.1016/j.pneurobio.2017.06.001.
[32] Katsnelson A, De Strooper B, Zoghbi H Y. Neurodegeneration: From cellular concepts to clinical applications [J]. Sci Transl Med, 2016, 8(364): 364ps18.
[33] LI X H, JING J, ZOU X B, et al. Picture perception in Chinese dyslexic children: an eye-movement study [J]. Chin Med J (Engl), 2009, 122(3): 267-271.
[34] Kiernan M C, Vucic S, Cheah B C, et al. Amyotrophic lateral sclerosis [J]. Lancet, 2011, 377(9769): 942-955.
[35] K?thner I, Kübler A, Halder S. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state [J]. J Neuroeng Rehabil, 2015, 12(1): 76-87.
[36] Suzuki A, Shinozaki J, Yazawa S, et al. Establishing a new screening system for mild cognitive impairment and alzheimer’s disease with mental rotation tasks that evaluate visuospatial function [J]. J Alzheimers Dis, 2018, 61(4): 1653-1665.
[37] Ferreira M B, Pereira P A, Parreira M, et al. Relationships between neuropsychological and antisaccade measures in multiple sclerosis patients [J]. Peer J, 2018, DOI: 10.7717/peerj.5737.
[38] Srulijes K, Mack D J, Klenk J, et al. Association between vestibulo-ocular reflex suppression, balance, gait, and fall risk in ageing and neurodegenerative disease: protocol of a one-year prospective follow-up study [J]. BMC Neurol, 2015, 15(1): 192-203.
[39] Gitchel G T, Wetzel P A, Qutubuddin A, et al. Experimental support that ocular tremor in Parkinson’s disease does not originate from head movement [J]. Parkinsonism Relat Disord, 2014, 20(7): 743-747.
[40] Wimalasundera N, Stevenson V L. Cerebral palsy [J]. Pract Neurol, 2016, 16(3): 184-194.
[41] Surkar S M, Hoffman R M, Davies B, et al. Impaired anticipatory vision and visuomotor coordination affects action planning and execution in children with hemiplegic cerebral palsy [J]. Res Dev Disabil, 2018, 80(August 2017): 64-73.
[42] JU Y Y, LIU Y H, CHENG C H, et al. Effects of combat training on visuomotor performance in children aged 9 to 12 years-an eye-tracking study [J]. BMC Pediatr, 2018, 18(1): 39-48.
[43] Myrden A, Schudlo L, Weyand S, et al. Trends in communicative access solutions for children with cerebral palsy [J]. J Child Neurol, 2014, 29(8):"1108-1118.
[44] Gavas R, Roy S, Chatterjee D, et al. Affordable sensor based gaze tracking for realistic psychological assessment [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017. DOI: 10.1109/EMBC.2017.8036932.
[45] Mihara M, Hayashi A, Fujita K, et al. Fixation stability of the upward gaze in patients with myasthenia gravis: an eye-tracker study [J]. BMJ Open Ophthalmol, 2017, 2(1): e000072.
[46] Singh T, Fridriksson J, Perry C M, et al. A novel computational model to probe visual search deficits during motor performance [J]. J Neurophysiol, 2017, 117(1): 79-92.
[47] Oguntosin V, Abdulkareem A. Design of a pneumatic soft actuator controlled via eye tracking and detection [J]. Heliyon, 2020, 6(7): e04388.
[48] Rey G D. Seductive details and attention distraction-An eye tracker experiment [J]. Computers in Human Behavior, 2014. DOI: 10.1016/j.chb.2013.11.017.
[49] Hayashi K, Aono S, Fujiwara M, et al. Difference in eye movements during gait analysis between professionals and trainees [J]. PLoS One, 2020, 15(4): e0232246.
[50] LIU Y, WANG S, ZHANG Y, et al. Assessment of laparoscopic training based on eye tracker and electroencephalograph [J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2017, 34(1): 66-71.
[51] Amster B, Marquard J, HEnneman E, et al. Using an eye tracker during medication administration to identify gaps in nursing students’ contextual knowledge: an observational study [J]. Nurse Educator, 2015, 40(2): 83-86.
[52] Tupper D E. Chapter 53: rehabilitation therapies [J]. Handb Clin Neurol, 2010, 95(95): 851-867.
[53] Konings M J, Foulsham T, Micklewright D, et al. Athlete-opponent interdependency alters pacing and information-seeking behavior [J]. Med Sci Sports Exerc, 2020, 52(1): 153-160.