999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于核心素養視域下高中數學課堂提問的實踐與探索

2023-03-27 11:25:32葉青
考試與評價 2023年2期
關鍵詞:思維課堂教師

葉青

教師是主導,學生是主體,這是現代教學特別強調與注重的。數學課堂提問作為啟發式教學的一種施教方法,是提高數學課堂教學質量和效率的重要手段之一。在課堂提問中如何正確處理“兩主”關系,改變“主導=主講,主體=主聽”的被動局面,充分調動學生學習的主動性、積極性,使學生在回答提問的過程中真正地發揮出主體的作用,這是我們教師必須探討的問題。學習的實質是刺激和反應的結合。筆者認為,課堂提問應立足于適時地給學生以一定力度的思維刺激,開發學生的智力,培養學生的能力。以啟發思維為核心,其目的在于:(1)激發學生主動的學習動機,撥動學生探求新知識的心弦,活躍思維;(2)政變教師主宰課堂教學的局面,發揮學生的主體作用,在教師的啟發引導下,造成學生自己獲得知識的良好氣氛。

下面是筆者在實際教學中基于核心素養視域下高中數學課堂提問的實踐與探索:

一、復習型提問

這是常用的一種提問方法。這種提問分兩類,一類是純粹為復習而提問,常用在復習課中;另一類是為學習新課而提問,即通常所說的為引入新課而準備的提問。前者應注意知識的系統性和完備性,強調重點問題的掌握和對難點問題的消化;后者應有明確的針對性,要提問本課所要用到的舊知識,以達到順利完成本課教學任務的目的,也為學生的積極思維創造條件,同時又能降低思維的難度。如“充分必要條件”這個概念是用揭示內涵的方式定義的,相當抽象。在講授新課前,可先提問:“命題由幾個部分組成?”“什么是逆命題、逆否命題?”“原命題、逆命題、逆否命題之間有何關系?”再讓學生觀察下列命題:(1)x=1,則? ?x2=1;(2) α=30°,則sinα=1/2;(3) α=β,則sinα=sinβ;(4)對頂角相等;(5)兩條平行線的斜率相等或同時不存在。然后提問學生這些命題及逆命題是否成立?成立的前提是什么?命題的條件、結論各是什么?等學生區分清楚了,接著就可以給出如下定義:“若A成立,則B成立,我們就稱A是B的充分條件。同時,B稱為A的必要條件。”這樣就使學生很自然地接受了“充分必要條件”這個概念。

二、觀察型提問

給學生以實物、實例、圖形等,讓學生觀察,使獲得對某種事物的某種特性的認識。在學生觀察過程中,教師提出一系列問題,學生或是根據教師事先提出的問題進行觀察、思考,隨后回答;或是先進行周密的觀察,然后再按教師事后提出的問題思考、回答。教師提出的問題,有時是為了幫助學生增加觀察的深度,使學生注意到某種重要而不易覺察到的東西;有時是為了促進學生觀察的敏捷性,注意抓住與學習課題有關的本質性的東西。例如在講矩形的要領時,教師可先畫出一組不同的四邊形。引導學生觀察,提問:“其中哪些是矩形?”當學生中意見比較一致時,再引導學生觀察,提問:“矩形的角有什么特點?邊又有什么特點?矩形是不是平行四邊形?是什么樣的平行四邊形?”在教師的啟發引導下,借助圖形的直觀,歸納出矩形的定義。再通過觀察,又共同歸納出矩形的性質。

觀察型提問在引入定義、定理、公式時較為有用,它的優點是使學生在學習過程中做到口到、眼到、心到、手到,使學生全身心投入地到學習活動中去,較好地調動學生學習的興趣和積極性,同時,利用直觀的感性認識,對所學內容也會產生較為深刻的印象。

三、啟發型提問

對于復雜或抽象的內容,教師可通過給學生以一定的啟發、誘導,使學生的思路沿著教師所搭建起來的“橋梁”探索前進,步步深入以達到啟迪思維和獲取知識的目的。如復數中有這樣一道題:復平面上兩點Z1、Z2所對應的復數z1、z2滿足z1=z2i+3,若Z2沿曲線|z-5|-|z+5|=6運動,試求Z1的軌跡。這道題比較復雜。如何使學生得出正確的解題過程?教師可通過以下步聚進行啟發性的提問,讓學生自己在思考和回答提問的過程中找到解題的方法。

師問:要求點Z1的軌跡(圖形),應先求什么?

生答:先求點Z1的軌跡方程。

師問:要列出Z1的方程,現在有哪些條件可利用?

生答:z1=z2i+3,還有|z-5|-|z+5|=6. (指明思考的方向)

師問:如何利用這兩個條件?(讓學生動手,思考解決方法)

生答:將z1=z2i+3代入|z-5|-|z+5|=6化簡,得|z1-(3+

5i) |-|z1-(3-5i) |=6

師問:上式表示什么圖形?

生答:以F1(3、5)、F2(3-5)為焦點,實軸長為6的雙曲線。

師問:請仔細考慮,上式是否表示完整的雙曲線?(引導學生觀察式子的特點,再對照雙曲線定義。學生恍然大悟)

生答:不是完整的雙曲線,而是雙曲線的下半支。

至此,學生自己可得出解題的全過程。

四、開放型提問

對于同一個問題,教師可以運用條件的增設、刪減、改變及條件與結論的互換等手法,設計出新的問題,或使問題的答案不唯一,讓學生在回答的過程中充分運用所學知識、方法進行探索,從而有助于培養學生的各種能力,這也是素質教育的一個重要方面。

開放型提問是為了培養學生的求異思維能力,要求學生發現知識之間的內在聯系,并在此基礎上使學生把教材內容的概念、規則等重新組合。開放型提問能使學生產生既多又新,甚至是前所未有的獨創想法。教師要充分尊重學生的回答,對于或許并不成熟的想法,教師應表示理解和接納。

例:在學完一元二次不等式解法后,可對學生進行開放性提問:(1)不等式-x2-x+2>0的解是x>1或x<-2 對嗎?(2)不等式(x-2)(x+2)<1的解是1<x<2,對嗎?(3)當k是實數時,如何求解不等式kx2-2x+k>0?(4)如果不等式kx2-2x+k>0對一切實數x都成立,那么如何求k?(5)如果不等式kx2-2x+k>0的解集為f非空數集A。那么如何求k?

五、聯想型提問

聯想是以觀察為基礎,對研究的對象或問題的特點,聯系已有的知識和經驗進行想象的思維方法。它是一種自覺的和有目的的想象,是由當前感知或思考的事物,想起有關的另一事物,或由此再想起其他事物的心理活動。

如在不等式證明中,有這樣一道題:設a,b,x,y∈R, a2+b2=1,x2+y2=1,求證|ax+by|≤1。在練習中,學生普遍是采用分析法進行證明的。確實,這種證明方法比較容易想到,也不復雜,但這不是唯一的證法,更不是最簡證法。這時,教師可誘導學生進行聯想,從多方位進行考查。

聯想一:

師問:從絕對值不等式的意義上看,本題只需證明什么?

生答:-1≤ax+by≤1.

師問:那么我們該如何求證?(學生集體討論)

生答:可用求差法分別求證ax+by+1≥0,ax+by-1≤0.

聯想二:

師問:從絕對值不等式的性質及平均值定理方面入手,如何求證?

(學生討論證法)

生答:可用證法: |ax+by|≤|ax|+|by|≤1

聯想三:

師問:條件a2+b2=1使我們聯想起三角中的什么公式?

生答:sin2α+cos2α=1

師問:如何將這種聯系應用到本題的證明中?(學生探索證法)

生答:可令a=sinα,b=cosα, x=sinβ, y=cosβ, 則|ax+by|-|cos(α-β)|≤1

聯想四:

師問:從本題條件看,本題結論式子的左邊讓我們聯想起解析幾何中的什么公式?

生答:(停頓片刻后)點(x, y)到直線ax+by=0的距離公式。

師問:很好。想想看,這里的點(x,y)在什么位置?

生答:在圓x2+y2=1上。

師問:對。那么本題也就是證明什么?

生答:證明當點(x,y)在圓x2+y2=1上移動時,它到直線ax+by=0的距離不超過1。

師問:回答得很好!下面請大家完整地寫出本題的證明過程,并請大家課后再進行其它方面的聯想,試試看還有沒有其它的辦法。(給學生以及時的鼓勵,并提出新的要求)

適當地引導學生對已學的知識等進行合理的聯想,在聯想處提問能讓課堂氣氛變得輕松、愉快,從而促進思維活動的進行并提高理解的效果。

六、懸念型提問

教師提出一個問題后,并不做(或暫不做)答復,而是留給學生一個懸念,以此來激發學生的好奇心和求知欲,使學生自己動手、動腦進行探索答案。這種提問常用于一節課結束之時,一種情況是為了總結本課的內容或突出某一要點問而不答,其實答案已很明白了。懸念型提問的另一種情況是為下一節新課的講授而準備的,目的在于讓學生在課后能自覺地進行預習,也使學生形成一種急切的求知欲望。

懸念是情緒和直覺的中間產物。懸念可以引起人們急切的心理狀態,在課堂教學中使用懸念式提問,通過設疑、制造懸念吸引學生的注意力,可以使學生的興趣不斷向前延伸和產生“欲知后事如何”的迫切要求。懸念式提問引起的一個直接心理效果就是學生的好奇心,有時甚至是學生在潛意識中的好奇。學生在好奇心的驅使下,會更加注意去尋找學習過程中的信息或信息的線索,這便有了有意注意的特征,從而加深對學習內容的理解與記憶。

好的課堂提問不僅可激發學生的積極思維,還可以溝通師生間的情感,創造活躍的教學氣氛,充分利用好非智力因素,因此我們必須注意提問方式的選擇。上述各種提問不是相互孤立的,而應針對具體的教學內容靈活交替、結合使用。但不論采用什么類型的提問方式,有一個原則都是應當遵守的,那就是:課堂提問的根本目的是充分調動學生的學習積極性,變被動學習為主動學習,這也就是本文開始所提及的學生為主體,教師為主導,只有這樣才能說是成功的課堂提問。

猜你喜歡
思維課堂教師
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
甜蜜的烘焙課堂
美食(2022年2期)2022-04-19 12:56:24
最美教師
快樂語文(2021年27期)2021-11-24 01:29:04
美在課堂花開
教師如何說課
甘肅教育(2020年22期)2020-04-13 08:11:16
翻轉課堂的作用及實踐應用
甘肅教育(2020年12期)2020-04-13 06:24:48
未來教師的當下使命
主站蜘蛛池模板: 91麻豆精品国产高清在线| 成人福利在线免费观看| 国产成人高清亚洲一区久久| 亚洲最新在线| 色偷偷综合网| 日韩成人高清无码| 亚洲综合色区在线播放2019| 夜夜操天天摸| 久久人与动人物A级毛片| 欧美视频免费一区二区三区| 日本成人一区| 亚洲欧美不卡中文字幕| 欧美日韩激情在线| 国产在线观看91精品亚瑟| 国产午夜人做人免费视频中文| 亚洲色图欧美激情| 国产成人精品视频一区二区电影 | 免费人成视频在线观看网站| 久久亚洲美女精品国产精品| 波多野吉衣一区二区三区av| 小说区 亚洲 自拍 另类| 在线观看精品国产入口| 欧美综合区自拍亚洲综合天堂| 老司机久久99久久精品播放 | 免费不卡视频| 欧美a级完整在线观看| 欧美不卡视频一区发布| 欧美啪啪网| 国产对白刺激真实精品91| 青青草国产在线视频| 亚洲精品国偷自产在线91正片| 国产成人久久综合777777麻豆 | 九九九国产| 成人在线观看不卡| 欧美啪啪网| 久久免费看片| 综合社区亚洲熟妇p| 欧美日韩在线第一页| 久久一级电影| 国产91麻豆视频| 99久久国产精品无码| av在线无码浏览| 中文字幕免费在线视频| 亚洲国产成人久久77| 五月婷婷激情四射| 亚洲天堂精品在线| 亚洲最黄视频| 色综合婷婷| 91精品国产一区| 亚洲欧洲一区二区三区| 亚洲AV无码乱码在线观看代蜜桃 | 国产视频大全| 国外欧美一区另类中文字幕| 国产视频a| 素人激情视频福利| 亚洲一区二区成人| 一区二区三区在线不卡免费| 亚洲动漫h| 国产91精品调教在线播放| 99视频全部免费| 欧美午夜久久| 在线中文字幕网| 国产精欧美一区二区三区| 久久女人网| 亚洲免费毛片| 精品久久久久久久久久久| 欧美国产日韩另类| 国产精品性| 久久一色本道亚洲| 国产视频你懂得| 精品久久香蕉国产线看观看gif| 日韩毛片基地| 一级毛片中文字幕| 日韩无码黄色网站| 又大又硬又爽免费视频| 国产区成人精品视频| 无码中文字幕精品推荐| 亚洲精品国产日韩无码AV永久免费网 | 国产精品短篇二区| 国产精品夜夜嗨视频免费视频| 一级毛片免费观看不卡视频| 精品国产免费人成在线观看|