柯章敏 張春香 孫金花 李麗 潘霞 錢振玨 文昱婷 張秀偉



摘 要:硫利達嗪作為吩噻嗪類抗精神病類藥物,具有誘導腫瘤發生免疫原性死亡(ICD)、激活特異性免疫反應的潛力。本研究利用A549和H1299細胞探討了硫利達嗪誘導肺腺癌細胞免疫原性死亡及其分子機制。將不同濃度的硫利達嗪與A549和H1299細胞共孵育24 h后,利用四甲基偶氮唑藍(MTT)法檢測細胞的存活及生長情況,利用流式細胞術分析細胞凋亡率,利用ATP檢測試劑盒檢測細胞上清中的ATP含量,利用免疫熒光法檢測細胞表面鈣網蛋白(CRT)的表達,利用蛋白質印跡(Western blot)法檢測凋亡相關蛋白裂解的含半胱氨酸的天冬氨酸蛋白水解酶3(Cleaved caspase 3)、B淋巴細胞瘤-2(Bcl-2)、Bcl-2相關X蛋白(Bax)、細胞色素C(Cyt C)的表達水平。結果表明,硫利達嗪能夠顯著抑制A549和H1299細胞的增殖,促進細胞凋亡,細胞增殖抑制及凋亡呈濃度依賴性。ATP分泌量增加及細胞表面CRT的表達水平上調,表明上述細胞發生了免疫原性死亡。而Bcl-2表達水平下降,Bax和Cyt C以及Cleaved caspase 3表達水平上調,進一步證明了硫利達嗪可誘導腫瘤細胞凋亡。上述結果表明,硫利達嗪可通過線粒體應激信號通路誘導肺腺癌細胞發生免疫原性死亡,從而抑制腫瘤細胞的增殖。
關鍵詞:肺腺癌;硫利達嗪;免疫原性死亡;線粒體應激信號通路;凋亡細胞
中圖分類號:R734.2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼:ADOI:10.3969/j.issn.1007-7146.2023.04.008
Immunogenic Cell Death of Lung Adenocarcinoma Cells Induced by Thioridazine Through Mitochondrial Stress Signaling Pathway
KE Zhangmin1#, ZHANG Chunxiang2#, SUN Jinhua3, LI Li1, PAN Xia1, QIAN Zhenjue1, WEN Yuting1, ZHANG Xiuwei1*
(1. Department of Respiratory and Critical Care Medicine, Jiangning Clinical School, Jiangsu Vocational College of Medicine, Nanjing 211100, China; 2. Department of Pharmacy, Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China; 3. Department of Respiratory and Critical Care Medicine, Gaochun Peoples Hospital, Nanjing 211300, China)
Abstract: Thioridazine, a phenothiazine drug, has a potential to induce tumor immunogenic cell death (ICD) and activate a tumor-specific immune response. In this study, we examined the ICD effect induced by Thioridazine and elucidated its underlying mechanisms using lung adenocarcinoma A549 and H1299 cells. Various concentrations of Thioridazine were employed to treat A549 and H1299 cells. The cell inhibition rate was determined using the methyl thiazol tetrazolium (MTT) assay, apoptosis rate was assessed by Flow Cytometry, extracellular ATP release was measured by using an ATP Assay Kit, and the presence of calreticulin (CRT) on the cell surface was evaluated via immunofluorescence. Furthermore, Western blot analysis was conducted to assess the expression levels of apoptosis-related proteins, including cleaved caspase 3, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and cytochrome C (Cyt C). Our findings revealed a significant, dose-dependent inhibition of A549 and H1299 cell proliferation and a marked increase in the apoptosis rate upon treatment with Thioridazine. Additionally, there was an elevation in extracellular ATP secretion and CRT expression on the cell surface, indicative of ICD occurrence. Consistently, the expression level of Bcl-2 decreased, while Bax, Cyt C, and cleaved caspase 3 were up-regulated that further indicate the induction apoptosis of tumor cell by Thiolidazine. Collectively, our results confirm that Thioridazine inhibits the proliferation of lung adenocarcinoma cells by inducing ICD through the mitochondrial stress signaling pathway.
Key words: lung adenocarcinoma; Thioridazine; immunogenic cell death; mitochondrial stress signaling pathway; apoptotic cell
(Acta Laser Biology Sinica, 2023, 32(4): 353-359)
肺癌(lung cancer)的發病率和死亡率在中國居于惡性癌癥之首。近年來,分子靶向藥物的快速發展有效延長了肺癌患者的生存期,并改善了病人預后的生活質量。但是,對于晚期無基因突變的非小細胞肺癌(non-small cell lung cancer,NSCLC)患者來說,標準的一線治療方案為免疫檢查點抑制劑聯合含鉑二藥化療,可將患者的五年生存率提高至15%左右。然而,大部分晚期無基因突變的NSCLC患者仍死于腫瘤的耐藥和復發[1]。
凋亡與腫瘤的發生、發展密切相關,主要包括線粒體途徑和死亡受體途徑等內外源性途徑,它們會誘導腫瘤細胞生成凋亡小體,最終被免疫細胞吞噬,從而完成凋亡程序[2-3]。近期的研究發現,部分化療藥物在體內可以誘導腫瘤細胞免疫原性死亡(immunogenic cell death,ICD),從而釋放損傷相關分子(damage-associated molecular patterns,DAMPs)與樹突狀細胞表面的受體相結合,啟動抗原呈遞,激活先天和適應性免疫反應[4-6]。ICD與免疫檢查點抑制劑介導的免疫應答反應具有協同效應,可以有效提升無基因突變的NSCLC患者的治療療效。然而,目前僅發現蒽環類、博來霉素和部分鉑類等少數抗癌藥物可誘發腫瘤細胞發生ICD,但是化療藥物毒副作用較大,效果參差不齊[7]。因此,尋找新的高效低毒的ICD誘導藥物對于治療晚期無基因突變的NSCLC患者具有重要意義。
硫利達嗪(Thioridazine)是一種多巴胺受體阻斷劑,臨床上被廣泛用于治療嚴重的精神疾病。Sachlos等[8]首次發現,硫利達嗪對白血病干細胞具有顯著的細胞毒性,但不影響正常造血干細胞的增殖和分化。后續的研究進一步證實了其對包括肺癌、宮頸癌、膠質瘤、乳腺癌和胰腺癌等腫瘤均具有顯著的抑制作用,提示硫利達嗪可作為一種新的廣譜抗癌類藥物[9-11]。然而,硫利達嗪能否誘導無敏感基因突變的肺腺癌發生ICD未見報道。因此,本研究探討硫利達嗪對人無敏感基因突變的肺腺癌細胞ICD的誘導作用及其分子機制,以期為無敏感基因突變肺癌的新藥研發及聯合免疫檢查點藥物治療提供試驗依據。
1 材料與方法
1.1 材料
1.1.1 細胞株與試驗藥物
A549和 H1299細胞株購自中科院上海細胞庫;硫利達嗪購自美國Sigma公司;DMEM培養基、小牛血清、3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴鹽[3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide,MTT]檢測試劑盒、凋亡檢測試劑盒、二甲基亞砜(dimethyl sulfoxide,DMSO)、乙二胺四乙酸(ethylee diamine tetraacetie acid,EDTA)胰酶購自碧云天公司;ATP檢測試劑盒購自碧云天公司,細胞色素C(cytochrone C,Cyt C)胞漿蛋白提取試劑盒購自美國Biovision;鈣網蛋白(calreticulin,CRT)多克隆抗體購自澤葉生物;Cyt C、B淋巴細胞瘤-2(B-cell lymphoma-2,Bcl-2)、Bcl-2相關X蛋白(Bcl-2-associated X protein,Bax)、甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)抗體購自美國Abcam公司;Cleaved caspase 3抗體購自美國Cell Signaling Technology公司;二抗購自中杉金橋生物公司;流式細胞儀為Becton,Dickinson and Company公司產品。
1.2 方法
1.2.1 細胞株培養
將A549或H1299細胞培養于含10%小牛血清和1%青霉素-鏈霉素雙抗的DMEM培養基中,置于37℃、5% CO2的細胞培養箱中培養,觀察細胞形態,選取生長狀態良好、處于對數生長期的細胞進行后續體外試驗。
1.2.2 MTT法測定細胞增殖抑制率
取處于對數生長期的A549或H1299 細胞,以每孔5 000個的數量接種于96孔板中。培養24 h后,分別加入濃度為5、10、15和20 μmol/L的硫利達嗪,共同孵育24 h。每孔加入5 mg/mL的MTT溶液10 μL,繼續在培養箱中培養4 h,小心移除培養基后每孔加入150 μL DMSO,室溫振蕩10 min;經多功能酶標儀在490 nm波長檢測相應的吸光度(A)。抑制率=(1-A試驗孔/A對照組)× 100%。
1.2.3 ATP檢測試劑盒檢測細胞上清液ATP的分泌量
取對數生長期的A549或H1299細胞,以每孔
5×105個的密度接種于6孔板中。培養24 h后,試驗組每孔分別加入5、10和20 μmol/L的硫利達嗪,對照組加入培養基。試驗組與對照組均設3個復孔。細胞繼續培養24 h后,收集細胞上清液,按照ATP試劑盒說明書進行檢測。
1.2.4 流式細胞術檢測細胞的凋亡率
取對數生長期的A549或H1299細胞,以每孔
2×105個的密度接種于6孔板。待細胞貼壁后分別加入濃度為5、10、20 μmol/L的硫利達嗪,設為試驗組,未加入藥物的細胞作為對照組。試驗組與對照組均設3個復孔。繼續培養24 h后消化收集并制備成單細胞懸液,磷酸鹽緩沖液(phosphate buffered saline,PBS)洗滌3遍,按照凋亡試劑盒說明加入AnnexinV-FITC和碘化丙啶(propidium iodide,PI),避光孵育,用流式細胞儀檢測細胞凋亡率。
1.2.5 細胞免疫熒光染色
將細胞爬片置于6孔板中,待相應濃度的硫利達嗪作用后,移除培養基并漂洗2次。用-20℃預冷的冰丙酮固定10 min,PBS洗滌3次,5%牛血清蛋白(bovine serum albumin,BSA)室溫孵育30 min,PBS洗滌3次,滴加適量濃度的CRT抗體4℃冰箱孵育過夜。PBS洗滌3次后滴加IgG-FITC熒光二抗,避光室溫孵育60 min,PBS洗滌3次,4',6-二脒基苯基吲哚(4',6-Diamidino-2'-phenylindole,DAPI)避光孵育5 min,PBS洗滌3次后予以抗熒光衰弱封片劑封片,并用熒光顯微鏡拍照記錄。
1.2.6 蛋白質印跡(Western blot)法檢測凋亡相關蛋白的表達
取處于對數生長期的A549或H1299細胞,將細胞密度調整為每毫升2 × 105個,以每孔1 mL的量接種于6孔板中。過夜培養,試驗組分別加入5、10和20 μmol/L的硫利達嗪,對照組單純加入培養基,繼續培養24 h后分別收集細胞備用。置于冰上,經蛋白提取試劑盒裂解后提取總蛋白,用二喹啉甲酸(bicinchoninic acid,BCA)法進行蛋白定量。以每孔40 μg的蛋白上樣,經12%聚丙烯酰胺凝膠電流分離蛋白,電轉印至聚偏二氟乙烯(polyvinylidene fluoride,PVDF)膜上,經封閉液封閉1 h。用Tris-HCl緩沖鹽溶液(tris buffered saline with tween,TBST)漂洗后,分別與Cyt C、Bax、Bcl-2、GAPDH和Cleaved caspase 3抗體(體積比1:1 000稀釋)4℃孵育反應過夜,TBST沖洗3次后與二抗反應,室溫孵育1 h,TBST漂洗3次,每次10 min,增強化學發光法(enhanced chemiluminescence,ECL)顯影,全自動成像分析系統(protein simple,USA)成像。
1.2.7 統計學方法
采用SPSS 23.0統計軟件對結果數據進行統計分析,所有試驗均重復3次以上,試驗結果以平均值±標準差(x±s)表示,多組間均數比較采用單因素方差分析。采用Graphpad prism 7.0軟件計算藥物的半抑制濃度值(half maximal inhibitory concentration,IC50)。*P<0.05為差異有統計學意義。
2 結果與分析
2.1 硫利達嗪顯著抑制A549和H1299無敏感突變肺腺癌細胞的增殖
MTT細胞活性檢測結果表明,在5、10、15和20 μmol/L的硫利達嗪作用24 h期間,其對A549和H1299細胞的增殖抑制呈濃度依賴性(圖1)。用Graphpad Prism7.0軟件計算硫利達嗪對A549和H1299細胞的IC50,分別為(17.86±1.31)μmol/L和(19.65±2.53)μmol/L?;谏鲜隽蚶_嗪的細胞毒性可得,5、10 、20 μmol/L這3個濃度可以用于評估硫利達嗪腫瘤細胞毒性的相關分子機制。
2.2 硫利達嗪誘導A549和H1299細胞凋亡
濃度為5、10和20 μmol/L的硫利達嗪作用于A549和H1299細胞24 h后,A549細胞凋亡率分別為(5.40±0.79)%、(8.67±0.68)%和(20.30±2.19)%,不同濃度的試驗組與對照組比較,差異具有統計學意義(F=30.12,P<0.01;F=147.02,P<0.01;F=189.01,P<0.01)。而H1299細胞凋亡率分別為(4.90±0.70)%、(9.37±1.94)%和(10.67±1.77)%,不同濃度的試驗組與對照組比較,差異具有統計學意義(F=13.80,P<0.02;F=29.37,P<0.01;F=51.34,P<0.01)。對照組中A459和H1299細胞的自然凋亡率分別為(2.20±0.62)%和(3.16±0.41)% (圖2)。
2.3 硫利達嗪誘導A549和H1299細胞表面CRT的表達上調
濃度為5、10和20 μmol/L的硫利達嗪作用于A549和H1299細胞24 h后,與對照組相比,免疫熒光顯微鏡下可見試驗組中A549和H1299細胞表面CRT的表達明顯上調,差異有統計學意義(圖3)。CRT的表達釋放“eat me”的信號,與吞噬細胞表面的CD91受體結合,促進腫瘤抗原提呈及腫瘤特異性T細胞免疫應答[12] 。
2.4 硫利達嗪顯著增加A549和H1299細胞外
ATP的分泌
A549和H1299細胞經5、10和20 μmol/L的硫利達嗪作用24 h后,試驗組中ATP的含量明顯升高,與對照組相比,差異有統計學意義(A459細胞:F=69.02,P<0.01; F=336.45,P<0.01;F=394.32,P<0.01。H1299細胞:F=18.92,P<0.01;F=260.89,P<0.01;F=194.48,P<0.01)(圖4)。細胞外的ATP釋放“find me”的信號并活化NOD樣受體蛋白3(NOD-like receptor family pyrin domain containing-3,NLRP3)受體,激活抗原提呈細胞和細胞毒性T細胞[13] 。
2.5 硫利達嗪顯著上調了肺腺癌細胞中凋亡相關蛋白的表達
Western blot結果表明,與對照組相比,5、10和 20 μmol/L的硫利達嗪可誘導抗凋亡蛋白Bcl-2表達下調和促凋亡蛋白Bax、Cyt C及Cleaved caspase 3表達上調(圖5)。
3 討論
隨著腫瘤免疫治療時代的來臨,免疫檢查點抑制劑聯合鉑類為基礎的二藥聯合化療可顯著延長驅動基因陰性的晚期NSCLC患者的生存期[14]。一線使用帕博利珠單抗可使高達31.9%的肺癌患者獲得持久的免疫應答和長期生存機會,然而大部分晚期NSCLC患者仍死于腫瘤的耐藥、轉移和復發[15]。調控包括線粒體途徑和死亡受體途徑等內外源性途徑的細胞凋亡通路與肺癌的發生與發展密切相關。正常生理情況下,Cyt C結合在線粒體內膜上,當Bax表達水平高于Bcl-2時,Bax與 Bcl-2的平衡被破壞,細胞啟動凋亡程序,線粒體的跨膜電位下降,Cyt C從線粒體內釋放并逐漸轉移到細胞質中,與凋亡蛋白酶激活因子1(apoptotic protease activating facter-1,Apaf-1)相結合,激活Caspase家族,啟動內外源性死亡,最終激活Cleaved caspase 3執行凋亡[16-18]。本研究結果表明,硫利達嗪可通過上調Bax、Cyt C和Cleaved caspase 3的表達并下調Bcl-2蛋白的表達來誘導A549和H1299細胞的凋亡,從而抑制細胞增殖。這表明,硫利達嗪可以作為一種抗癌藥物用于單獨或者輔助治療肺腺癌。
既往認為,細胞凋亡對免疫系統是無免疫原性的,不會激活特異性免疫反應。然而,近期的研究證實,一些化療藥物能夠誘導腫瘤細胞表達或釋放DAMPs,主要包括表面暴露的CRT、熱休克蛋白70/90(heat shock protein 70,HSP70/90)、分泌性ATP、高遷移率族蛋白B1(high mobility group box 1,HMGB1)等特異性蛋白質。這些特異性蛋白質能夠激活體內針對腫瘤的特異性免疫反應,從而顯著改善免疫檢查點抑制劑介導的免疫應答反應[5,19]。當受到各種因素引發應激時,細胞會表達并暴露DAMPs的信號物質。這些DAMPs可以出現在細胞表面,也可以被釋放到胞外,作為免疫刺激的危險信號,并表現出生物活性。然而,在正常的生理條件下,DAMPs則發揮非免疫原性的功能。發生ICD的腫瘤細胞通過DAMPs的轉膜或釋放激活宿主免疫應答,從而使腫瘤細胞更容易被宿主免疫細胞識別,激活體內特異性抗腫瘤免疫[20]。釋放至細胞外的ATP會產生“find me”信號,并通過P2RX7受體募集樹突狀細胞(dendritic cell,DC),細胞膜表面的CRT蛋白會產生類似“eat me”的信號,促進抗原提呈細胞吞噬,HMGB1與Toll樣受體4(Toll‐like receptor 4,TLR4)受體結合,增強DC的吞噬、抗原提呈及特異性腫瘤免疫能力[21]。我們團隊既往的研究表明,硫利達嗪通過內質網應激通路誘導肺鱗癌SK-MES-1細胞膜表面的CRT表達增加,增加HMGB1的分泌,從而誘導腫瘤細胞發生ICD [22]。本研究亦發現,硫利達嗪可促使肺腺癌細胞膜表面的CRT表達上升,ATP釋放增加,表明硫利達嗪能夠誘導肺腺癌細胞通過線粒體應激通路發生ICD。結合既往的研究,我們證實了硫利達嗪可通過內質網應激和線粒體應激通路誘導肺癌細胞發生ICD,然而其是否在體內能夠激活免疫細胞從而靶向殺傷腫瘤,仍需進一步研究。
綜上所述,硫利達嗪可通過線粒體通路誘導肺腺癌細胞發生增殖抑制、凋亡和ICD,其較強的ICD誘導活性提示,硫利達嗪聯合免疫檢查點抑制劑具有潛在的臨床價值和應用前景。
參考文獻(References):
[1] WANG M, HERBST R S, BOSHOFF C. Toward personalized treatment approaches for non-small-cell lung cancer[J]. Nature Medicine, 2021, 27(8): 1345-1356.
[2] CARNEIRO B A, El-DEIRY W S. Targeting apoptosis in cancer therapy[J]. Nature Reviews Clinical Oncology, 2020, 17(7): 395-417.
[3] KASHYAP D, GARG V K, GOEL N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis[J]. Advances in Protein Chemistry and Structural Biology, 2021, 125: 73-120.
[4] XU M, LU J H, ZHONG Y Z, et al. Immunogenic cell death-relevant damage-associated molecular patterns and sensing receptors in triple-negative breast cancer molecular subtypes and implications for immunotherapy[J]. Frontiers in Oncology, 2022, 12: 870914.
[5] JIN M Z, WANG X P. Immunogenic cell death-based cancer vaccines[J]. Frontiers in Immunology, 2021, 12: 697964.
[6] BAO X, XIE L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death[J]. Journal of Experimental & Clinical Cancer Research, 2022, 41(1): 222.
[7] RADOGNA F, DICATO M, DIEDERICH M. Natural modulators of the hallmarks of immunogenic cell death[J]. Biochemical Pharmacology, 2019, 162: 55-70.
[8] SACHLOS E, RISUENO R M, LARONDE S, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells[J]. Cell, 2012, 149(6): 1284-1297.
[9] WANG Y, XIA L, LIN J, et al. Thioridazine combined with carboplatin results in synergistic inhibition of triple negative breast cancer by targeting cancer stem cells[J]. Translational Oncology, 2022, 26: 101549.
[10] KANG S, DONG S M, KIM B R, et al. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells[J]. Apoptosis, 2012, 17(9): 989-997.
[11] CHU C W, KO H J, CHOU C H, et al. Thioridazine enhances p62-mediated autophagy and apoptosis through wnt/β-catenin signaling pathway in glioma cells[J]. International Journal of Molecular Sciences, 2019, 20(3): 473.
[12] FUCIKOVA J, SPISEK R, KROEMER G, et al. Calreticulin and cancer[J]. Cell Research, 2021, 31(1): 5-16.
[13] FAN F, SHEN P, MA Y, et al. Bullatacin triggers immunogenic cell death of colon cancer cells by activating endoplasmic reticulum chaperones[J]. Journal of Inflammation (London, England), 2021, 18(1): 23.
[14] WEST H, MCCLEOD M, HUSSEIN M, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130) : a multicentre, randomised, open-label, phase 3 trial[J]. The Lancet Oncology, 2019, 20(7): 924-937.
[15] BRUECKL W M, FICKER J H, ZEITER G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC) [J]. BMC Cancer, 2020, 20(1): 1185.
[16] KULBAY M, PAIMBOEUF A, OZDEMIR D, et al. Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies[J]. Journal of Cellular Biochemistry, 2022, 123(11): 1736-1761.
[17] LI X, WANG J, GONG X, et al. Upregulation of Bcl-2 by acridone derivative through gene promoter i-motif for alleviating liver damage of NAFLD/NASH[J]. Nucleic Acids Research, 2020, 48(15): 8255-8268.
[18] ZHAO S, ZHANG Y, LU X, et al. CDC20 regulates the cell proliferation and radiosensitivity of p53 mutant HCC cells through the Bcl-2/Bax pathway[J]. International Journal of Biological Sciences, 2021, 17(13): 3608-3621.
[19] LI X. The inducers of immunogenic cell death for tumor immunotherapy[J]. Tumori, 2018, 104(1): 1-8.
[20] HUANG L, RONG Y, TANG X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer[J]. Molecular Cancer, 2022, 21(1): 45.
[21] AHMED A, TAIT S. Targeting immunogenic cell death in cancer[J]. Molecular Oncology, 2020, 14(12): 2994-3006.
[22] 柯章敏, 張瑋, 朱文艷, 等. 硫利達嗪誘導人肺鱗癌細胞SK-MES-1發生免疫原性死亡的機制研究[J]. 國際呼吸雜志, 2018, 38(22): 1689-1693.
KE Zhangmin, ZHANG Wei, ZHU Wenyan, et al. Mechanism of immunogenic cell death of human pulmonary squamous cell carcinoma cells SK-MES-1 induced by thioridazine[J]. International Journal of Respiration, 2018, 38(22): 1689-1693.