








[摘要] 目的
探討巖藻多糖(Fucoidan)對高濃度尿酸(UA)誘導(dǎo)的人肝癌細(xì)胞(HepG2)線粒體凋亡的影響及機(jī)制。
方法 HepG2細(xì)胞隨機(jī)分為對照組(加無藥物培養(yǎng)液)、UA模型組(加入0.2 g/L UA溶液)、白黎蘆醇組(Res組,用1 μmol/L白藜蘆醇溶液預(yù)處理24 h后加入0.2 g/L UA溶液)、 F1組(加入0.2 g/L UA+20 mg/L Fucoidan溶液處理)、F2組(加入0.2 g/L UA +40 mg/L Fucoidan溶液處理)、F1+EX527組(加入0.2 g/L UA +20 mg/L Fucoidan+1 μmol/L EX527溶液處理)、F2+EX527組(加入0.2 g/L UA +40 mg/L Fucoidan +1 μmol/L EX527溶液處理)。各組加入相應(yīng)藥物處理24 h后,應(yīng)用CCK8實驗檢測HepG2細(xì)胞活力,ELISA實驗檢測細(xì)胞上清液丙氨酸氨基轉(zhuǎn)移酶(ALT)、天門冬氨酸氨基轉(zhuǎn)移酶(AST)水平及細(xì)胞內(nèi)超氧化物歧化酶(SOD)、還原型谷胱甘肽(GSH)和丙二醛(MDA)水平;熒光顯微鏡檢測活性氧(ROS)和線粒體膜電位,流式細(xì)胞儀測定細(xì)胞凋亡率,Western blot方法檢測Sirt1蛋白表達(dá)。
結(jié)果 與對照組相比,UA模型組HepG2細(xì)胞活力降低(F=295.200,Plt;0.01),細(xì)胞上清液ALT和AST水平升高(F=204.300、9.511,Plt;0.01),細(xì)胞內(nèi)SOD和GSH水平降低(F=47.880、8.261,Plt;0.01),
MDA含量增加(F=132.400,Plt;0.01),ROS生成增加(F=23.720,Plt;0.05),Sirt1蛋白表達(dá)下調(diào)(F=64.520,Plt;0.01),細(xì)胞凋亡率明顯升高(F=19.200,Plt;0.01);與UA模型組相比,Res組、F1組和F2組HepG2細(xì)胞生存率增加,ALT和AST水平降低,細(xì)胞內(nèi)SOD和GSH水平增加,MDA含量降低,差異均有顯著性(Plt;0.01);與UA模型組相比,F(xiàn)2組細(xì)胞內(nèi)ROS生成減少,線粒體膜電位下降,Sirt1蛋白表達(dá)上調(diào),細(xì)胞凋亡率下降,差異有顯著性(Plt;0.05)。加入Sirt1抑制劑EX527能顯著逆轉(zhuǎn)Fucoidan的抗氧化和抗凋亡作用,差異有顯著性(Plt;0.05)。
結(jié)論 Fucoidan通過上調(diào)Sirt1蛋白表達(dá)抑制線粒體氧化應(yīng)激,逆轉(zhuǎn)UA誘導(dǎo)的HepG2細(xì)胞線粒體凋亡。
[關(guān)鍵詞] 尿酸;巖藻多糖;癌,肝細(xì)胞;氧化性應(yīng)激;細(xì)胞凋亡
[中圖分類號] R343.23
[文獻(xiàn)標(biāo)志碼] A
[文章編號] 2096-5532(2023)06-0867-07
doi:10.11712/jms.2096-5532.2023.59.200
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20240104.1739.011;2024-01-08 08:59:14
EFFECT OF FUCOIDAN ON HEPG2 CELL APOPTOSIS INDUCED BY HIGH URIC ACID AND ITS MECHANISM
PEI Zhongqian, XUE Meilan, YANG Jia, ZHANG Nan, GAO Haiqi
(Basic Medical College, Qingdao University, Qingdao 266071, China)
; [ABSTRACT]ObjectiveTo investigate the effect of fucoidan on mitochondrial apoptosis in human hepatoma (HepG2) cells induced by high concentration of uric acid (UA) and its mechanism.
MethodsHepG2 cells were randomly divided into control group (added with drug-free culture solution), UA model group (added with 0.2 g/L UA solution), resveratrol group (Res group, pretreated with 1 μmol/L resveratrol solution for 24 h, and then added with 0.2 g/L UA solution), F1 group (added with 0.2 g/L UA + 20 mg/L fucoidan), F2 group (added with 0.2 g/L UA + 40 mg/L fucoidan), F1+EX527 group (added with 0.2 g/L UA + 20 mg/L fucoidan + 1 μmol/L EX52), and F2+EX527 group (added with 0.2 g/L UA + 40 mg/L fucoidan + 1 μmol/L EX527). After 24 h treatment with corresponding drugs, Cell Counting Kit-8 assay was used to determine the viability of HepG2 cells; enzyme-linked immunosorbent assay was used to measure alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the cell supernatant, as well as intracellular superoxide dismutase (SOD), reduced glutathione (GSH), and malondialdehyde (MDA) levels; fluorescence microscopy was used to measure reactive oxygen species (ROS) production; flow cytometry was used to determine the cell apoptosis rate, and Western blot was used to measure the expression of Sirt1.
Results
Compared with the control group, the UA model group had significantly lower HepG2 cell viability (F=295.200,Plt;0.01), SOD and GSH levels (F=47.880,8.261;Plt;0.01), and Sirt1 protein expression (F=64.520,Plt;0.01), and significantly higher ALT and AST levels in cell supernatant (F=204.300,9.511;Plt;0.01), MDA content (F=132.400,Plt;0.01), ROS production (F=23.720,Plt;0.05), and cell apoptosis rate (F=19.200,Plt;0.01). Compared with the UA model group, the Res group, F1 group, and F2 group had significantly higher HepG2 cell survival rates and SOD
and GSH levels (all Plt;0.01), and significantly lower ALT and AST levels and MDA content (all Plt;0.01). Compared with the UA model group, the F2 group had significantly higher Sirt1 expression, and significantly lower intracellular ROS production, mitochondrial membrane potential, and cell apoptosis rate (Plt;0.05). The addition of Sirt1 inhibitor EX527 significantly reversed the antioxidant and anti-apoptotic effects of fucoidan (Plt;0.05).
ConclusionFucoidan can inhibit mitochondrial oxidative stress and reverse UA-induced mitochondrial apoptosis in HepG2 cells by up-regulating Sirt1 expression.
[KEY WORDS]uric acid; fucoidan; carcinoma, hepatocellular; oxidative stress; apoptosis
尿酸(UA)是人體嘌呤代謝的終產(chǎn)物,UA增加使機(jī)體多種器官組織處于氧化應(yīng)激狀態(tài),可能引起內(nèi)皮功能障礙、炎癥和血管收縮等,是心血管疾病、代謝綜合征和肝腎疾病發(fā)展的獨(dú)立危險因素[1-5]。暴露于高水平UA的肝細(xì)胞更容易出現(xiàn)線粒體功能障礙、脂質(zhì)沉積及纖維化[6-7]。高尿酸血癥大鼠肝臟的丙二醛(MDA)水平升高,活性氧(ROS)水平降低,提示高尿酸血癥可誘導(dǎo)氧化應(yīng)激導(dǎo)致肝細(xì)胞抗氧化水平下降。既往研究顯示,只有不到40%的病人可以通過服用別嘌呤醇(高尿酸血癥一線治療藥物)將其血清UA水平降至正常水平,且可能導(dǎo)致過敏反應(yīng)、肝腎損傷以及微量元素丟失[8]。因此,篩選出安全有效的天然藥物用于預(yù)防或治療高尿酸血癥具有重要意義。
巖藻多糖(Fucoidan)是從褐藻中提取的含有L-巖藻糖的天然活性物質(zhì)。有研究顯示,高尿酸血癥大鼠服用Fucoidan(150 mg/kg)可抑制肝臟黃嘌呤氧化酶(XOD)的活性并增加腎臟UA排泄[9]。Fucoidan作為天然抗氧化劑可以恢復(fù)細(xì)胞過氧化氫酶(CAT)、SOD和谷胱甘肽過氧化酶(GPx)活性,顯著降低脂質(zhì)過氧化和一氧化氮水平[10]。Sirt1是一種依賴煙酰胺腺嘌呤二核苷酸輔酶(NAD+)的去乙酰化酶,具有抗氧化作用[11]。已有研究發(fā)現(xiàn),F(xiàn)ucoidan通過上調(diào)肝細(xì)胞Sirt1分子表達(dá),參與調(diào)節(jié)肝臟中的葡萄糖和脂質(zhì)代謝[12-14]。由此推測,F(xiàn)ucoidan可能通過調(diào)節(jié)Sirt1表達(dá)、抑制肝細(xì)胞線粒體氧化應(yīng)激來逆轉(zhuǎn)高濃度UA誘導(dǎo)的肝細(xì)胞凋亡。本研究探討Fucoidan對高濃度UA誘導(dǎo)的人肝癌細(xì)胞(HepG2)線粒體凋亡的影響及機(jī)制。
1 材料和方法
1.1 實驗材料
Fucoidan購自美國Sigma公司;白藜蘆醇以及Sirt1抑制劑EX527 (Selisistat) 購自美國GlpBio公司;CCK8工作液購自碧云天生物公司;丙氨酸氨基轉(zhuǎn)移酶(ALT)、天門冬氨酸氨基轉(zhuǎn)移酶(AST)檢測試劑盒購于南京建成生物工程研究所;還原型谷胱甘肽(GSH)、MDA和ANNEXIN V-FITC/PI凋亡檢測試劑盒購自北京索萊寶公司; ROS檢測試劑盒購自Biosharp公司;線粒體膜電位檢測試劑盒(JC-1法)購自上海翊圣生物科技有限公司;抗β-actin和Sirt1兔一抗購自博士德生物公司。
1.2 實驗方法
1.2.1 細(xì)胞分組及藥物干預(yù) HepG2細(xì)胞接種于96孔板中,分別給予0、0.04、0.08、0.12、0.16、0.20、0.24 g/L UA溶液干預(yù)24 h,CCK8實驗檢測細(xì)胞活力,篩選出用于建立高UA氧化應(yīng)激細(xì)胞模型的最適UA濃度。然后將HepG2細(xì)胞分為對照組(Control組)、UA組、UA聯(lián)合不同濃度(5、10、20、40、60、80 mg/L)Fucoidan干預(yù)組,F(xiàn)ucoidan組分別加入相應(yīng)濃度Fucoidan培養(yǎng)24 h,CCK8實驗檢測細(xì)胞活力,篩選出合適的Fucoidan干預(yù)劑量。后續(xù)實驗將HepG2細(xì)胞分為對照組(Control組)、UA模型組、白藜蘆醇組(Res組)、F1組、F2組、F1+EX527組和F2+EX527組。Control組加入無藥物培養(yǎng)液;UA模型組加入0.2 g/L UA溶液;Res組用1 μmol/L白藜蘆醇溶液預(yù)處理24 h,棄掉培養(yǎng)液,加入0.2 g/L UA溶液;
F1組加入0.2 g/L UA+
20 mg/L Fucoidan溶液;F2組加入0.2 g/L UA +40 mg/L Fucoidan溶液;F1+EX527組加入0.2 g/L UA +20 mg/L Fucoidan+1 μmol/L EX527溶液處理;F2+EX527組加入0.2 g/L UA +40 mg/L Fucoidan +1 μmol/L EX527溶液,各組培養(yǎng)液體積相同。
1.2.2 CCK8方法檢測細(xì)胞活力 每組設(shè)置5個復(fù)孔,加相應(yīng)藥物處理24 h,棄去孔內(nèi)培養(yǎng)液,加入200 μL CCK8工作液孵育4 h。使用酶標(biāo)儀檢測450 nm波長處各孔光密度(OD)值,計算細(xì)胞活力。細(xì)胞活力(%)=(OD測量值-OD空白值)/(OD對照值-OD空白值)×100%。
1.2.3 酶聯(lián)免疫吸附測定(ELISA)實驗檢測細(xì)胞及上清液抗氧化指標(biāo) 每組設(shè)置3個復(fù)孔,相應(yīng)藥物干預(yù)24 h后分別收集細(xì)胞上清液及貼壁細(xì)胞。應(yīng)用ALT、AST試劑盒檢測細(xì)胞、上清液ALT和AST水平;貼壁細(xì)胞經(jīng)超聲破碎后取上清,按照試劑盒說明書步驟檢測細(xì)胞內(nèi)SOD、GSH、MDA水平。
1.2.4 熒光顯微鏡檢測HepG2細(xì)胞內(nèi)ROS和線粒體膜電位變化 分別應(yīng)用ROS檢測試劑盒和JC-1試劑盒檢測HepG2細(xì)胞內(nèi)ROS含量和線粒體膜電位。細(xì)胞接種于6孔板內(nèi),按照分組進(jìn)行相應(yīng)藥物干預(yù),24 h后棄去培養(yǎng)液。分別加入無血清培養(yǎng)液稀釋H2DCFH-DA和JC-1染色工作液,孵育30 min后洗滌細(xì)胞,熒光顯微鏡下觀察細(xì)胞內(nèi)ROS熒光和線粒體膜電位JC-1熒光信號變化。應(yīng)用Image J軟件分析熒光強(qiáng)度。
1.2.5 流式細(xì)胞儀檢測細(xì)胞凋亡 各組細(xì)胞分別給予相應(yīng)藥物干預(yù)24 h后,胰酶消化,PBS洗滌后重懸細(xì)胞,調(diào)整細(xì)胞密度為1×109/L。每管加入細(xì)胞懸液100 μL及Annexin V-FITC 5 μL,避光混勻10 min,再加入5 μL PI,避光孵育5 min。最后應(yīng)用流式細(xì)胞儀檢測細(xì)胞凋亡。
1.2.6 Western blot方法檢測Sirt1蛋白表達(dá) 各組細(xì)胞分別給予相應(yīng)藥物干預(yù)后收集并裂解細(xì)胞,用BCA蛋白定量試劑盒檢測總蛋白濃度。通過SDS-PAGE分離蛋白質(zhì)并轉(zhuǎn)移到PVDF膜上,用50 g/L脫脂奶粉溶液封閉2 h后,將膜與一抗(β-actin、Sirt1,1∶1 000)孵育,4 ℃過夜。TBST洗滌3次,加入HRP偶聯(lián)二抗(1∶10 000),37 ℃孵育1 h。
TBST洗滌3次。配制1×ECL顯影液,最后將膜置于成像儀上顯影。
用Image J軟件進(jìn)行蛋白質(zhì)印跡分析。
1.3 統(tǒng)計學(xué)分析
采用SPSS 26.0軟件進(jìn)行統(tǒng)計學(xué)處理。計量資料結(jié)果以±s表示,兩組數(shù)據(jù)比較采用t檢驗;多組數(shù)據(jù)比較采用單因素方差分析,組間兩兩比較采用 LSD-t檢驗。Plt;0.05表示差異有統(tǒng)計學(xué)意義。
2 結(jié)" 果
2.1 不同濃度UA對HepG2細(xì)胞活力的影響
與Control組相比,不同濃度(0、0.04、0.08、0.12、0.16、0.20、0.24 g/L)UA處理組HepG2細(xì)胞存活率差異有顯著性(n=3,F(xiàn)=63.906,Plt;0.01),其中0.16、0.20、0.24 g/L UA處理組的HepG2細(xì)胞存活率較對照組顯著降低(t=6.208~12.550,Plt;0.01)。見圖1。
2.2 不同濃度Fucoidan聯(lián)合UA處理對HepG2細(xì)胞活力的影響
0.2 g/L UA和不同濃度Fucoidan聯(lián)合UA處理HepG2細(xì)胞24 h,UA模型組細(xì)胞活力較Control組明顯降低(n=6,F(xiàn)=28.110,t=7.188,Plt;0.01),不同濃度Fucoidan組細(xì)胞存活率與UA模型組相比差異有顯著性(F=15.370,Plt;0.01),其中20 mg/L和40 mg/L Fucoidan干預(yù)組的細(xì)胞存活率均較UA組增加(t=2.435、3.045,Plt;0.05),100 mg/L濃度Fucoidan處理后細(xì)胞存活率顯著降低(t=6.417,Plt;0.01)。見圖2。故本文選擇濃度為20 mg/L和40 mg/L的Fucoidan聯(lián)合0.2 g/L UA處理HepG2細(xì)胞24 h用于后續(xù)實驗。
2.3 Fucoidan對HepG2細(xì)胞活力的影響
與Control組相比,UA模型組細(xì)胞活力下降(n=6,F(xiàn)=295.200,t=28.550,Plt;0.01);與UA模型組相比較,Res組、F1組和F2組細(xì)胞存活率升高,差異有顯著性(t=11.220~28.350,Plt;0.01)。F1+EX527組HepG2細(xì)胞存活率較F1組顯著降低(t=3.143,Plt;0.05),F(xiàn)2+EX527組細(xì)胞存活率較F2組明顯降低(t=13.520,Plt;0.01)。見圖3。
2.4 Fucoidan對UA誘導(dǎo)的HepG2細(xì)胞ALT和AST水平的影響
UA模型組上清液ALT和AST水平均顯著高于Control組(n=6,F(xiàn)=204.300、9.511,Plt;0.05)。
與UA模型組相比,Res和Fucoidan處理降低了ALT和AST水平(Plt;0.05);F1組和F2組ALT和AST水平較UA組下調(diào)(t=3.507~21.260,Plt;0.01),而Res組AST水平與UA組相比差異無顯著性(Pgt;0.05);與F1組相比,F(xiàn)1+EX527組ALT和AST含量增加(t=5.686、4.054,Plt;0.05);與F2組相比,F(xiàn)2+EX527組ALT和AST水平明顯增加(t=3.695、10.720,Plt;0.05)。見圖4。
2.5 Fucoidan對UA誘導(dǎo)的HepG2細(xì)胞SOD、GSH和MDA水平的影響
與Control組相比較,UA模型組HepG2細(xì)胞SOD、GSH水平均降低,MDA水平升高(n=6,F(xiàn)=8.261~132.400,Plt;0.01)。Res組、F1組和F2組SOD和GSH水平較UA組顯著升高(t=3.369~11.810,Plt;0.01),MDA水平顯著低于UA組(t=6.656~10.860,Plt;0.01)。與F1組相比較,F(xiàn)1+EX527組SOD、GSH水平降低,MDA水平增加,差異有顯著性(t=3.879~4.943,Plt;0.05);與F2組相比,F(xiàn)2+EX527組SOD、GSH水平降低,MDA水平增加(t=2.960~8.174,Plt;0.05),Sirt1抑制劑EX527抑制了Fucoidan抗氧化作用。見表1。
與Control組相比,F(xiàn)=8.261~132.400,##Plt;0.01;與UA模型組相比,*Plt;0.05,**Plt;0.01;與F1組相比,$Plt;0.05,$$Plt;0.01;與F2組相比,△Plt;0.05,△△Plt;0.01。
2.6 Fucoidan對HepG2細(xì)胞ROS的影響
熒光顯微鏡觀察顯示,UA模型組綠色熒光較
Control組明顯增強(qiáng),F(xiàn)2組的熒光強(qiáng)度減弱,F(xiàn)2+EX527組熒光較F2組增強(qiáng)。統(tǒng)計學(xué)分析顯示,UA組相對熒光強(qiáng)度較Control組增強(qiáng),細(xì)胞內(nèi)ROS生成增加(n=3,F(xiàn)=23.720,t=6.756,Plt;0.01)。與UA組相比較,F(xiàn)2組UA誘導(dǎo)的ROS增多被抑制(t=4.534,Plt;0.05)。F2+EX527組相對綠色熒光強(qiáng)度較F2組增強(qiáng),ROS生成增多(t=2.929,Plt;0.05)。見圖5。
2.7 Fucoidan對HepG2細(xì)胞線粒體膜電位的影響
熒光顯微鏡觀察顯示,HepG2細(xì)胞中J-聚集體呈紅色熒光,J-單體顯示綠色熒光。與Control組相比,UA誘導(dǎo)的HepG2細(xì)胞氧化損傷導(dǎo)致線粒體膜
電位下降或消失,顯示較強(qiáng)的綠色熒光(n=3,F(xiàn)=
205.600,t=18.390,Plt;0.01)。F2組與UA組細(xì)胞線粒體膜電位比較,差異有顯著性(t=16.600,Plt;0.01)。F2+EX527組線粒體膜通透性增加,膜電位較F2組下調(diào),差異有顯著性(t=9.013,Plt;0.01)。見圖6。
2.8 Fucoidan對HepG2細(xì)胞凋亡的影響
流式細(xì)胞術(shù)檢測顯示,與Control組相比較,0.2 g/L UA顯著誘導(dǎo)HepG2細(xì)胞凋亡(n=3,F(xiàn)=19.220,t=6.167,Plt;0.05),40 mg/L Fucoidan干預(yù)可逆轉(zhuǎn)細(xì)胞凋亡趨勢(t=3.645,Plt;0.05),F(xiàn)2+EX527組細(xì)胞凋亡率較F2組明顯增加(t=3.724,Plt;0.01)。見圖7。
2.9 Fucoidan對HepG2細(xì)胞Sirt1蛋白表達(dá)水平的影響
Western blot檢測顯示,與Control組相比較,UA模型組Sirt1蛋白表達(dá)水平顯著下降(n=3,F(xiàn)=64.520,t=7.212,Plt;0.01),而Res組和F2組Sirt1表達(dá)高于UA模型組(t=8.905、9.686,Plt;0.01);與F2組相比,F(xiàn)2+EX527組Sirt1表達(dá)降低(t=14.300,Plt;0.01)。見圖8。
3 討" 論
近年來,高尿酸血癥病人數(shù)量顯著增加,并呈現(xiàn)出年輕化趨勢[15-16]。UA由XOD產(chǎn)生,它可以促進(jìn)還原型輔酶Ⅱ(NAPDH)的激活和ROS的釋放,導(dǎo)致肝臟和腎臟等多種器官氧化應(yīng)激[17-18]。Fucoidan能顯著降低高尿酸血癥小鼠肝臟UA代謝關(guān)鍵酶腺苷脫氨酶(ADA)和XOD的活性,抑制UA的生成,還可以通過改善腎臟組織的功能控制尿素氮和血肌酐的含量。目前,F(xiàn)ucoidan已用作高尿酸血癥所導(dǎo)致的腎臟相關(guān)疾病的治療藥物。本研究結(jié)果顯示,F(xiàn)ucoidan通過上調(diào)Sirt1分子表達(dá)來抑制線粒體氧化應(yīng)激,在逆轉(zhuǎn)高UA誘導(dǎo)的肝細(xì)胞凋亡方面發(fā)揮了保護(hù)作用。
UA誘導(dǎo)線粒體ROS生成增加,使線粒體成分
破壞及功能紊亂,導(dǎo)致過度氧化應(yīng)激[19-20]。持續(xù)的氧化應(yīng)激可導(dǎo)致肝細(xì)胞脂質(zhì)沉積和纖維化,并通過線粒體膜電位喪失激活線粒體依賴性凋亡。有研究證實,F(xiàn)ucoidan在藥物誘導(dǎo)的肝損傷和肝細(xì)胞癌中具有保護(hù)細(xì)胞完整性和抑制纖維化方面的有益作用[21-22]。CHALE-DZUL等[21]研究發(fā)現(xiàn),肝損傷大鼠口服50 mg/kg流動馬尾藻Fucoidan后顯示出良好的抗纖維化效果。Fucoidan可以激活Sirt1分子抑制db/db小鼠肝臟中超氧化物產(chǎn)生和脂質(zhì)過氧化,增加CAT和SOD活性,改善肝臟氧化應(yīng)激[23]。線粒體膜電位下降是內(nèi)源性凋亡的早期標(biāo)志[19]。本研究結(jié)果顯示,與UA模型組相比,F(xiàn)ucoidan處理組HepG2細(xì)胞線粒體膜電位恢復(fù),細(xì)胞ROS生成減少,細(xì)胞上清液ALT和AST水平降低,細(xì)胞內(nèi)SOD和GSH水平增加,MDA含量降低,細(xì)胞凋亡明顯減少,提示Fucoidan可以抑制線粒體氧化應(yīng)激和保護(hù)線粒體功能,緩解由高UA引起的肝功能損害。
Sirt1通過組蛋白、非組蛋白和轉(zhuǎn)錄因子的脫乙酰作用參與了多種與高尿酸血癥肝臟損傷進(jìn)展相關(guān)的生物學(xué)過程,如細(xì)胞氧化應(yīng)激和凋亡等。體外實驗發(fā)現(xiàn),UA刺激能顯著降低Sirt1 mRNA和蛋白質(zhì)表達(dá)[24],Sirt1活化劑可能通過PGC-1a/PPARg-ABCG2途徑預(yù)防高尿酸血癥[25]。Sirt1激動劑白藜蘆醇可抑制氧化應(yīng)激并預(yù)防高UA誘發(fā)的急性痛風(fēng)性關(guān)節(jié)炎[26-27]。因此,維持肝細(xì)胞Sirt1水平并激活Sirt1調(diào)節(jié)的抗氧化反應(yīng),可能是改善高尿酸血癥肝細(xì)胞氧化應(yīng)激的一個重要途徑。相關(guān)研究發(fā)現(xiàn),F(xiàn)ucoidan通過Sirt1依賴性方式防止β細(xì)胞損傷以及抑制糖尿病誘發(fā)的腎纖維化[28]。本文研究結(jié)果顯示,UA誘導(dǎo)的HepG2細(xì)胞損傷模型中Sirt1表達(dá)顯著降低,40 mg/L Fucoidan處理可上調(diào)Sirt1的表達(dá),差異有顯著性,這可能與Fucoidan通過脫乙酰化激活FoxO3a,上調(diào)MnSOD基因表達(dá),并抑制線粒體ROS生成和氧化應(yīng)激損傷有關(guān)。本文結(jié)果顯示,用Sirt1阻滯劑EX527阻斷Sirt1活性會抑制Fucoidan誘導(dǎo)的抗氧化酶SOD和GSH的升高,下調(diào)ROS生成,表明Fucoidan至少部分通過激活Sirt1調(diào)控的分子通路發(fā)揮抗氧化作用。
綜上所述,F(xiàn)ucoidan通過上調(diào)Sirt1表達(dá)減輕高UA誘導(dǎo)的HepG2細(xì)胞線粒體氧化損傷,減少細(xì)胞凋亡,可作為預(yù)防或治療高尿酸血癥肝損傷的潛在藥物。相關(guān)臨床試驗結(jié)果表明,F(xiàn)ucoidan對人體無明顯副作用,口服給藥可以增強(qiáng)體內(nèi)抗氧化反應(yīng)[29]。Fucoidan的硫酸化、相對分子質(zhì)量及提取來源是影響其抗氧化活性重要因素,未來還應(yīng)進(jìn)一步對其量效關(guān)系及作用機(jī)制進(jìn)行研究,
以期為預(yù)防及治療高尿酸血癥所致的肝臟氧化損傷提供有效方法。
[參考文獻(xiàn)]
[1]GAUBERT M, MARLINGE M, ALESSANDRINI M, et al. Uric acid levels are associated with endothelial dysfunction and severity of coronary atherosclerosis during a first episode of acute coronary syndrome[J]." Purinergic Signalling, 2018,14(2):191-199.
[2]VAN HOORENBEECK K, FRANCKX H, DEBODE P, et al. Weight loss and sleep-disordered breathing in childhood obesity: effects on inflammation and uric acid[J]." Obesity (Silver Spring, Md), 2012,20(1):172-177.
[3]KANBAY M, SEGAL M, AFSAR B, et al. The role of uric acid in the pathogenesis of human cardiovascular disease[J]." Heart (British Cardiac Society), 2013,99(11):759-766.
[4]STDLE G S, SILVA G B, TANGERS L H, et al. Placental inflammation in pre-eclampsia by Nod-like receptor protein
(NLRP)3 inflammasome activation in trophoblasts[J]." Clinical
and Experimental Immunology, 2018,193(1):84-94.
[5]NG G, CHAU E M T, SHI Y. Recent developments in immune activation by uric acid crystals[J]." Archivum Immunologiae et Therapiae Experimentalis, 2010,58(4):273-277.
[6]KROLU E, CANBAKAN B, ATAY K, et al. Role of oxidative stress and insulin resistance in disease severity of non-alcoholic fatty liver disease[J]." The Turkish Journal of Gastroenterology: the Official Journal of Turkish Society of Gastroenterology, 2016,27(4):361-366.
[7]POLIMENI L, DEL BEN M, BARATTA F, et al. Oxidative stress: new insights on the association of non-alcoholic fatty liver disease and atherosclerosis[J]." World Journal of Hepato-
logy, 2015,7(10):1325-1336.
[8]YANG C Y, CHEN C H, DENG S T, et al. Allopurinol use and risk of fatal hypersensitivity reactions: a nationwide population-based study in Taiwan [J]." JAMA Internal Medicine, 2015,175(9):1550-1557.
[9]CHAU Y T, CHEN H Y, LIN P H, et al. Preventive effects of fucoidan and fucoxanthin on hyperuricemic rats induced by potassium oxonate[J]." Marine Drugs, 2019,17(6):343.
[10]ABDEL-DAIM M M, ABUSHOUK A I, BAHBAH E I, et al. Fucoidan protects against subacute diazinon-induced oxidative damage in cardiac, hepatic, and renal tissues[J]." Environmental Science and Pollution Research International, 2020,27(11):11554-11564.
[11]NI Y J, DENG J, LIU X, et al. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isopro-
terenol[J]." Journal of Cellular and Molecular Medicine, 2021,25(1):203-216.
[12]WANG X L, SHAN X D, DUN Y L, et al. Anti-metabolic syndrome effects of fucoidan from Fucus vesiculosus via reactive oxygen species-mediated regulation of JNK, Akt, and AMPK signaling[J]." Molecules (Basel, Switzerland), 2019,24(18):3319.
[13]DIMITROVA-SHUMKOVSKA J, KRSTANOSKI L, VEEN-
MAN L. Potential beneficial actions of fucoidan in brain and liver injury, disease, and intoxication-potential implication of sirtuins[J]." Marine Drugs, 2020,18(5):242.
[14]XUE M L, LIANG H, ZHOU Z T, et al. Effect of fucoidan on ethanol-induced liver injury and steatosis in mice and the underlying mechanism[J]." Food amp; Nutrition Research, 2021,65: doi:10.29219/fnr.v65.5384. eCollection 2021.
[15]MERRIMAN T R. An update on the genetic architecture of hyperuricemia and gout[J]." Arthritis Research amp; Therapy, 2015,17(1):98.
[16]YU Y R, LIU Q P, LI H C, et al. Alterations of the gut microbiome associated with the treatment of hyperuricaemia in male rats[J]." Frontiers in Microbiology, 2018,9:2233.
[17]LIANG G Y, NIE Y C, CHANG Y B, et al. Protective effects of Rhizoma smilacis glabrae extracts on potassium oxonate-and monosodium urate-induced hyperuricemia and gout in mice[J]." Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2019,59:152772.
[18]OTA-KONTANI A, HIRATA H, OGURA M, et al. Comprehensive analysis of mechanism underlying hypouricemic effect of glucosyl hesperidin[J]." Biochemical and Biophysical Research Communications, 2020,521(4):861-867.
[19]KOJIMA K, SHIMADA T, NAGAREDA Y, et al. Preventive effect of geniposide on metabolic disease status in spontaneously obese type 2 diabetic mice and free fatty acid-treated HepG2 cells[J]." Biological amp; Pharmaceutical Bulletin, 2011,34(10):1613-1618.
[20]GOHARINIA M, ZAREEI A, RAHIMI M, et al. Can allopurinol improve retinopathy in diabetic rats? Oxidative stress or uric acid; which one is the culprit?[J]." Research in Pharmaceutical Sciences, 2017,12(5):401-408.
[21]CHALE-DZUL J, PREZ-CABEZA DE VACA R, QUINTAL-NOVELO C, et al. Hepatoprotective effect of a fucoidan extract from Sargassum fluitans Borgesen against CCl4-induced toxicity in rats[J]." International Journal of Biological Macromolecules, 2020,145:500-509.
[22]WANG Y Q, WEI J G, TU M J, et al. Fucoidan alleviates acetaminophen-induced hepatotoxicity via oxidative stress inhibition and Nrf2 translocation[J]." International Journal of Molecular Sciences, 2018,19(12):4050.
[23]ZHENG Y Y, LIU T T, WANG Z Q, et al. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice[J]." International Journal of Biological Macromolecules, 2018,112:929-936.
[24]CHEN A L, LIU J J, ZHU J F, et al. FGF21 attenuates hypoxia-induced dysfunction and apoptosis in HPAECs through alleviating endoplasmic reticulum stress[J]." International Journal of Molecular Medicine, 2018,42(3):1684-1694.
[25]WANG J, ZHU X X, LIU L, et al. SIRT1 prevents hyperuricemia via the PGC-1α/PPARγ-ABCG2 pathway[J]." Endocrine, 2016,53(2):443-452.
[26]CONG L, LEI M Y, LIU Z Q, et al. Resveratrol attenuates Manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice[J]." Food and Chemical Toxicology, 2021,153:112283.
[27]CHEN H Y, ZHENG S C, WANG Y K, et al. The effect of resveratrol on the recurrent attacks of gouty arthritis[J]." Cli-
nical Rheumatology, 2016,35(5):1189-1195.
[28]YU W C, HUANG R Y, CHOU T C. Oligo-fucoidan improves diabetes-induced renal fibrosis via activation of sirt-1, GLP-1R, and Nrf2/HO-1: an in vitro and in vivo study[J]." Nutrients, 2020,12(10):3068.
[29]CITKOWSKA A, SZEKALSKA M, WINNICKA K. Possi-
bilities of fucoidan utilization in the development of pharmaceutical dosage forms[J]." Marine Drugs, 2019,17(8):458.
(本文編輯 黃建鄉(xiāng))