苗淑瑩 楊軍 管文燕 張標 何璐 樊智文



摘要:肝細胞癌(HCC)作為原發性肝癌最常見的類型,是一種具有侵襲性且致命的惡性腫瘤,其發生發展是一個多基因參與、多步驟、多階段的過程。環狀 RNA(circRNA)作為一類內源性非編碼RNA,主要通過吸附微小RNA(miRNA)或者RNA結合蛋白(RBP)發揮“海綿作用”,進而調控下游靶基因表達。本文全面介紹了circRNA在HCC信號轉導、免疫、代謝、耐藥、HBV相關HCC中的作用及意義,及其作為HCC的生物標志物或治療靶點的潛在價值,為HCC的診斷和治療提供新思路。關鍵詞:RNA,? 環狀; 癌, 肝細胞; 診斷; 治療學基金項目:國家自然科學基金(81700554, 82170592)
Role of circular RNA in the development, progression, diagnosis, and treatment of hepatocellular carcinoma
MIAO Shuying, YANG Jun, GUAN Wenyan, ZHANG Biao, HE Lu, FAN Zhiwen. (Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China)
Corresponding author:FAN Zhiwen, fanzhiwenfff@126.com (ORCID:0000-0002-3465-4622)
Abstract:As the most common type of primary liver cancer, hepatocellular carcinoma (HCC) is an invasive and fatal malignant tumor, and its development and progression involve multiple genes, steps, and stages. Circular RNA (circRNA), as a class of endogenous non-coding RNAs, mainly acts as a sponge by absorbing microRNA or RNA-binding proteins to regulate the expression of downstream target genes. This article comprehensively introduces the role and significance of circRNA in signal transduction, immunity, metabolism, drug resistance, and hepatitis B virus-related HCC and its potential value as a biomarker or therapeutic target for HCC, so as to provide new ideas for the diagnosis and treatment of HCC.
Key words:RNA, Circular; Carcinoma, Hepatocellular;? Diagnosis;? Therapeutics
Research funding: The National Natural Science Foundation of China (81700554, 82170592)
肝細胞癌(HCC)是肝癌最常見和最致命的組織學類型,是世界范圍內癌癥相關死亡的第二大原因[1]。每年全世界HCC的發病率超過50萬,并且逐年上升。慢性HBV/HCV感染、酒精性損傷、非酒精性脂肪性肝病、黃曲霉毒素、肥胖、糖尿病和肝硬化被認為是HCC的主要危險因素[2]。原位肝移植和手術切除是目前治療肝癌最有效的方法,雖然索拉非尼和瑞戈非尼已被用于HCC的一線二線全身化療,但對其耐藥導致高病死率的擔憂日益增加。大多數HCC患者被確診時已為疾病晚期,錯過了最好的治療時機。另一方面,HCC易擴散轉移、術后易復發,導致HCC患者術后5年的轉移或復發率仍然很高,生存期較短[3]。因此,需要更多可靠的生物標志物用于HCC的診斷、治療和監測。越來越多的研究發現環狀RNA (circular RNA,circRNA)在HCC的發生發展中發揮著重要的調控作用。
1circRNA概述
circRNA于1976年在類病毒顆粒上被首次發現[4]。其通過反式剪接使3端和5端以共價鍵相連接形成1個閉合環狀結構。得益于其閉合的環狀結構,circRNA對核酸外切酶不敏感。已知的circRNA的功能機制可以大致分為四類: (1)作為miRNA海綿;(2)調控轉錄過程;(3)與RNA結合蛋白(RNA-binding proteins,RBP)相互作用;(4)參與肽或蛋白質翻譯。circRNA具有豐富性、動態性、保守性、穩定性,這些特性使circRNA在作為新型臨床診斷相關生物標志物的開發應用上具有明顯優勢。新的證據表明,circRNA在HCC的發生和發展中發揮重要作用,并參與細胞增殖、腫瘤轉移、免疫逃逸、代謝和耐藥[5]。
2circRNA在HCC發生發展中的作用
2.1circRNA在信號轉導方面對HCC發生發展的影響HCC患者晚期表現之一是腫瘤細胞的侵襲和轉移,有侵襲和轉移的HCC患者預后不佳,circRNA表達失衡可能是HCC患者侵襲和轉移發生的原因之一。在HCC中,circASAP1 (hsa_circ_0085616)通過調控miR-326/miR-532-5p/MAPK1軸增強HCC細胞的增殖和侵襲能力,此外,通過調節 miR-326/miR-532-5p-CSF-1通路介導腫瘤相關巨噬細胞浸潤[6]。Lin等[7]發現circGprc5a可以通過海綿化miR-1283激活Hippo信號通路關鍵下游蛋白YAP1/TEAD1,促進HCC的進展。circ_0061395通過調控miR-1182/SPOCK1通路,促進HCC細胞的發展,為HCC提供了一種新的靶向治療方法[8]。Liu等[9]發現CircSTIL在HCC組織和細胞中表達上調。CircSTIL敲除通過調控miR-345-5p/AQP3通路減少細胞增殖、遷移和侵襲,抑制HCC進展。與此類似,circEIF3I在HCC中是一種致癌circRNA,下調circEIF3I可以通過circEIF3I/miR-526b-5p/HGF/c-Met通路延緩HCC腫瘤生長[10]。circ_0011232通過miR-503-5p/AKT3軸促進HCC進展,可能為HCC提供一種新的治療策略[11]。circCBFB通過抑制miR-424-5p,使ATG14表達上調,從而促進HCC細胞增殖和自噬[12]。上述研究表明,致癌circRNA在HCC中通常上調,主要通過充當miRNA海綿促進腫瘤細胞的增殖、遷移和侵襲等進程。hsa_circ_0062682的上調促進了HCC細胞增殖、遷移和侵襲,其功能通過與YBX1及其他RBP相互作用實現[13]。SCD-circRNA2在HCC組織中表達上調,其中RBP RBM3以SCD-circRNA2依賴的方式促進HCC細胞增殖[14]。已有諸多研究表明,circRNA能夠起到抑制HCC進展的作用。circPTTG1IP是HCC中的一種新型腫瘤抑制circRNA,低水平的circPTTG1IP通過miR-16-5p/RNF125/JAK1軸促進HCC的發展[15]。在HCC中,circRNA DOCK1和SMAD2表達升高,miR-654-5p表達降低,干擾circRNA DOCK1可通過調控miR-654-5p/SMAD2軸抑制HCC細胞的增殖、侵襲和遷移[16]。在體內外實驗中,過表達circITCH可通過海綿化miR-184抑制細胞增殖、遷移、侵襲,促進細胞凋亡,而敲低circITCH則相反[17]。circFGGY通過調控miR-545-3p/Smad7軸抑制細胞生長、侵襲和肝細胞上皮-間充質轉化[18]。在不充分射頻消融后殘留HCC中,circ-BANP通過與let-7f-5p結合,抑制HCC細胞的增殖、遷移和上皮-間葉細胞轉化形成[19]。研究[20]表明,circDLC1可與RNA結合蛋白HuR結合,進而減少HuR與MMP1 mRNA的相互作用,從而抑制MMP1的表達,最終抑制HCC的進展。致癌circRHOT1還通過將TIP60(也稱為KAT5)招募到NR2F6的啟動子并增強其轉錄,從而抑制HCC的增殖和轉移[21]。抑癌circRNA表達降低是肝癌的主要危險因素,對腫瘤細胞的增殖、侵襲和轉移均有不利影響。表1列舉了部分在 HCC 中失調的circRNA的表達和功能。
2.2circRNA在免疫方面對HCC發生發展的影響在病毒感染過程中,circRNA表達譜發生變化,可調節免疫系統功能。例如,最近的一項研究[22]發現,HCC細胞通過外泌體分泌circUHRF1。臨床生理表型顯示circUHRF1表達高的患者中腫瘤體積較大,血液中NK細胞比例較低,微血管浸潤較多。Kaplan-Meier生存分析顯示,circUHRF1高表達患者伴隨臨床預后不良。circUHRF1可以通過上調NK細胞TIM-3的表達來抑制NK細胞分泌IFN-γ和TNF-α。該研究顯示,腫瘤中血漿外泌體circUHRF1水平與NK細胞浸潤水平呈負相關。研究者甚至提出了circUHRF1可能促進肝癌患者對程序性死亡受體1免疫治療產生耐藥的假設,但是證據仍然不足。來自HCC細胞的外泌體circGSE1通過調控miR324-5p/TGFBR1/Smad3軸誘導Treg擴增,從而促進HCC的進展[23]。據報道[24],hsa_circ_0003410在HCC中明顯上調,通過調節miR-139-3p/CCL5軸增加M2/M1巨噬細胞比率,促進HCC的進展。下調hsa_circ_0074854通過與HuR相互作用和抑制外泌體介導的巨噬細胞M2極化,從而在體內外抑制肝癌的遷移和侵襲[25]。上述研究證實了circRNA可以通過調節HCC患者的免疫系統來影響HCC的發展和預后,未來circRNA也許會成為理想的免疫治療靶點。
2.3circRNA在代謝方面對HCC發生發展的影響近年來,circRNA與HCC代謝的相互作用引起了廣泛關注。通過circRNA調控HCC細胞的代謝,可促進或抑制物質代謝的某些關鍵酶,從而改變HCC的增殖、侵襲、分化和轉移等進展過程。因此,在一定程度上,一些參與代謝調控的circRNA可以作為HCC的潛在生物標志物。在缺氧條件下,circMAT2B通過海綿介導miR-338-3p上調PKM2的表達,增強糖酵解,從而促進HCC的進展[26]。在氧化應激條件下,circ-SPECC1通過miR-33a調控TGFβ2和自噬,促進HCC發生[27]。同樣的,HCC細胞中circ_0091579部分通過miR-490-5p/CASC3軸促進細胞增殖、遷移、侵襲和糖酵解[28]。circRPN2通過加速烯醇化酶1 (ENO1)降解和調控miR-183-5p/FOXO1軸抑制HCC有氧糖酵解和轉移,表明circRPN2可能是肝癌的治療靶點[29]。在HCC中,下調circ-CFH通過調控miR-377-3p/RNF38軸,可抑制細胞增殖、遷移、侵襲和糖酵解,從而抑制HCC的發展[30]。hsa_circ_0001806在HCC組織和細胞中表達上調,過表達hsa_circ_0001806通過調控miR-125b/HK2軸促進肝癌細胞增殖、遷移和糖酵解,抑制細胞凋亡[31]。
3circRNA與HCC耐藥
目前,多激酶抑制劑、單克隆抗體和免疫檢查點抑制劑是治療晚期HCC的主要分子靶向治療方法。然而,治療結果卻差強人意,主要問題是難以避免的耐藥。越來越多的證據表明,circRNA在HCC耐藥的發展中起關鍵作用。circ-001241在HCC組織和細胞中顯著上調,通過調節miR-21-5p/TIMP3軸促進肝癌索拉非尼耐藥[32]。circARNT2通過靶向miR-155-5p/PDK1軸抑制肝癌細胞對順鉑的敏感性[33]。hsa_circRNA_102049過表達可以通過海綿化hsa-miR-214-3p上調RELN基因的表達,增加HepG2細胞和Huh-7細胞對索拉非尼的敏感性[34]。Lu等[35]研究發現,在抗PD-1治療反應不良和HCC術后預后不良的患者中circTMEM181表達升高。HCC細胞通過外泌體circTMEM181作用于巨噬細胞,從而增加其CD39的表達。這一過程與腫瘤細胞上的CD73協同激活eATP-腺苷通路,導致腫瘤環境中的腺苷升高,從而損害CD8+ T淋巴細胞功能,引起抗PD-1免疫治療的耐藥性。circUBE2D2的高表達與HCC患者的低生存率顯著相關,體外實驗[36]證明,circUBE2D2可通過miR-889-3p/LDHA軸加速HCC的糖酵解和索拉非尼的耐藥,這為HCC治療提供了一種新的方法。Weng等[37]研究通過RNA測序(RNA-seq) 在索拉非尼耐藥的HCC組織中鑒定出了一種新型circRNA,circFOXM1。在功能上,circFOXM1顯著抑制HCC的生長,調控索拉非尼耐藥。circFOXM1下調可能通過釋放更多的游離miR-1324和抑制MECP2的表達來調控索拉非尼耐藥。circFBXO11在HCC組織中顯著上調,通過海綿化miR-605,從而靶向FOXO3蛋白,FOXO3靶向ABCB1的啟動子區,促進ABCB1的表達。總之,本研究揭示了circFBXO11/miR-605/FOXO3/ABCB1在HCC 中介導奧沙利鉑耐藥的機制[38]。上述研究闡明了circRNA在介導HCC耐藥中的作用,為晚期肝癌患者克服耐藥提供了新的見解。必須進一步明確耐藥的機制,并探索circRNA在分子靶向藥物耐藥中的作用。
4HBV相關HCC
HBV是導致肝癌的主要因素。circRNA已被證實與HBV誘導的肝癌密切相關。有研究[39]從50 327個circRNA中,鑒別出1 187個circRNA在 HBV相關HCC和HBV無癥狀攜帶者之間的表達存在顯著差異。其中circRNA1002在HCC血清和組織中均顯著下調,提示circRNA1002可以作為HBV相關HCC的生物標志物。在HCC組織和HBV轉染的肝癌細胞中,circBACH1和MAP3K2表達升高,而miR-200a-3p表達降低。circBACH1缺失或miR-200a3p過表達可抑制HBV轉染肝癌細胞中的HBV復制、增殖和轉移[40]。circ_0027089作為一種致癌基因,通過競爭性靶向miR-136-5p調控NACC1的表達,促進HBV相關HCC的發生發展[41]。circ-RNF13可能通過調控miR-424-5p/ TGIF2軸抑制HBV相關HCC惡性進展和HBV感染[42]。HBV可以產生circRNA,但是其功能尚未明確。Zhu等[43]研究發現了一種由HBV產生的新型circRNA HBV_circ_1。生存分析顯示,HBV_circ_1陽性患者的生存率明顯低于HBV_circ_1陰性患者。并且,瞬時表達HBV_circ_1可以增強肝癌細胞增殖、遷移和侵襲能力,抑制細胞凋亡。此外,HBV_circ_1還與周期蛋白依賴性激酶1的相互作用,調節細胞增殖。血清外泌體hsa_circ_0028861在HCC中的表達低于慢性HBV和肝硬化,并且,hsa_circ_0028861聯合AFP鑒別HCC與慢性HBV和肝硬化的ROC曲線下面積(AUC)為0.86,具有更好的診斷能力[44]。上述數據不僅為了解HBV相關HCC的發生機制和進展提供了新的線索,而且為治療藥物的開發提供了新的靶點。表2概括了circRNA在免疫、代謝、耐藥及HBV相關HCC中的生物學功能。
5生物標志物
雖然HCC是原發性肝癌最常見的類型,但早期缺乏準確的生物標志物,導致HCC確診往往較晚。隨著分子生物標志物研究的進展和基因組學的發展,circRNA已作為一種新型的液體活檢生物標志物被人們所認識。circRNA可在組織、外泌體、血漿、血清、唾液、尿液、腦脊液和乳汁等樣本中檢測到,其表達譜表現為細胞特異性或階段特異性(表3)。
5.1診斷標志物研究[45]表明,hsa_circ_0001821在HCC的血漿中表達上調,AUC為0.692,提示血漿hsa_circ_0001821可能是一種新的HCC診斷標志物。其他研究[46]表明,hsa_circ_0064286和hsa_circ_0000475在HCC患者中均顯著下調,與ALP、ALT、AST、AFP、膽紅素水平呈負相關。circ_0064286的敏感度和特異度較高,分別為88.3%和96%,可能作為HCC診斷的潛在生物標志物。一項研究[47]對血清/血漿circ RNA或circRNA聯合AFP檢測在HCC診斷中的準確性進行了薈萃分析,結果顯示,circRNA的敏感度為0.82(95%CI: 0.78~0.85),特異度為0.82(95%CI: 0.78~0.86)。AFP的敏感度為0.65(95%CI: 0.61~0.68),特異度為0.90(95%CI: 0.85~0.93)。circRNA的AUC為0.89(95%CI: 0.86~0.91),AFP的AUC為0.77(95%CI: 0.74~0.81)。circRNA和AFP聯合檢測的敏感度為0.88(95%CI: 0.84~0.92),特異度為0.86(95%CI: 0.80~0.91),AUC為0.94(95%CI: 0.91~0.96)。Zhang等[48]也證明hsa_circ_0006091&AFP與hsa_circ_0006091&RGS12聯合診斷具有重要意義,可作為HCC診斷的分子標志物。以上結果說明,血清/血漿circRNA是適合臨床診斷HCC的生物標志物,circRNA與AFP的聯合檢測提高了HCC診斷的準確性,circRNA可作為監測HCC發生發展的生物標志物。然而,目前還沒有一種方便可靠的血清circRNA生物標志物。
5.2預后標志物Chen等[49]發現,無論在HCC腫瘤組織還是血清中,腫瘤組circ_0000437表達顯著上調,且與TNM分型、分化程度、腫瘤大小、BCLC分期相關(P<0.05)。此外,較差的總生存期與circ_0000437的高表達相關,circ_0000437在血清中診斷HCC的AUC為0.928 1,上述結果提示 circ_0000437可能作為HCC患者診斷和預后的一種新的生物標志物。最近一項研究[50]表明,circMED27在HCC血清中顯著升高,與HCC患者不良臨床特征和不良預后相關,并且促進肝癌細胞對樂伐替尼的耐藥,提示circMED27可作為接受樂伐替尼治療的HCC患者的潛在治療靶點,并可能作為預測樂伐替尼耐藥HCC的一種潛在的生物標志物。除此之外,hsa_circ_0005986的高表達與生存改善相關,是總體生存率和無進展生存率的獨立預后因素[51]。此外,DHX9在HCC中表達顯著上調,并抑制cSMARCA5的產生(hsa_circ_0001445)。DHX9是一種RNA解旋酶,可結合并抑制兩側反向互補序列的配對,從而阻止circRNA的產生。CSMARCA5通過SMARCA5/miR-17-3p/miR-181b-5p/TIMP3通路抑制HCC的生長。HCC組織中cSMARCA5的降低與腫瘤生長和轉移的增加有關,使其成為腫瘤切除后患者的獨立預后指標[52]。circRNA_101237在HCC患者的腫瘤組織和血清中表達上調,且與circRNA_101237的表達與腫瘤大小、淋巴結轉移、遠處轉移及TNM分期有關。單因素和多因素分析顯示,血清circRNA_101237水平是HCC患者生存預后的獨立預測因素[53]。
6小結
circRNA已經成為腫瘤分子生物學領域研究的新熱點,目前circRNA在HCC發展、診療方面的研究尚處于初步階段,仍存在許多問題。首先,通過RNA測序已在HCC中鑒定出了上千種circRNA,但只有少量circRNA功能被研究。如何從大量的候選circRNA 中挑選發揮關鍵作用且具有臨床價值的circRNA 是一項巨大的工程。其次,目前對于circRNA的研究主要集中于肝癌組織,對于外周血、外泌體、尿液和唾液等分泌的circRNA研究較少。對circRNA進行多種類樣本的全方位研究,有利于提高對circRNA復雜的調控網絡的認知。重視體液中circRNA的研究,有利于開發用于肝癌篩查和預后監測的circRNA檢測試劑盒。綜上所述,篩選出發揮關鍵調控功能的circRNA,闡明其靶向分子和信號通路,將有助于發掘circRNA作為 HCC 治療靶點的巨大臨床價值。
利益沖突聲明:本文不存在任何利益沖突。作者貢獻聲明:苗淑瑩負責課題設計,資料分析,撰寫論文;楊軍、管文燕、張標、何璐參與修改論文;樊智文負責擬定寫作思路,修改論文并最后定稿。
參考文獻:
[1]ZENG C, ZHANG L, LUO C, et al. A stratification model of hepatocellular carcinoma based on expression profiles of cells in the tumor microenvironment[J]. BMC Cancer, 2022, 22(1): 613. DOI: 10.1186/s12885-022-09647-5.
[2]CAI P, ZHENG H, SHE J, et al. Molecular mechanism of aflatoxin-induced hepatocellular carcinoma derived from a bioinformatics analysis[J]. Toxins (Basel), 2020, 12(3): 203. DOI: 10.3390/toxins12030203.
[3]KHASHKHASHI MOGHADAM S, BAKHSHINEJAD B, KHALAFIZADEH A, et al. Non-coding RNA-associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma[J]. J Cell Mol Med, 2022, 26(2): 287-305. DOI: 10.1111/jcmm.17126.
[4]SANGER HL, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852-3856. DOI: 10.1073/pnas.73.11.3852.
[5]LOUIS C, LECLERC D, COULOUARN C. Emerging roles of circular RNAs in liver cancer[J]. JHEP Rep, 2022, 4(2): 100413. DOI: 10.1016/j.jhepr.2021.100413.
[6]HU ZQ, ZHOU SL, LI J, et al. Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis[J]. Hepatology, 2020, 72(3): 906-922. DOI: 10.1002/hep.31068.
[7]LIN Y, HUANG G, JIN H, et al. Circular RNA Gprc5a promotes HCC progression by activating YAP1/TEAD1 signalling pathway by sponging miR-1283[J]. Onco Targets Ther, 2020, 13: 4509-4521. DOI: 10.2147/OTT.S240261.
[8]WU W, ZHOU Z, CHEN C, et al. Circ_0061395 functions as an oncogenic gene in hepatocellular carcinoma by acting as a miR-1182 sponge[J]. Cell Cycle, 2022, 21(20): 2192-2205. DOI: 10.1080/15384101.2022.2092177.
[9]LIU J, HE X, ZOU Y, et al. Circular RNA circ-STIL contributes to cell growth and metastasis in hepatocellular carcinoma via regulating miR-345-5p/AQP3 axis[J]. Dig Dis Sci, 2022, 67(6): 2269-2282. DOI: 10.1007/s10620-021-07054-7.
[10]LIU Y, XIAO X, WANG J, et al. Silencing circEIF3I/miR-526b-5p axis epigenetically targets HGF/c-Met signal to hinder the malignant growth, metastasis and angiogenesis of hepatocellular carcinoma[J]. Biochem Genet, 2023, 61(1): 48-68. DOI: 10.1007/s10528-022-10239-y.
[11]JU A, SHEN Y, YUE A. Circ_0011232 contributes to hepatocellular carcinoma progression through miR-503-5p/AKT3 axis[J]. Hepatol Res, 2022, 52(6): 532-545. DOI: 10.1111/hepr.13758.
[12]ZHAO Z, HE J, FENG C. CircCBFB is a mediator of hepatocellular carcinoma cell autophagy and proliferation through miR-424-5p/ATG14 axis[J]. Immunol Res, 2022, 70(3): 341-353. DOI: 10.1007/s12026-021-09255-8.
[13]RAZPOTNIK R, VIDMAR R, FONOVIC' M, et al. Circular RNA hsa_circ_0062682 binds to YBX1 and promotes oncogenesis in hepatocellular carcinoma[J]. Cancers (Basel), 2022, 14(18): 4524. DOI: 10.3390/cancers14184524.
[14]DONG W, DAI ZH, LIU FC, et al. The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production[J]. EBioMedicine, 2019, 45: 155-167. DOI: 10.1016/j.ebiom.2019.06.030.
[15]PENG R, CAO J, SU BB, et al. Down-regulation of circPTTG1IP induces hepatocellular carcinoma development via miR-16-5p/RNF125/JAK1 axis[J]. Cancer Lett, 2022, 543: 215778. DOI: 10.1016/j.canlet.2022.215778.
[16]LU Y, ZHANG J, WU Y. Interference with circRNA DOCK1 inhibits hepatocellular carcinoma cell proliferation, invasion and migration by regulating the miR-654-5p/SMAD2 axis[J]. Mol Med Rep, 2021, 24(2): 609. DOI: 10.3892/mmr.2021.12247.
[17]GUO X, WANG Z, DENG X, et al. Circular RNA CircITCH (has-circ-0001141) suppresses hepatocellular carcinoma (HCC) progression by sponging miR-184[J]. Cell Cycle, 2022, 21(15): 1557-1577. DOI: 10.1080/15384101.2022.2057633.
[18]FENG KL, DIAO N, ZHOU ZW, et al. CircFGGY inhibits cell growth, invasion and epithelial-mesenchymal transition of hepatocellular carcinoma via regulating the miR-545-3p/Smad7 axis[J]. Front Cell Dev Biol, 2022, 10: 850708. DOI: 10.3389/fcell.2022.850708.
[19]LI G, KONG J, DONG S, et al. Circular BANP knockdown inhibits the malignant progression of residual hepatocellular carcinoma after insufficient radiofrequency ablation[J]. Chin Med J (Engl), 2022. DOI: 10.1097/CM9.00000000000001822. [Online ahead of print]
[20]LIU H, LAN T, LI H, et al. Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR[J]. Theranostics, 2021, 11(3): 1396-1411. DOI: 10.7150/thno.53227.
[21]WANG L, LONG H, ZHENG Q, et al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression[J]. Mol Cancer, 2019, 18(1): 119. DOI: 10.1186/s12943-019-1046-7.
[22]ZHANG PF, GAO C, HUANG XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma[J]. Mol Cancer, 2020, 19(1): 110. DOI: 10.1186/s12943-020-01222-5.
[23]HUANG M, HUANG X, HUANG N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells[J]. Cancer Sci, 2022, 113(6): 1968-1983. DOI: 10.1111/cas.15365.
[24]CAO P, MA B, SUN D, et al. hsa_circ_0003410 promotes hepatocellular carcinoma progression by increasing the ratio of M2/M1 macrophages through the miR-139-3p/CCL5 axis[J]. Cancer Sci, 2022, 113(2): 634-647. DOI: 10.1111/cas.15238.
[25]WANG Y, GAO R, LI J, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization[J]. Int J Nanomedicine, 2021, 16: 2803-2818. DOI: 10.2147/IJN.S284560.
[26]LI Q, PAN X, ZHU D, et al. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress[J]. Hepatology, 2019, 70(4): 1298-1316. DOI: 10.1002/hep.30671.
[27]ZHANG B, LIU Z, CAO K, et al. Circ-SPECC1 modulates TGFβ2 and autophagy under oxidative stress by sponging miR-33a to promote hepatocellular carcinoma tumorigenesis[J]. Cancer Med, 2020, 9(16): 5999-6008. DOI: 10.1002/cam4.3219.
[28]LIU W, YIN C, LIU Y. Circular RNA circ_0091579 promotes hepatocellular carcinoma proliferation, migration, invasion, and glycolysis through miR-490-5p/CASC3 axis[J]. Cancer Biother Radiopharm, 2021, 36(10): 863-878. DOI: 10.1089/cbr.2019.3472.
[29]LI J, HU ZQ, YU SY, et al. CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma[J]. Cancer Res, 2022, 82(6): 1055-1069. DOI: 10.1158/0008-5472.CAN-21-1259.
[30]CHEN Z, DU J, YANG C, et al. circ-CFH promotes the development of HCC by regulating cell proliferation, apoptosis, migration, invasion, and glycolysis through the miR-377-3p/RNF38 axis[J]. Open Life Sci, 2022, 17(1): 248-260. DOI: 10.1515/biol-2022-0029.
[31]CHEN X, SHE P, WANG C, et al. Hsa_circ_0001806 promotes glycolysis and cell progression in hepatocellular carcinoma through miR-125b/HK2[J]. J Clin Lab Anal, 2021, 35(12): e23991. DOI: 10.1002/jcla.23991.
[32]YANG Q, WU G. CircRNA-001241 mediates sorafenib resistance of hepatocellular carcinoma cells by sponging miR-21-5p and regulating TIMP3 expression[J]. Gastroenterol Hepatol, 2022, 45(10): 742-752. DOI: 10.1016/j.gastrohep.2021.11.007.
[33]LI Y, ZHANG Y, ZHANG S, et al. circRNA circARNT2 suppressed the sensitivity of hepatocellular carcinoma cells to cisplatin by targeting the miR-155-5p/PDK1 axis[J]. Mol Ther Nucleic Acids, 2021, 23: 244-254. DOI: 10.1016/j.omtn.2020.08.037.
[34]WANG S, LIU D, WEI H, et al. The hsa_circRNA_102049 mediates the sorafenib sensitivity of hepatocellular carcinoma cells by regulating Reelin gene expression[J]. Bioengineered, 2022, 13(2): 2272-2284. DOI: 10.1080/21655979.2021.2024332.
[35]LU JC, ZHANG PF, HUANG XY, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma[J]. J Hematol Oncol, 2021, 14(1): 200. DOI: 10.1186/s13045-021-01207-x.
[36]HUANG H, PENG J, YI S, et al. Circular RNA circUBE2D2 functions as an oncogenic factor in hepatocellular carcinoma sorafenib resistance and glycolysis[J]. Am J Transl Res, 2021, 13(6): 6076-6086.
[37]WENG H, ZENG L, CAO L, et al. circFOXM1 contributes to sorafenib resistance of hepatocellular carcinoma cells by regulating MECP2 via miR-1324[J]. Mol Ther Nucleic Acids, 2021, 23: 811-820. DOI: 10.1016/j.omtn.2020.12.019.
[38]LI J, QIN X, WU R, et al. Circular RNA circFBXO11 modulates hepatocellular carcinoma progress and oxaliplatin resistance through miR-605/FOXO3/ABCB1 axis[J]. J Cell Mol Med, 2020, 24(9): 5152-5161. DOI: 10.1111/jcmm.15162.
[39]LI Y, LI R, CHENG D, et al. The potential of CircRNA1002 as a biomarker in hepatitis B virus-related hepatocellular carcinoma[J]. PeerJ, 2022, 10: e13640. DOI: 10.7717/peerj.13640.
[40]DU N, LI K, WANG Y, et al. CircRNA circBACH1 facilitates hepatitis B virus replication and hepatoma development by regulating the miR-200a-3p/MAP3K2 axis[J]. Histol Histopathol, 2022, 37(9): 863-877. DOI: 10.14670/HH-18-452.
[41]HE W, ZHU X, TANG X, et al. Circ_0027089 regulates NACC1 by targeting miR-136-5p to aggravate the development of hepatitis B virus-related hepatocellular carcinoma[J]. Anticancer Drugs, 2022, 33(1): e336-e348. DOI: 10.1097/CAD.0000000000001211.
[42]CHEN Y, LI S, WEI Y, et al. Circ-RNF13, as an oncogene, regulates malignant progression of HBV-associated hepatocellular carcinoma cells and HBV infection through ceRNA pathway of circ-RNF13/miR-424-5p/TGIF2[J]. Bosn J Basic Med Sci, 2021, 21(5): 555-568. DOI: 10.17305/bjbms.2020.5266.
[43]ZHU M, LIANG Z, PAN J, et al. Hepatocellular carcinoma progression mediated by hepatitis B virus-encoded circRNA HBV_circ_1 through interaction with CDK1[J]. Mol Ther Nucleic Acids, 2021, 25: 668-682. DOI: 10.1016/j.omtn.2021.08.011.
[44]WANG Y, PEI L, YUE Z, et al. The potential of serum exosomal hsa_circ_0028861 as the novel diagnostic biomarker of HBV-derived hepatocellular cancer[J]. Front Genet, 2021, 12: 703205. DOI: 10.3389/fgene.2021.703205.
[45]SONG Y, CAO P, LI J. Plasma circular RNA hsa_circ_0001821 acts as a novel diagnostic biomarker for malignant tumors[J]. J Clin Lab Anal, 2021, 35(11): e24009. DOI: 10.1002/jcla.24009.
[46]EL SHARKAWI FZ, AWAD MS, ELAGAWY W, et al. Circular RNAs 0064286 and 0000475: potential diagnostic biomarkers in hepatocellular carcinoma[J]. Asian Pac J Cancer Prev, 2021, 22(9): 3039-3044. DOI: 10.31557/APJCP.2021.22.9.3039.
[47]NIE G, PENG D, LI B, et al. Diagnostic accuracy of serum/plasma circular RNAs and the combination of circular RNAs and α-fetoprotein for detecting hepatocellular carcinoma: A Meta-analysis[J]. Front Genet, 2021, 12: 722208. DOI: 10.3389/fgene.2021.722208.
[48]ZHANG Y, LI J, CUI Q, et al. Circular RNA hsa_circ_0006091 as a novel biomarker for hepatocellular carcinoma[J]. Bioengineered, 2022, 13(2): 1988-2003. DOI: 10.1080/21655979.2021.2006952.
[49]CHEN G, XIE D, ZHANG P, et al. Circular RNA hsa_circ_0000437 may be used as a new indicator for the diagnosis and prognosis of hepatocellular carcinoma[J]. Bioengineered, 2022, 13(6): 14118-14124. DOI: 10.1080/21655979.2022.2081458.
[50]ZHANG P, SUN H, WEN P, et al. circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma[J]. Mol Ther Nucleic Acids, 2022, 27: 293-303. DOI: 10.1016/j.omtn.2021.12.001.
[51]KIM G, HAN JR, PARK SY, et al. Circular noncoding RNA hsa_circ_0005986 as a prognostic biomarker for hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1): 14930. DOI: 10.1038/s41598-021-94074-y.
[52]LEE T, PAQUET M, LARSSON O, et al. Tumor cell survival dependence on the DHX9 DExH-box helicase[J]. Oncogene, 2016, 35(39): 5093-5105. DOI: 10.1038/onc.2016.52.
[53]ZHOU S, WEI J, WANG Y, et al. Cisplatin resistance-associated circRNA_101237 serves as a prognostic biomarker in hepatocellular carcinoma[J]. Exp Ther Med, 2020, 19(4): 2733-2740. DOI: 10.3892/etm.2020.8526.
收稿日期:2022-10-27;錄用日期:2022-12-17
本文編輯:王瑩
引證本文:MIAO SY, YANG J, GUAN WY,? et al. Role of circular RNA in the development, progression, diagnosis, and treatment of hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39(8): 1983-1991.