






摘要:針對(duì)部分線性模型中線性部分存在的復(fù)共線性問題,在輪廓最小二乘法的基礎(chǔ)上提出該模型的兩參數(shù)估計(jì),在均方誤差陣準(zhǔn)則下證明了該兩參數(shù)估計(jì)優(yōu)于輪廓最小二乘估計(jì)、嶺估計(jì),Liu估計(jì),最后進(jìn)行數(shù)值模擬驗(yàn)證所提估計(jì)的優(yōu)良性.
關(guān)鍵詞:部分線性模型;復(fù)共線性;兩參數(shù)估計(jì);均方誤差陣
中圖分類號(hào):O212.1 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):2095-6991(2023)01-0018-07
Abstract:Aiming at the multicollinearity of the partially linear model, two-parameter estimation of the model was given on the basis of the profile least squares method. Under the mean square error matrix criterion, it was proved that the two-parameter estimation was superior to the contour least squares estimation, ridge estimation and Liu estimation. Finally, numerical simulation was carried out to verify the superiority of the proposed estimation.
Key words:partially linear model; multicollinearity; two-parameter estimation; mean square error matrix
參考文獻(xiàn):
[1] ENGLE R F,GRANGER W J,RICE J,et al.Semiparametric estimates of the relation between weather and electricity sales[J].Journal of the American Statistical Association,1986,80:310-319.
[2] 施云馳,柴根象.半?yún)?shù)回歸模型局部多項(xiàng)式估計(jì)的漸近性質(zhì)[J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,29(3):4.
[3] FAN J Q,GIJBELS I.Local polynomial modelling and its applications[M].New york:Chapman and Hall,1996:174-195.
[4] 孫燕,胡美娣.非參數(shù)部分帶測量誤差的部分線性模型估計(jì)[J].統(tǒng)計(jì)與決策,2018,34(9):10-14.
[5] 盧嬋嬋,李姣.基于部分線性模型研究空氣臭氧含量與氣象因素的關(guān)系[J].重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,36(6):42-47.
[6] MASSY,WILLIAM F.Principal components regression in exploratory statistical research[J].Journal of the American Statistical Association,1965,60(309):234-256.
[7] HOERL AE,KENNARD RW.Ridge regression:applications to nonorthogonal problems[J].Technometrics,1970,12(1):69-82.
[8] LIU K.A new class of biased estimate in linear regression[J].Comm Statist Theory Methods.1993,22(2):393-402.
[9] YANG H,CHANG X F.A New Two-Parameter Estimator in Linear Regression[J].Communication in Statistics-Theory and Methods,2010,39(6):923-934.
[10] LIU Chunling,GUO Shuang,WEI Chuanhua.Principal components regression estimator of the parameters in partially linear models[J].Journal of Statistical Computation and Simulation,2016,86(15):1-7.
[11] HU Hongchang.Ridge estimation of a semiparametric regression model[J].Journal of Computational and Applied Mathematics,2005,176(1):215-222.
[12] 胡宏昌.半?yún)?shù)回歸模型的幾乎無偏嶺估計(jì)[J].系統(tǒng)科學(xué)與數(shù)學(xué),2009,29(12):1605-1612.
[13] DURAN E A,AKDENIZ F,HU Hongchang.Efficiency of a Liu-type estimator in semiparametric regression models[J].Journal of Computational and Applied Mathematics,2011,235(5):1418-1428.
[14] 葉義琴,李榮,張筑秋.部分線性模型中的廣義差分混合Liu型估計(jì)[J].湖北民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,38(1):78-82,92.
[15] SINGH B,CHAUBEY Y P,DWIVEDI T D.An almost unbiased ridge estimator[J].Sankhya:The Indian Journal of Statistics,Series B (1960-2002),1986,48(3):342-346
[16] FAREBROTHER R W.Further result on the mean square error of ridge regression[J].Journal of the Royal Statistical Society,1976,38(3):248-250.
[17] MCDONALD G C,GALARNEAU D.A Monte Carlo evaluation of some ridge-type estimators[J].Journal of the American Statistical Association,1975,70(350):470-416.
[責(zé)任編輯:趙慧霞]
作者簡介:王歡(1996-),女,河南商丘人,助教,碩士,研究方向:數(shù)理統(tǒng)計(jì).E-mail:15136046510@163.com.