年和粉,張鈺析,李伯遼,陳秀琳,羅坤,李廣偉
李小食心蟲GfunOBP2的原核表達及氣味配體結合特性
年和粉1,2,張鈺析2,李伯遼1,2,陳秀琳1,2,羅坤1,2,李廣偉1,2
1陜西省紅棗重點實驗室(延安大學),陜西延安 716000;2延安大學生命科學學院,陜西延安 716000
【目的】通過測定李小食心蟲()Plus-C氣味結合蛋白2(odorant binding protein,GfunOBP2)結合性信息素和蘋果樹揮發化合物的能力,分析GfunOBP2的嗅覺功能,為闡釋李小食心蟲定位寄主植物的嗅覺分子機理打下基礎。【方法】利用RT-PCR擴增2的ORF序列,通過同源注釋和比對氨基酸序列中半胱氨酸(Cys)的分布模式確定GfunOBP2屬于Plus-C OBP亞家族;利用RT-qPCR檢測2在李小食心蟲3日齡成蟲觸角、頭、胸、足、翅、腹部和性腺中的相對表達量;構建pET30a(+)/GfunOBP2原核表達載體,在大腸桿菌()BL21(DE3)細胞中表達GfunOBP2重組蛋白。利用熒光競爭結合試驗測定重組GfunOBP2蛋白對5種性信息素和35種蘋果樹揮發化合物的結合能力;通過分子對接預測GfunOBP2與具有強結合能力的氣味配體的相互作用力及關鍵氨基酸殘基。【結果】克隆獲得2(GenBank登錄號:OQ054799.1)的全長序列,共編碼183個氨基酸,氨基酸序列中有12個保守的Cys,其分布模式表明2屬于Plus-C OBP。2主要在成蟲觸角中表達,在雄蟲觸角中的相對表達量顯著高于雌蟲觸角(<0.05)。重組GfunOBP2蛋白對反-2-己烯-1-醇、苯甲醇、1-庚醇、1-癸醇、己醛、庚醛、乙酸-順-3-己烯酯、2-甲基丁酸葉醇酯、-羅勒烯、-石竹烯、-蒎烯和檸檬烯具有強結合能力,抑制常數Ki均小于5.0 μmol·L-1。分子對接結果顯示氫鍵、Donor-Donor相互作用和烷基相互作用是GfunOBP2結合反-2-己烯-1-醇、1-庚醇和1-癸醇的主要弱相互作用力,氫鍵和碳氫鍵是GfunOBP2結合乙酸-順-3-己烯酯和2-甲基丁酸葉醇酯的主要弱相互作用力,烷基相互作用是GfunOBP2結合-羅勒烯和-石竹烯的唯一弱作用力。疏水性氨基酸Ile、Pro、Phe、Ala、Leu和Val在GfunOBP2結合氣味配體中起著重要作用。【結論】2主要在李小食心蟲成蟲觸角中表達,重組GfunOBP2蛋白對被測的35種蘋果樹揮發化合物中的12種具有強結合能力、對10種化合物具有中等結合能力,表明其在識別寄主植物揮發化合物的過程中起著重要作用。研究結果為證實Plus-C OBP參與李小食心蟲外周嗅覺通訊提供了理論依據。
李小食心蟲;化學感受;氣味結合蛋白;寄主植物揮發物;分子對接
【研究意義】李小食心蟲()是鱗翅目卷蛾科的一種重要果樹害蟲,主要以幼蟲蛀果危害,常造成幼果大量脫落,嚴重影響水果的產量和品質[1-2]。李小食心蟲的寄主有李、郁李、杏、櫻桃、桃等,其中以李受害最重[3-4]。近年來,隨著我國北方蘋果種植面積的不斷擴大,李小食心蟲在新疆、陜西、甘肅、吉林等地蘋果園的種群數量逐年增加,危害日趨嚴重,在部分蘋果種植區,李小食心蟲已成為果園食心蟲的優勢種類[5-12]。目前,利用性誘劑誘捕和迷向絲迷向是無公害防治該蟲的主要措施[13-14]。由于李小食心蟲雄蛾具有多次交配的習性,在性誘劑或者迷向劑防治的果園,雌蟲仍可獲得較高的交配率,僅依靠誘捕和迷向防治不能達到理想的效果。深入開展李小食心蟲定位寄主植物的嗅覺感受機制研究,篩選能夠顯著增效性信息素的寄主植物揮發性化合物,可為以嗅覺通訊系統為靶標設置“陷阱”開發綠色、高效的李小食心蟲行為調控技術提供新思路。【前人研究進展】昆蟲,特別是鱗翅目昆蟲,雄蟲主要依靠雌蟲釋放的性信息素尋覓配偶完成交配,雌蟲借助寄主植物釋放的揮發化合物定位最適合子代幼蟲生長的產卵寄主植物[15-18]。性信息素和寄主植物揮發化合物分子通過昆蟲觸角感器表皮上的微孔進入其內,氣味結合蛋白(odorant binding protein,OBP)能夠選擇性地識別和結合氣味分子,并攜帶疏水性的氣味分子穿過親水性的感器淋巴液屏障[19-20]。當OBP/氣味分子復合物移動至接近位于嗅覺感受器神經元(olfactory receptor neuron,ORN)樹突膜上的氣味受體(odorant receptor,OR)時,由于感器淋巴液酸性逐漸增強導致OBP構象發生變化從而釋放氣味分子,氣味分子被OR識別后激活了OR/Orco(氣味共受體,odorant receptor co-receptor)異源四聚體組成的門控離子通道,將氣味分子的化學信號轉變為電生理信號[21-24]。OBP作為昆蟲嗅覺通訊系統中重要的運輸蛋白參與了外周嗅覺識別的初始過程。OBP是一類分子量小、水溶性強、在觸角感器中高濃度(可達10 mmol·L-1)存在的球狀蛋白[25-26]。OBP通常編碼140—180個氨基酸,典型OBP具有6個保守的半胱氨酸(cysteine,Cys)殘基、1個疏水性的結合口袋以及3對二硫鍵[27]。在昆蟲長期的進化過程中,OBP氨基酸序列中保守的Cys數量發生了缺失或增加,根據保守Cys數量,將OBP分為典型OBP、Minus-C OBP(具有4個Cys,第2和第5個Cys被其他氨基酸取代)和Plus-C OBP(具有8—12個Cys,在第4和第5個Cys之間存在1個Cys4a,第6個Cys后具有Cys6a和Cys6b)[28-30]。目前,通過敲除(knockout)、敲低(knockdown)昆蟲OBP基因表達以及利用熒光競爭結合試驗測定重組OBP結合配體的能力,證實典型OBP在昆蟲識別性信息素或寄主植物揮發化合物中起著關鍵性的作用[31-34]。相比于典型OBP,Plus-C OBP在昆蟲中數量少,對其功能研究相對不足,其在嗅覺通訊中的生理功能有待深入研究。【本研究切入點】本課題組前期成功構建了李小食心蟲觸角cDNA文庫并進行了二代轉錄組測序,從中鑒定到23種OBP,其中22種OBP屬于典型OBP,1種OBP屬于Plus-C OBP(命名為GfunOBP2)[11],借助原核表達系統和熒光競爭結合試驗對典型OBP亞家族中的3種普通氣味結合蛋白(general odorant binding protein,GOBP)和4種信息素結合蛋白(pheromone binding protein,PBP)的嗅覺功能進行了研究,發現GfunGOBP能夠結合性信息素和寄主植物揮發化合物,GfunPBP對性信息素具有強結合能力[11-12]。GfunOBP2屬于Plus-C OBP,在序列長度、保守半胱氨酸分布模式、結合口袋形成等方面與典型OBP存在較大差異,GfunOBP2的嗅覺功能有待進一步明確。【擬解決的關鍵問題】明確GfunOBP2與性信息素和寄主揮發化合物的結合特性,為Plus-C OBP在李小食心蟲外周嗅覺通訊中的生理功能研究提供理論依據,進一步為開發以寄主植物揮發化合物為增效劑的高效性誘劑打下基礎。
試驗于2022年在延安大學生命科學學院完成。
所用試蟲為李小食心蟲的雌、雄成蟲,其老熟幼蟲采自于延安市寶塔區李渠鎮的杏園,在杏成熟期將老熟幼蟲從果實中移出置于潮濕的沙土中結繭化蛹。成蟲羽化后分雌、雄置于一次性塑料杯中飼養并飼喂5%蜂蜜水補充營養。不同發育階段的試蟲均在人工氣候箱中飼養,飼養條件:溫度(25±1)℃,相對濕度60%±5%,光周期16L﹕8D。選擇3日齡健康活潑的成蟲分雌、雄分別收集觸角(400個)、頭(去除觸角)(40個)、胸(20個)、足(100個)、翅(50對)、腹(去除性腺)(10個)、性腺(50個)作為測定2在成蟲不同組織中相對表達量的樣品。每個樣品3次生物學重復。各樣品收集后立即轉至浸于液氮中的無酶離心管中,后保存于-80 ℃低溫冰箱待用。
使用TransZol Up試劑(TransGen Biotech.,中國)參照說明書提取1.1節中所有樣品的總RNA。以2 μg總RNA為底物模板、oligo(dT)18為引物,利用Thermo scientific RevertAid MM Kit試劑盒(ThermoFisher,美國)反轉錄合成cDNA第1鏈。以表1中GfunOBP2- F/R為引物、雄蟲觸角cDNA為模板、2×Taq Plus Master Mix II (Dye Plus)為聚合酶(Vazyme,中國)擴增2 ORF的全長序列。PCR目標產物使用SteadyPure DNA凝膠回收試劑盒(艾科瑞生物,中國)純化回收后連接至TA/Blunt-Zero克隆載體(Vazyme,中國),然后轉入大腸桿菌DH5感受態細胞,隨機選取3個陽性克隆送測序公司測序驗證。利用BLASTX比對非冗余蛋白數據庫(non-redundant protein sequence database,Nr)對GfunOBP2進行同源注釋,選取葡萄花翅小卷蛾()LbotOBP35、大豆食心蟲()LglyOBP等17個鱗翅目昆蟲Plus-C OBP的氨基酸序列分析GfunOBP2保守半胱氨酸殘基的分布模式。利用在線程序SignalP-4.1(https://services.healthtech.dtu. dk/services/SignalP-4.1/)預測GfunOBP2的信號肽、ProtParam tool(https://web.expasy.org/protparam/)計算蛋白質的分子量和理論等電點pI。
以1.2節合成的第1鏈cDNA為模板、李小食心蟲和(GenBank登錄號:JX258663.1)為雙內參,利用實時熒光定量PCR系統(StepOnePlusTM,ABI,美國)檢測2在李小食心蟲3日齡雌、雄成蟲觸角、頭(去除觸角)、胸、足、翅、腹(去除性腺)和性腺中的相對表達量。首先,以李小食心蟲雄蟲觸角cDNA為模板,用無酶水4倍梯度稀釋至4-6,利用表1中基因表達量檢測引物,優化目標基因和內參基因的擴增條件,使2、和的擴增效率在90%—105%且熔解曲線顯示無非特異性的擴增。然后,以獲得的最優RT-qPCR條件測定2在李小食心蟲雌、雄成蟲不同組織中的相對表達量。反應條件:94 ℃預變性30 s;94 ℃變性5 s,60 ℃(2和)/59 ℃()退火15 s,72 ℃延伸10 s,共40個循環。每個樣品3次生物學重復,每個生物學樣品3次技術重復。參照文獻[35-36]方法計算2在不同組織中的相對表達量。

表1 引物信息
下劃線表示內切酶H I和d III的酶切位點The cutting sites of endonuclease ofH I andd III are underlined
設計去除信號肽、正反向引物5′端分別帶有H I和d III酶切位點的特異性引物用于原核表達重組GfunOBP2蛋白(表1)。以李小食心蟲雄蟲觸角cDNA為模板、GfunOBP2-eF/eR為引物,利用2×Taq Plus Master Mix II(Dye Plus)聚合酶擴增目的片段。將PCR目的產物經膠純化回收后連接至TA/Blunt-Zero克隆載體,提取TA/Blunt-Zero/GfunOBP2重組質粒后用H I和d III內切酶對其進行酶切,同時用以上兩種內切酶對表達載體pET30a(+)進行酶切,然后利用T4 DNA連接酶(TaKaRa,大連)將酶切回收后的GfunOBP2 DNA片段連接至線性化的pET30a(+)載體上,先轉DH5感受態細胞,提取陽性克隆的質粒后再轉至BL21 (DE3)感受態細胞。將成功轉化pET30a(+)/GfunOBP2質粒的大腸桿菌()BL21 (DE3)單克隆菌種擴大培養后,利用終濃度0.5 mmol·L-1異丙基--d-硫代半乳糖苷(isopropyl--d-thiogalactoside,IPTG)進行誘導表達,十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(SDS-PAGE)檢測發現重組GfunOBP2蛋白以包涵體的形式存在,參照Calvello等[37-38]的方法對GfunOBP2的包涵體進行變性和復性處理。利用Ni-NTA His·Bind Resin(7sea Biotech.,中國)參照說明書對重組GfunOBP2蛋白進行純化,利用腸激酶(New England Biolabs.,英國)切除重組蛋白的His-tag,使用BCA蛋白定量試劑盒(中暉赫彩,中國)測定重組GfunOBP2蛋白的濃度。
以李小食心蟲雌蟲5種性信息素[39]和蘋果樹35種揮發化合物[40-41]的化學合成品作為待測配體,測定重組GfunOBP2蛋白結合氣味配體的能力。性信息素乙酸-順-8-十二碳烯酯、乙酸-反-8-十二碳烯酯和順-8-十二碳烯醇(有效成分均>98%)購自北京中捷四方生物科技股份有限公司,乙酸-順-8-十四碳烯酯和乙酸-順-10-十四碳烯酯(有效成分均>90%)委托沈陽北欣景溢貿易有限公司合成。35種揮發化合物來自蘋果樹的花、葉片和果實,對應的化學合成品購自化學試劑公司。用色譜級甲醇將熒光探針N-苯基-1-萘胺(N-phenyl-1-naphthylamine,1-NPN)和氣味配體配制成100 mmol·L-1的母液,然后稀釋成1 mmol·L-1的工作液。將重組GfunOBP2蛋白用20 mmol·L-1Tris-HCl(pH 7.4)稀釋至2 μmol·L-1的反應濃度。利用熒光分光光度計(F-2700,日本日立公司)在激發光337 nm、掃描發射波長370—550 nm條件下測定重組GfunOBP2蛋白結合氣味化合物的能力。參照實驗室前期測定重組OBP蛋白結合氣味配體的方法,依次測定重組GfunOBP2蛋白與熒光探針1-NPN的抑制常數(K1-NPN)以及與不同氣味配體的抑制常數(Ki)[42-43]。根據公式Ki=IC50/[l+(1-NPN)/Kl-NPN]計算GfunOBP2與氣味配體的抑制常數Ki。IC50表示配體替代1-NPN使蛋白/1-NPN復合物的初始熒光強度值降低50%時的濃度;1-NPN表示未與蛋白結合的1-NPN濃度。為了更規范地描述GfunOBP2結合配體能力的強弱,參照Huang等[44]的方法,K<5、5≤K<10和K≥10 μmol·L-1分別表示蛋白對配體化合物具有強烈、中等和較弱的結合能力。
以去除信號肽的GfunOBP2序列為查詢序列,利用在線工具NCBI BLASTP(https://www.ncbi.nlm.nih. gov/)在蛋白質數據庫(Protein Data Bank,PDB)比對與GfunOBP2序列一致性較高的模板序列,根據GfunOBP2與模板序列的覆蓋度和相似性,選擇以岡比亞按蚊()AgamOBP47(PDB: 3PM2)的晶體結構為模板利用SWISS-MODEL在線程序(https://swissmodel.expasy.org/)構建GfunOBP2的同源模型,GfunOBP2的3D結構,包括-螺旋、二硫鍵等的顯示利用PyMOL(v 2.5.2)軟件完成。由于在熒光競爭結合試驗結果中發現GfunOBP2對反-2-己烯-1-醇、1-庚醇、1-癸醇、乙酸-順-3-己烯酯、2-甲基丁酸葉醇酯、-羅勒烯和-石竹烯具有強結合活性,Ki值均≤4 μmol·L-1。故選擇以上7種氣味配體利用AutoDockTools-1.5.6軟件通過分子對接預測GfunOBP2結合氣味配體的弱相互作用力和關鍵氨基酸殘基[45]。蛋白與配體對接的3D結構圖和2D結構示意圖分別用PyMOL(v 2.5.2)和Discovery Studio 2016(v 16.1)軟件顯示。
使用單因素方差分析、Tukey多重比較檢驗2在雌、雄蟲不同組織中相對表達量的差異顯著性,相同組織在不同性別中相對表達量的差異用獨立樣本檢驗進行檢驗。
2(GenBank登錄號:OQ054799.1)ORF全長552 bp,編碼183個氨基酸,N端有一個由18個氨基酸組成的信號肽。成熟的GfunOBP2蛋白其預測的分子量和等電點分別為20.41 kDa和4.73。將GfunOBP2與其他17種鱗翅目昆蟲的Plus-C OBP的氨基酸序列進行比對,結果發現GfunOBP2具有12個保守的Cys位點,Cys分布符合Cys1-X12-Cys1a -Cys1b-X13-Cys1c-X19-Cys2-X4-Cys3-X43-Cys4-X11-Cys4a-X7-Cys5-X8-Cys6-X8-Cys6a-X9-Cys6b(X為除Cys以外的其他氨基酸)的模式。此外,Cys6殘基后直接連接一個脯氨酸殘基也是Plus-C OBP的重要特征。BLASTX比對發現GfunOBP2與葡萄花翅小卷蛾LbotOBP35的序列一致性最高(達79.78%),與大蠟螟()GmelGOBP66-like的序列一致性次之(達56.28%),與種內其他22個GfunOBP的序列一致性較低,介于1.6%—9.8%,表明GfunOBP2與近緣種間昆蟲Plus-C OBP同源性更高,而與種內其他典型OBP的同源性低,分化程度高。
RT-qPCR檢測結果表明,2在雌、雄成蟲觸角、頭、胸、足、翅、腹部和性腺中均有表達,但相對表達量存在顯著差異(雌蟲:=1 743.427,=6,14,<0.001;雄蟲:=7 436.579,=6,14,<0.001)(圖1)。2主要在觸角中表達,相對表達量顯著最高其他組織。2在觸角、頭、翅和性腺中的相對表達量存在性別差異,在雄蟲觸角(=6.318,=4,=0.003)、頭(=9.674,=4,=0.001)和性腺(=-17.959,=4,<0.001)中的相對表達量極顯著高于雌蟲中的,雌蟲翅中的相對表達量極顯著高于雄蟲中的(=47.399,=4,<0.001)。2在雌、雄蟲胸(=0.382,=4,=0.722)、足(=0.650,=4,=0.551)和腹(=-2.406,=4,=0.074)中的相對表達量無顯著差異。從2偏好表達于觸角中的特點推測其可能參與成蟲的嗅覺通訊過程。
SDS-PAGE檢測顯示,重組GfunOBP2蛋白以包涵體的形式存在,經變性、復性以及利用Ni-NTA His·Bind Resin融合標簽蛋白純化樹脂純化蛋白后得到約24 kDa的蛋白條帶,這與預測的含有His-tag的重組蛋白分子量大小(His-tag:5.45 kDa,去除信號肽的GfunOBP2:18.15 kDa)相一致。為了消除His-tag影響重組GfunOBP2蛋白對配體的結合能力,用腸激酶成功切除了His-tag(圖2)。

圖中數據為平均值±標準誤(n=3)。柱上不同小寫字母和大寫字母分別表示雌蟲和雄蟲不同組織間的基因表達量差異顯著(單因素方差分析,Tukey多重比較,P<0.05)。雙星號和ns分別表示基因相對表達量在雌、雄蟲相同組織中差異極顯著(P<0.01)和不顯著(P>0.05)(獨立樣本t檢驗)

M:蛋白質分子量標準 Protein molecular weight marker;1:未經IPTG誘導的GfunOBP2表達產物GfunOBP2 expression product without IPTG induction;2:IPTG誘導后的GfunOBP2表達產物GfunOBP2 expression product after IPTG induction;3:IPTG誘導GfunOBP2表達產物的上清Supernatant of GfunOBP2 expression product induced by IPTG;4:IPTG誘導GfunOBP2表達產物的包涵體Inclusion body of GfunOBP2 expression product induced by IPTG;5:純化的GfunOBP2蛋白Purified GfunOBP2 protein;6:腸激酶切除His-tag后的GfunOBP2蛋白GfunOBP2 protein after excision of His-tag using enterokinase
由圖3可以看出,重組GfunOBP2蛋白和1-NPN的結合存在飽和效應,利用Scatchard方程計算出GfunOBP2和1-NPN的抑制常數(K1-NPN)為(4.96±0.85)μmol·L-1。熒光競爭結合試驗顯示,在待測氣味配體最大終濃度值為16 μmol·L-1時,40種氣味配體中有31種配體能夠成功替代1-NPN將GfunOBP2/1-NPN復合物的初始熒光強度值降低50%以上,表明GfunOBP2的結合譜較寬(表2)。在待測的5種李小食心蟲雌蟲性信息素中,GfunOBP2對乙酸-順-8-十二碳烯酯、乙酸-反-8-十二碳烯酯、順-8-十二碳烯醇和乙酸-順-8-十四碳烯酯具有中等結合能力。在9種醇類配體中,GfunOBP2對反-2-己烯-1-醇、苯甲醇、1-庚醇和1-癸醇具有強結合能力,對1-辛烯-3-醇和異辛醇的結合能力較弱,對2-丁氧基乙醇和芳樟醇無明顯的結合能力。在8種醛類配體中,GfunOBP2對己醛和庚醛表現出強結合能力,對十一醛和苯甲醛無明顯的結合能力,對反-2-己烯醛、辛醛、壬醛和癸醛具有中等結合能力。在10種酯類配體中,GfunOBP2能夠強烈結合乙酸-順-3-己烯酯和2-甲基丁酸葉醇酯,對戊酸乙酯和肉豆蔻酸丁酯無明顯結合能力,對其他6種物質表現出中等或者較弱的結合能力。在2種酮類揮發物中,GfunOBP2對6-甲基-5-庚烯-2-酮具有中等結合能力,對2-甲基-6-亞甲基-1,7-辛二烯-3-酮無明顯結合能力。在6種萜烯類揮發物中,-羅勒烯和-石竹烯是所有待測物質中GfunOBP2最偏好結合的化合物。此外,GfunOBP2對-蒎烯和檸檬烯也表現出強結合能力。

表2 重組GfunOBP2蛋白對性信息素和蘋果樹揮發化合物的結合能力
揮發化合物來源(根據文獻報道)Origins of volatiles according to literature reports:a:李小食心蟲雌成蟲性信息素Sex pheromones of female adult of;b:蘋果花Apple flowers;c:蘋果葉片apple leaves;d:蘋果果實apple fruits。“-”:無法計算出IC50和Ki值The values of IC50and Kican’t be calculated

圖3 重組蛋白GfunOBP2與1-NPN的結合曲線及線性化的斯卡查德圖
以岡比亞按蚊AgamOBP47(PDB: 3PM2)為結構模板構建了GfunOBP2的3D同源模型(圖4-A),分析其結構發現GfunOBP2具有由8個-螺旋形成的球狀結構,GfunOBP2的3D結構中Cys3-Cys159、Cys27-Cys149、Cys28-Cys140、Cys42-Cys67和Cys111-Cys131連接形成5個二硫鍵維持空間構型(圖4-B)。由于反-2-己烯-1-醇、1-庚醇、1-癸醇、乙酸-順-3-己烯酯、2-甲基丁酸葉醇酯、-羅勒烯和-石竹烯是熒光競爭結合試驗中與GfunOBP2結合能力最強的前7種配體(Ki值≤4 μmol·L-1),通過分子對接計算和預測了GfunOBP2與以上7種配體的結合能(表3)以及相互作用的關鍵氨基酸殘基(圖5、圖6),結果表明,蛋白結合口袋內部的疏水性氨基酸與氣味分子形成弱相互作用力是GfunOBP2結合以上配體的重要原因,如GfunOBP2與反-2-己烯-1-醇和1-庚醇均可形成氫鍵、Donor-Donor相互作用和烷基相互作用(圖5-A、5-B),與1-癸醇可形成氫鍵、σ-π鍵相互作用、π-孤對電子作用和烷基相互作用(圖5-C),與乙酸-順-3-己烯酯和2-甲基丁酸葉醇酯主要形成氫鍵和碳氫鍵(圖5-D、5-E),與-羅勒烯和-石竹烯僅形成烷基相互作用(圖5-F、5-G)。疏水性氨基酸如Ile、Pro、Phe、Ala、Leu、Val等是GfunOBP2結合氣味配體的重要氨基酸殘基(圖6)。

A:岡比亞按蚊AgamOBP47的晶體結構Crystal structure of AgamOBP47 from A. gambiae;B:預測的GfunOBP2 3D模型Predicted 3D model of GfunOBP2;C:AgamOBP47和GfunOBP2的3D結構比對3D structure aligned of AgamOBP47 and GfunOBP2。圖中字母N和C分別表示OBP的N端和C端The letters N and C indicate the N- and C-terminal of OBPs, respectively

圖5 GfunOBP2與部分具有強結合能力的氣味配體的相互作用力及氨基酸殘基(2D結構)
本研究克隆了一個在李小食心蟲觸角轉錄組測序中鑒定的候選Plus-C OBP基因,命名為2,通過比對GfunOBP2和其他鱗翅目昆蟲Plus-C OBP的氨基酸序列發現,GfunOBP2具有Plus-C OBP亞家族蛋白的結構特征和保守的Cys殘基分布模式。GfunOBP2與典型OBP、Minus-C OBP在序列組成上明顯不同,如GfunOBP2的分子量更大(編碼183個氨基酸),具有較長的N-末端且N-末端序列形成了2個小-螺旋;具有5對二硫鍵維持蛋白的空間構型,較典型OBP 3對二硫鍵維持的空間結構更加穩定[46]。典型OBP和Minus-C OBP具有6個-螺旋[47-48],而預測的GfunOBP2具有8個-螺旋,長N-末端形成的2個-螺旋1和2位于結合腔外,未參與結合腔的形成,根據鱗翅目昆蟲OBP釋放氣味的分子機制[49-50],推測GfunOBP2在中性或者弱酸性的感覺器淋巴液中結合氣味分子,當到達pH較低的ORN樹突膜附近時,由于其構象發生變化,位于結合腔外的1和2螺旋進入結合腔中,促使GfunOBP2將結合的氣味分子釋放出來。典型OBP通常具有較長的C-末端,C-末端的肽鏈在中性感器淋巴液中成伸展構象,氣味分子進入典型OBP結合腔形成復合物,當該復合物移動至ORN樹突膜附近的酸性淋巴液時,典型OBP C-末端的肽鏈由伸展構象轉變為-螺旋,進入結合腔促使蛋白將氣味分子釋放出來[51-53]。Tsitsanou等[54]對岡比亞按蚊Plus-C OBP AgamOBP48的晶體結構解析發現,AgamOBP48在溶劑中形成同源二聚體,蛋白以同源二聚體形成的疏水腔結合氣味分子,與Plus-C OBP AgamOBP47形成的單體蛋白明顯不同。尚未見Plus-C OBP在酸性環境中的晶體結構解析以及蛋白和氣味分子復合物結構構象的報道,Plus-C OBP結合和釋放氣味化合物的分子機制有待深入研究。

圖6 GfunOBP2與部分具有強結合能力的氣味配體的相互作用力及氨基酸殘基(3D結構)
熒光競爭結合試驗發現GfunOBP2對李小食心蟲雌蟲性信息素和大部分蘋果葉片、果實揮發化合物具有結合活性,表明GfunOBP2參與了該蟲嗅覺通訊中對氣味分子的選擇性感受識別和運輸。GfunOBP2對5種性信息素化合物表現出中等或較弱的結合能力,其結合性信息素的能力明顯低于3種GfunPBP(GfunPBP1. 1/1.2/2)和3種GfunGOBP(GfunGOBP1/2/3)[11-12]。前人研究發現疆夜蛾()Plus-C OBP PsauOBP7對性信息素乙酸-順-11-十六碳烯酯和乙酸-順-9-十四碳烯酯沒有結合活性[55]、柑橘木虱()Plus-C OBP DcitOBP2對性信息素月桂酸僅具有較弱的結合能力[56],表明Plus-C OBP不是轉運性信息素的主要OBP。GfunOBP2對蘋果樹揮發化合物具有較寬的結合譜,對35種寄主揮發化合物中的26種具有結合活性,其中對反-2-己烯-1-醇、苯甲醇、1-庚醇、1-癸醇、己醛、庚醛、乙酸-順-3-己烯酯、2-甲基丁酸葉醇酯、-蒎烯、-羅勒烯、檸檬烯和-石竹烯具有強結合活性,GfunOBP2對反-2-己烯-1-醇、己醛、庚醛、-羅勒烯和-石竹烯的結合能力強于GfunGOBP1、GfunGOBP2和GfunGOBP3[11],表明GfunOBP2能夠選擇性地識別寄主植物揮發化合物。在其他昆蟲中也證實Plus-C OBP能夠結合寄主揮發化合物或環境中的揮發性信息物質,如暗黑鰓金龜()Plus-C HparOBP14能夠結合寄主植物揮發化合物6-甲基-5-庚烯-2-酮,有機肥揮發化合物3-甲基吲哚、對二甲苯、甲醇、甲醛、-蒎烯和香葉醇[57];柑橘木虱DcitOBP2能夠結合寄主揮發化合物二甲基二硫醚和(+)-檸檬烯[56]。

表3 GfunOBP2與氣味配體的平均結合能
為了更好地闡明GfunOBP2與不同類型揮發化合物的結合特性,本研究利用同源建模和分子對接技術分析了GfunOBP2與7種具有最強結合能力(Ki≤4.0 μmol·L-1)的氣味配體的結合能和關鍵氨基酸殘基,結果顯示,GfunOBP2與7種氣味配體的結合能均為負值,GfunOBP2與氣味配體的結合能力與結合能具有相關性,結合能力越強,結合能越小(表3),這與已報道的松蛀螟()[58]、美國白蛾()[59]、異色瓢蟲()[60]、多異瓢蟲()[61]等昆蟲的OBP相似,表明GfunOBP2與不同配體之間存在弱相互作用力。前人通過核磁共振解析OBP的晶體結構發現,OBP通常通過疏水性結合腔內的非極性或極性氨基酸殘基與不同配體形成相互作用力[62-63]。GfunOBP2與3種醇類物質反-2-己烯-1-醇、1-庚醇和1-癸醇的結合均有氫鍵和烷基相互作用力的參與,不同的是GfunOBP2 Ile30的氨基與反-2-己烯-1-醇的羥基、Lys127的氨基與1-庚醇的羥基形成Donor-Donor相互作用力,而GfunOBP2 Phe33的-苯基與1-癸醇的C7碳原子形成了σ-π鍵相互作用、Phe30的-苯基與1-癸醇的羥基氧原子形成了π-孤對電子作用。GfunOBP2結合兩種酯類物質乙酸-順-3-己烯酯和2-甲基丁酸葉醇酯主要由氫鍵和碳氫鍵兩種弱相互作用力維持,且與上述兩種配體結合的關鍵氨基酸殘基也相同,氫鍵均由Phe33的氨基氫原子與酯類物質的羰基氧原子形成、碳氫鍵均由Ser133的羥基氫原子與酯類配體的碳原子形成。烷基相互作用力是GfunOBP2結合兩種萜烯類物質-羅勒烯和-石竹烯形成的唯一弱相互作用力,疏水性氨基酸如Val、Leu、Phe、Ile和Pro在形成烷基相互作用力中起著重要作用。本研究僅通過分子對接試驗預測了GfunOBP2結合氣味配體的關鍵氨基酸殘基,今后將以上關鍵殘基作為研究重點,借助定點突變[64-65]和熒光競爭結合試驗驗證關鍵殘基突變后對GfunOBP2結合配體能力的影響。
2在李小食心蟲成蟲觸角中高表達,重組GfunOBP2蛋白對蘋果樹葉片、果實的多種揮發化合物具有強結合活性,推測其可能在成蟲寄主植物定位、雌蟲產卵場所選擇等嗅覺行為中發揮著重要作用。寄主揮發化合物反-2-己烯-1-醇、苯甲醇、1-庚醇、1-癸醇、己醛、庚醛、乙酸-順-3-己烯酯、2-甲基丁酸葉醇酯、-蒎烯、-羅勒烯、檸檬烯和-石竹烯是GfunOBP2偏好結合的配體分子。
[1] 劉海榮, 趙百麗, 趙文琦, 張武杰, 楊曉華, 齊玉新, 顧廣軍, 劉暢. 黑龍江省果樹食心蟲區域分布及防治. 黑龍江農業科學, 2010(5): 65-68.
LIU H R, ZHAO B L, ZHAO W Q, ZHANG W J, YANG X H, QI Y X, GU G J, LIU C. Distribution and prevention of fruit trees borer in Heilongjiang Province. Heilongjiang Agricultural Sciences, 2010(5): 65-68. (in Chinese)
[2] STEFANOVA D, VASILEV P, KUTINKOVA H, ANDREEV R, PALAGACHEVA N, TITYANOV M. Possibility for control of plum fruit mothTr. by pheromone dispensers. Journal of Biopesticides, 2019, 12(2): 153-156.
[3] 吳維鈞. 兩種果樹害蟲——旋杖潛葉蛾及李小食心蟲. 昆蟲學報, 1961, 10(4/6): 395-400.
WU W J. A new record of two species of fruit tree pests from North China. Acta Entomologica Sinica, 1961, 10(4/6): 395-400. (in Chinese)
[4] RIZZO R, FARINA V, SAIANO F, LOMBARDO A, RAGUSA E, VERDE G L. Doinfestation rely on specific plum fruit features?. Insects, 2019, 10(12): 444.
[5] 蔣玉寶, 張素梅, 祁光增, 周科清, 程文波. 隴東蘋果主要食心蟲和卷葉蛾成蟲發生動態監測. 甘肅農業科技, 2014(2): 30-32.
JIANG Y B, ZHANG S M, QI G Z, ZHOU K Q, CHENG W B. Dynamics monitoring of occurs of borers and leafrollers adult on apple in Longdong Areas. Gansu Agricultural Science and Technology, 2014(2): 30-32. (in Chinese)
[6] ZHENG Y, WU R X, DORN S, CHEN M H. Diversity of tortricid moths in apple orchards: evidence for a cryptic species of(Lepidoptera: Tortricidae) from China. Bulletin of Entomological Research, 2017, 107(2): 268-280.
[7] 楊磊, 孫惠敏, 林河州, 陳劉生, 王少山. 石河子墾區果樹食心蟲種類及其種群動態. 北方園藝, 2017(12): 132-135.
YANG L, SUN H M, LIN H Z, CHEN L S, WANG S S. Species and population dynamics of fruit borer in Shihezi Reclamation Zone. Northern Horticulture, 2017(12): 132-135. (in Chinese)
[8] 陳秀琳, 陳玉鑫, 包琳杰, 康樂, 孫勇, 李廣偉. 延安地區蘋果園食心蟲種類及其種群消長動態調查. 植物保護, 2021, 47(2): 219-225.
CHEN X L, CHEN Y X, BAO L J, KANG L, SUN Y, LI G W. Species and population dynamics of fruit-borer in apple orchards of Yan’an area. Plant Protection, 2021, 47(2): 219-225. (in Chinese)
[9] 李興龍, 張馨月, 雷岳杰, 肖小容, 楊永棒, 張振興, 孫惠敏, 王少山. 石河子墾區果樹食心蟲迷向技術. 新疆農業科學, 2020, 57(1): 173-180.
LI X L, ZHANG X Y, LEI Y J, XIAO X R, YANG Y B, ZHANG Z X, SUN H M, WANG S S. Study on the mating disruption control technology of fruit borer in Shihezi Reclamation Area. Xinjiang Agricultural Sciences, 2020, 57(1): 173-180. (in Chinese)
[10] 金巖. 吉林地區“123”蘋果蛀果害蟲發生規律及藥劑防治. 北方園藝, 2013(14): 123-124.
JIN Y. Occurrence and chemical control of borer fruit pests of “123” apple. Northern Horticulture, 2013(14): 123-124. (in Chinese)
[11] LI L L, XU B Q, LI C Q, LI B L, CHEN X L, LI G W. Different binding affinities of three general odorant-binding proteins in(Treitscheke) (Lepidoptera: Tortricidae) to sex pheromones, host plant volatiles, and insecticides. Journal of Economic Entomology, 2022, 115(4): 1129-1145.
[12] LI L L, XU B Q, LI C Q, LI B L, LUO K, LI G W, CHEN X L. Functional disparity of four pheromone-binding proteins from the plum fruit mothTreitscheke in detection of sex pheromone components. International Journal of Biological Macromolecules, 2023, 225: 1267-1279.
[13] NASTAS T, RAILEANU N, CHEPTINARI V, ROSCA G. Methodological and technological methods for application of sexual pheromones againstTr.. Scientific Studies & Research, 2014, 23(2): 12-19.
[14] VERDE G L, GUARINO S, BARONE S, RIZZO R. Can mating disruption be a possible route to control plum fruit moth in mediterranean environments?. Insects, 2020, 11(9): 589.
[15] DU J, LI G W, XU X L, WU J X. Development and fecundity performance of oriental fruit moth (Lepidoptera: Tortricidae) reared on shoots and fruits of peach and pear in different seasons. Environmental Entomology, 2015, 44(6): 1522-1530.
[16] KARLSSON M F, PROFFIT M, BIRGERSSON G. Host-plant location by the Guatemalan potato mothis assisted by floral volatiles. Chemoecology, 2017, 27(5): 187-198.
[17] WOLFIN M S, CHILSON III R R, THRALL J, LIU Y X, VOLO S, CHA D H, LOEB G M, LINN JR C E. Proximate mechanisms of host plant location by a specialist phytophagous insect, the grape berry moth,. Journal of Chemical Ecology, 2019, 45(11/12): 946-958.
[18] JIANG N J, TANG R, GUO H, NING C, LI J C, WU H, HUANG L Q, WANG C Z. Olfactory coding of intra- and interspecific pheromonal messages by the malein North China. Insect Biochemistry and Molecular Biology, 2020, 125: 103439.
[19] VENTHUR H, ZHOU J J. Odorant receptors and odorant-binding proteins as insect pest control targets: a comparative analysis. Frontiers in Physiology, 2018, 9: 1163.
[20] LI T T, LIU W C, ZHU J, YANG Y H, MA C, LU C, ZHANG K X. Crystal structure and ligand identification of odorant binding protein 4 in the natural predator. International Journal of Biological Macromolecules, 2019, 141: 1004-1012.
[21] LAUE M, STEINBRECHT R A. Topochemistry of moth olfactory sensilla. International Journal of Insect Morphology and Embryology, 1997, 26(3/4): 217-228.
[22] LEE D, DAMBERGER F F, PENG G, HORST R, GüNTERT P, NIKONOVA L, LEAL W S, WüTHRICH K. NMR structure of the unligandedpheromone-binding protein at physiological pH. FEBS Letters, 2002, 531(2): 314-318.
[23] STENGL M, FUNK N W. The role of the coreceptor Orco in insect olfactory transduction. Journal of Comparative Physiology A, 2013, 199(11): 897-909.
[24] ZENG F F, XU P X, LEAL W S. Odorant receptors fromandsensitive to floral compounds. Insect Biochemistry and Molecular Biology, 2019, 113: 103213.
[25] VOGT R G, RIDDIFORD L M. Pheromone binding and inactivation by moth antennae. Nature, 1981, 293(5828): 161-163.
[26] CHEN X L, LI G W, XU X L, WU J X. Molecular and functional characterization of odorant binding protein 7 from the oriental fruit moth(Busck) (Lepidoptera: Tortricidae). Frontiers in Physiology, 2018, 9: 1762.
[27] LARTIGUE A, GRUEZ A, SPINELLI S, RIVIèRE S, BROSSUT R, TEGONI M, CAMBILLAU C. The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. The Journal of Biological Chemistry, 2003, 278(32): 30213-30218.
[28] CHRISTAIN C, SILVIA S, AMANDINE L, MARIELLA T. Structural diversity of insects odorant binding proteins around a conserved core. Chemical Senses, 2011, 31: A11-A12.
[29] ZHOU J J, HUANG W S, ZHANG G A, PICKETT J A, FIELD L M. “Plus-C” odorant-binding protein genes in twospecies and the malaria mosquito. Gene, 2004, 327(1): 117-129.
[30] ZHENG Z C, LI D Z, ZHOU A M, YI S C, LIU H, WANG M Q. Predicted structure of a minus-C OBP from(Hope) suggests an intermediate structure in evolution of OBPs. Scientific Reports, 2016, 6: 33981.
[31] ZHANG X Y, ZHU X Q, GU S H, ZHOU Y L, WANG S Y, ZHANG Y J, GUO Y Y. Silencing of odorant binding protein geneby RNAi induces declining electrophysiological responses ofto six semiochemicals. Insect Science, 2017, 24(5): 789-797.
[32] CHEN X F, LEI Y B, LI H F, XU L, YANG H, WANG J J, JIANG H B. CRISPR/Cas9 mutagenesis abolishes odorant-binding protein BdorOBP56f-2 and impairs the perception of methyl eugenol in(Hendel). Insect Biochemistry and Molecular Biology, 2021, 139: 103656.
[33] Zhan H X, DEWER Y, ZHANG J P, TIAN J H, LI D, QU C, YANG Z, LI F Q, LUO C. Odorant-binding protein 1 plays a crucial role in the olfactory response ofto-curcumene. Journal of Agricultural and Food Chemistry, 2021, 69(43): 12785-12793.
[34] HAN W K, YANG Y L, SI Y X, WEI Z Q, LIU S R, LIU X L, YAN Q, DONG S L. Involvement of GOBP2 in the perception of a sex pheromone component in both larval and adultrevealed using CRISPR/Cas9 mutagenesis. Insect Biochemistry and Molecular Biology, 2022, 141: 103719.
[35] VANDESOMPELE J, DE PRETER K, PATTYN F, POPPE B, VAN ROY N, DE PAEPE A, SPELEMAN F. Accurate normalization of real-time quantitative RT-PCR data by genometric averaging of multiple internal control genes. Genome Biology, 2002, 3(7): research0034.1-0034.11.
[36] KELMANSKY D M, MARTíNEZ E J, LEIVA V. A new variance stabilizing transformation for gene expression data analysis. Statistical Applications in Genetics and Molecular Biology, 2013, 12(6): 653-666.
[37] CALVELLO M, GUERRA N, BRANDAZZA A, D’AMBROSIO C, SCALONI A, DANI F R, TURILLAZZI S, PELOSI P. Soluble proteins of chemical communication in the social wasp. Cellular and Molecular Life Sciences, 2003, 60(9): 1933-1943.
[38] ZHANG T T, MEI X D, FENG J N, BERG B G, ZHANG Y J, GUO Y Y. Characterization of three pheromone-binding proteins (PBPs) of(Hübner) and their binding properties. Journal of Insect Physiology, 2012, 58(7): 941-948.
[39] GUERIN P M, ARN H, BUSER H R, CHARMILLOT P, TóTH M, SZIRáKI G. Sex pheromone ofoccurrence of-8- and-10-tetradecenyl acetate as secondary components. Journal of Chemical Ecology, 1986, 12(6): 1361-1368.
[40] VALLAT A, DORN S. Changes in volatile emissions from apple trees and associated response of adult female codling moths over the fruit-growing season. Journal of Agricultural and Food Chemistry, 2005, 53(10): 4083-4090.
[41] CASADO D, GEMENO C, AVILLA J, RIBA M. Day-night and phenological variation of apple tree volatiles and electroantennogram responses in(Lepidoptera: Tortricidae). Environmental Entomology, 2006, 35(2): 258-267.
[42] CHEN X L, SU L, LI B L, LI G W, WU J X. Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth(Busck) (Lepidoptera: Tortricidae). Archives of Insect Biochemistry and Physiology, 2018, 98(2): e21456.
[43] LI G W, CHEN X L, LI B L, ZHANG G H, LI Y P, WU J X. Binding properties of general odorant binding proteins from the oriental fruit moth,(Busck) (Lepidoptera: Tortricidae). PLoS ONE, 2016, 11(5): e0155096.
[44] HUANG G Z, LIU J T, ZHOU J J, WANG Q, DONG J Z, ZHANG Y J, LI X C, LI J, GU S H. Expressional and functional comparisons of two general odorant binding proteins in. Insect Biochemistry and Molecular Biology, 2018, 98: 34-47.
[45] YAN Q Y, YANG J W, YAO Y W, JIA Z, WANG Y Q, CHENG M, YAN X B, XU Y F. Research of the active components and potential mechanisms of Qingfei Gujin decoction in the treatment of osteosarcoma based on network pharmacology and molecular docking technology. Computational and Mathematical Methods in Medicine, 2022, 2022: 7994425.
[46] LAGARDE A, SPINELLI S, QIAO H L, TEGONI M, PELOSI P, CAMBILLAU C. Crystal structure of a novel type of odorant-binding protein from, belonging to the C-plus class. The Biochemical Journal, 2011, 437(3): 423-430.
[47] SANDLER B H, NIKONOVA L, LEAL W S, CLARDY J. Sexual attraction in the silkworm moth: structure of the pheromone- binding-protein-bombykol complex. Chemistry and Biology, 2000, 7(2): 143-151.
[48] FALCHETTO M, CIOSSANI G, SCOLARI F, DI COSIMO A, NENCI S, FIELD L M, MATTEVI A, ZHUO J J, GASPERI G, FORNERIS F. Structural and biochemical evaluation ofodorant-binding protein 22 affinity for odorants involved in intersex communication. Insect Molecular Biology, 2019, 28(3): 431-443.
[49] XU W, LEAL W S. Molecular switches for pheromone release from a moth pheromone-binding protein. Biochemical and Biophysical Research Communications, 2008, 372(4): 559-564.
[50] XU W, XU X, LEAL W S, AMES J B. Extrusion of the C-terminal helix in navel orangeworm moth pheromone-binding protein (AtraPBP1) controls pheromone binding. Biochemical and Biophysical Research Communications, 2011, 404(1): 335-338.
[51] DAMBERGER F F, ISHIDA Y, LEAL W S, WüTHRICH K. Structural basis of ligand binding and release in insect pheromone- binding proteins: NMR structure ofPBP1 at pH 4.5. Journal of Molecular Biology, 2007, 373(4): 811-819.
[52] THODE A B, KRUSE S W, NIX J C, JONES D N M. The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH. Journal of Molecular Biology, 2008, 376(5): 1360-1376.
[53] ZHOU J J, ROBERTSON G, HE X, DUFOUR S, HOOPER A M, PICKETT J A, KEEP N H, FIELD L M. Characterization ofodorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. Journal of Molecular Biology, 2009, 389(3): 529-545.
[54] TSITSANOU K E, DRAKOU C E, THIREOU T, VITLIN GRUBER A, KYTHREOTI G, AZEM A, FESSAS D, ELIOPOULOS E, IATROU K, ZOGRAPHOS S E. Crystal and solution studies of the “Plus-C” odorant-binding protein 48 from: control of binding specificity through three-dimensional domain swapping. The Journal of Biological Chemistry, 2013, 288(46): 33427-33438.
[55] 孫亞蘭, 呂琪卉, 楊海博, 胡鎮杰, 李定旭, 董鈞鋒. 疆夜蛾Plus-C氣味結合蛋白PsauOBP7的組織表達譜及配體結合特性分析. 昆蟲學報, 2020, 63(7): 807-816.
SUN Y L, Lü Q H, YANG H B, HU Z J, LI D X, DONG J F. Tissue expression profiling and ligand binding characterization of the Plus-C odorant binding protein PsauOBP7 of(Lepidoptera: Noctuidae). Acta Entomologica Sinica, 2020, 63(7): 807-816. (in Chinese)
[56] ZHANG H, CHEN J L, LIN J H, LIN J T, WU Z Z. Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid,. Pest Management Science, 2020, 76(8): 2609-2618.
[57] QU Y F, LIU X Y, ZHAO X, QIN J H, CAO Y Z, LI K B, ZHOU J J, WANG S S, YIN J. Evidence of the involvement of a Plus-C odorant-binding protein HparOBP14 in host plant selection and oviposition of the scarab beetle. Insects, 2021, 12(5): 430.
[58] JING D P, ZHANG T T, PRABU S, BAI S X, HE K L, WANG Z Y. Molecular characterization and volatile binding properties of pheromone binding proteins and general odorant binding proteins in(Lepidoptera: Crambidae). International Journal of Biological Macromolecules, 2020, 146: 263-272.
[59] ZHANG X Q, MANG D Z, LIAO H, YE J, QIAN J L, DONG S L, ZHANG Y N, HE P, ZHANG Q H, PURBA E R, ZHANG L W. Functional disparity of three pheromone binding proteins to different sex pheromone components in(Drury). Journal of Agricultural and Food Chemistry, 2021, 69(1): 55-66.
[60] QU C, YANG Z K, WANG S, ZHAO H P, LI F Q, YANG X L, LUO C. Binding affinity characterization of four antennae-enriched odorant- binding proteins from(Coleoptera: Coccinellidae). Frontiers in Physiology, 2022, 13: 829766.
[61] TANG H Y, XIE J X, LIU J T, KHASHAVEH A, LIU X X, YI C Q, ZHAO D Y, HE L, SUN Y, ZHANG Y J. Odorant-binding protein HvarOBP5 in ladybirdregulates the perception of semiochemicals from preys and habitat plants. Journal of Agricultural and Food Chemistry, 2023, 71(2): 1067-1076.
[62] MEILLOUR P N L, LAGANT P, CORNARD J P, BRIMAU F, Danvic C L, Vergoten G, Michalski J C. Phenylalanine 35 and tyrosine 82 are involved in the uptake and release of ligand by porcine odorant-binding protein. Biochimica et Biophysica Acta, 2009, 1794(8): 1142-1150.
[63] NORTHEY T, VENTHUR H, DE BIASIO F, CHAUVIAC F X, COLE A, JUNIOR K A, GROSSI G, FALABELLA P, FIELD L M, KEEP N H, ZHOU J J. Crystal structures and binding dynamics of odorant-binding protein 3 from two aphid speciesand. Scientific Reports, 2016, 6: 24739.
[64] JIANG Q Y, WANG W X, ZHANG Z D, ZHANG L. Binding specificity of locust odorant binding protein and its key binding site for initial recognition of alcohols. Insect Biochemistry and Molecular Biology, 2010, 39(7): 440-447.
[65] ZHANG Y N, ZHANG X Q, ZHANG X C, XU J W, LI L L, ZHU X Y, WANG J J, WEI J Y, MANG D Z, ZHANG F, YUAN X H, WU X M. Key amino acid residues influencing binding affinities of pheromone-binding protein fromto two sex pheromones. Journal of Agricultural and Food Chemistry, 2020, 68(22): 6092-6103.
Expression and ligand binding characteristics of GfunOBP2 from
NIAN HeFen1,2, ZHANG YuXi2, LI BoLiao1,2, CHEN XiuLin1,2, LUO Kun1,2, LI GuangWei1,2
1Shaanxi Key Laboratory of Chinese Jujube (Yan’an University), Yan’an 716000, Shaanxi;2College of Life Sciences, Yan’an University, Yan’an 716000, Shaanxi
【Objective】The objective of this study is to determine the binding affinities of the Plus-C odorant binding protein 2 of(2) to sex pheromones and volatile compounds from apple trees, and to provide a basis for explaining the olfactory molecular mechanism of locating the host plantsof.【Method】The ORF of2 was cloned by RT-PCR, and GfunOBP2 was identified as a Plus-C OBP subfamily protein through homology annotation and alignment of cysteine distribution patterns in amino acid sequences. The relative expression level of2 in the antenna, head, thorax, leg, wing, abdomen, and sex gland of the 3-day-old adults ofwas detected by RT-qPCR. The prokaryotic expression vector pET30a(+)/GfunOBP2 was constructed, and the recombinant GfunOBP2 protein was expressed inBL21 (DE3) cells. The binding affinity of recombinant GfunOBP2 protein to five sex pheromones and 35 plant volatiles of apple trees was determined by using a fluorescence competitive binding assay. The interaction force and key amino acid residues of GfunOBP2 interacting with odorant ligands with strong binding affinities were predicted by molecular docking.【Result】The full-length ORF sequence of2 (GenBank number: OQ054799.1) was cloned, encoding 183 amino acids. It was found that GfunOBP2 has 12 conserved cysteines, and the distribution motif of cysteine residues indicated that GfunOBP2 belongs to the Plus-C OBP subfamily.2 was mainly expressed in the antennae of adults, and the relative expression level in male antennae was significantly higher than that in female antennae (<0.05). Recombinant GfunOBP2 protein exhibited strong binding affinities to ()-2-hexen-1-ol, benzyl alcohol, 1-heptanol, 1-decanol, hexanal, heptanal,-3-hexenyl acetate,-3-hexenyl 2-methylbutanoate,-ocimene,-caryophyllene,-pinene and limonene, and the inhibition constant (Ki) for each ligand above was less than 5.0 μmol·L-1. The molecular docking results showed that hydrogen bonds, donor-donor interactions, and alkyl interactions are the main weak interactions between GfunOBP2 and ()-2-hexen-1-ol, 1-heptanol, and 1-decanol. The conventional hydrogen bonds and carbon hydrogen bonds are the main weak interactions between GfunOBP2 and-3-hexenyl acetate and-3-hexenyl 2-methylbutanoate. The alkyl interaction is the only weak force of GfunOBP2 interacting with-ocimene and-caryophyllene. Several hydrophobic amino acid residues, including Ile, Pro, Phe, Ala, Leu, and Val, play an important role in GfunOBP2’s binding to odorant ligands.【Conclusion】2 is mainly expressed in the antennae of adults ofand the corresponding recombinant protein has strong binding affinities to 12 of the 35 volatile compounds of apple trees, and has moderate binding affinities to 10 compounds, indicating that GfunOBP2 plays an important role in the process of perceiving and recognizing the volatile compounds of host plants. This study provides a theoretical basis for confirming that Plus-C OBP was involved in the peripheral olfactory communication of.
; chemoreception; odorant binding protein (OBP); host-plant volatile; molecular docking

10.3864/j.issn.0578-1752.2023.12.006
2023-03-15;
2023-04-21
國家自然科學基金(32160636)、延安大學產學研合作培育項目(CXY202118)、2021年延安大學校級大學生創新創業計劃訓練項目(D2021099)
年和粉,E-mail:nhf762786194@163.com。通信作者李廣偉,E-mail:liguangwei@yau.edu.cn
(責任編輯 岳梅)