段 毅,譚賢四,曲智國,王 紅
(1. 空軍預警學院 防空預警裝備系, 湖北 武漢 430019; 2. 解放軍95174部隊, 湖北 武漢 430010)
相控陣雷達具有波束捷變、天線波束快速掃描、空間功率合成與多波束形成等能力[1],能夠完成多目標跟蹤、多區域搜索等復雜任務,在現代戰爭中得到廣泛運用。隨著現代戰爭中軍事科技的快速發展與戰場環境日趨復雜,相控陣雷達裝備面臨著以“四大威脅”(隱身目標、電子干擾、低空超低空突防和反輻射導彈)為代表的各類目標威脅[2]。將多部雷達組網,形成全區域、多維度的預警體系,是應對這些威脅的重要手段[3]。
但在來襲目標數目較多情況下,雷達資源較為緊張,當資源飽和時雷達探測性能將出現明顯下降,嚴重時甚至導致目標丟失。此時需要采取某些方法手段對雷達資源進行管理,提高雷達資源利用效率,進而提升兵器探測性能[4]。對目標進行分配,明確每部雷達在什么時間段具體探測哪批目標,是雷達資源管理的重要方法手段[5]。
為解決雷達組網中雷達-目標分配問題,很多學者進行了大量研究。文獻[6]提出基于協方差的分配方法,文獻[7]提出基于最大后驗概率密度分配方法,文獻[8]提出基于Renyi信息增益的管理方法,文獻[9]采用基于分辨率的傳感器管理方法,文獻[10]提出基于Fisher信息距離的傳感器分配方法,文獻[11]提出基于后驗克拉美羅下界(PCRLB)。這些方法充分考慮了雷達對目標跟蹤過程,以協方差等參數為依據,對目標進行排序并依次進行分配,大幅提高了雷達跟蹤性能。但是,這些方法在分配過程中僅對下一批目標進行優化,本質上屬于單步尋優的貪婪算法,尋優能力較差。為了提高算法尋優能力,文獻[12]采用內點法與匈牙利算法相結合的方法,文獻[13]采用遺傳算法,文獻[14]采用改進遺傳算法,文獻[15]采用矩陣遺傳算法,文獻[16]采用連續雙向拍賣算法,文獻[17]采用自適應粒子群算法。上述方法充分利用了遺傳算法等智能優化算法的全局尋優能力,在廣闊解空間中尋得或近似尋得全局最優解,但這些算法計算量復雜,算法時效性較差。且上述方法在分配過程中均未考慮上一時刻分配結果,這將使得傳感器切換頻次加大,影響目標跟蹤連續性與穩定性。
針對上述問題,本文提出一種基于選擇回溯的雷達-目標分配算法。該方法首先根據目標位置、檢測概率等信息計算下一時刻雷達能夠穩定跟蹤目標的概率;對概率較高,即失跟風險較低目標直接沿用上一時刻分配結果以減少參與分配目標數量,降低算法計算量;對概率較低,即失跟風險較高目標進行重新分配以提高跟蹤穩定性;在分配過程中,當雷達資源出現飽和時“回溯”前若干批已分配目標并對這些目標進行再分配以提高算法性能。仿真實驗表明,與傳統分配方法相比,本文方法能充分利用上一時刻分配結果,兼顧考慮了算法性能與復雜度,綜合性能較優。
由前文可知,在現代戰爭中,預警系統通常采用雷達組網方式以盡可能提高探測性能,但在實際運用過程中,相鄰雷達間不可避免地存在一定的重疊探測區域。以圖1為例,圖中扇形部分分別為兩部雷達專屬探測區域,相交部分為兩部雷達重疊探測區域,當目標位于重疊探測區域時,可能出現多部雷達同時觀測同一批目標情況,此時需要由調度中心對目標進行分配以提高雷達資源效率,避免資源浪費,其過程如圖1所示。

圖1 雷達-目標分配示意圖Fig.1 Schematic diagram of radar-target assignment
雷達目標分配可歸結為最優化理論中武器-目標分配(WTA)問題,屬于典型非確定多項式難題(NP-hard)[18],需對多項參數進行優化,主要包括跟蹤成功率、實現價值率與傳感器切換率。
跟蹤成功率(TSR)指雷達所成功觀測到的目標數目與總目標數目之比,其計算式為
(1)
式中:M表示目標總數;Dm表示第m個目標是否被跟蹤,其計算式為
(2)
式中:dmn表示分配矩陣D中的元素,當dmn=1時表示第m個目標被分配給第n部雷達,當dmn=0時則表示未被分配;N表示雷達總數。
實現價值率(HVR)是指雷達所跟蹤到目標優先級之和與所有目標的優先級之和的比值,其計算式為
(3)

傳感器切換率(SSR)是指對某批目標監測時傳感器切換次數與總時長之比,其計算式為
(4)

(5)
在雷達-目標分配過程中,需要考慮探測范圍、雷達資源等約束條件。
在探測范圍約束方面,雷達所探測目標必須位于雷達探測范圍內,即
dmn≤smn
(6)
式中:smn為可視矩陣S中的元素。smn=1表示第m個目標位于第n部雷達探測范圍內,smn=0表示第m個目標位于第n部雷達探測范圍外。后文將探測范圍約束簡寫為h1。
在雷達資源約束方面,雷達跟蹤目標所消耗的資源不能超過其跟蹤資源總量,即
(7)

(8)

綜上所述,雷達-目標分配模型可表示為
(9)
基于選擇回溯分配算法利用深度優先搜索思想:在上一時刻分配基礎上計算下一時刻雷達能夠穩定跟蹤目標的概率;“選擇”其中概率較低,即失跟風險較高目標并重新分配這些目標以降低失跟風險;當雷達資源出現飽和時“回溯”前若干批已分配目標并對這些目標進行再分配以提高算法性能;對未被選擇的目標直接沿用上一時刻分配結果以減少參與分配目標數量,降低算法計算量。其過程如圖2所示。


圖2 算法思想Fig.2 The thought of algorithm
如圖2a)所示,本文算法對未被選擇的目標(目標1)直接沿用上一時刻分配結果,并對被選擇目標進行再分配,如圖2b)所示。當出現雷達資源飽和情況時(雷達2)回溯前若干批已分配目標(目標2)并對這些目標進行重新分配,得到最終結果,如圖2c)所示。
由上文思想可以看出,基于選擇回溯分配算法的關鍵在于計算雷達能夠穩定跟蹤目標的概率。決定雷達是否能夠穩定跟蹤目標的主要因素有兩點:(1)目標與雷達相對位置;(2)雷達對目標檢測概率。
(10)
雷達對目標檢測概率Pd可由目標回波信號信噪比(SNR)與目標起伏模型計算得出,以SwerlingⅡ型模型為例,有
(11)
式中:VT為檢測門限電壓,由虛警概率Pfa計算得出;Γ(x,y)為不完全Gamma函數[19]。
綜上所述,下一時刻雷達能夠穩定跟蹤目標的概率可表示為
(12)

(13)
式中:Tgate與Tarea分別為雷達波門大小與探測區域范圍。
結合目標優先級Pr可得下一時刻第m個目標失跟風險為
(14)
則第m個目標是否屬于風險目標的判別式為
(15)

Dk為本時刻分配矩陣,Dk-1為上一時刻分配矩陣;Nk為k時刻新目標集合;Lk、Bk、Lk-1、Bk-1分別為k時刻與上一時刻失跟目標和風險目標集合;N為參與分配目標數目;M為雷達數目。由上文可知,基于選擇回溯的分配算法步驟如下:
步驟1 初始化,置Lk=?,Bk=?;雷達資源消耗rn=0,其中n∈[1,N];當前目標序號m=1。
步驟2 判斷第m個目標是否屬于穩定目標,若是,則進入步驟3,反之置當前雷達序號n=1,并進入步驟4。
步驟3 沿用上一時刻分配結果對第m個目標進行分配并進入步驟13。

步驟5 令n=n+1,判斷n>N是否成立,若是,進入步驟6,反之返回步驟4。
步驟6 回溯已分配目標,調取其集合并按風險升序排列,將其記為{m1,m2,…,mI},所對應雷達記為{n1,n2,…,nI},置回溯目標序號i=1,進入步驟7。
步驟7 判斷目標smni=1是否成立,若是,置雷達序號j=1并進入步驟8,反之進入步驟10。

步驟9 令j=j+1并判斷j>N是否成立,若是,進入步驟10,反之返回步驟8。
步驟10 令i=i+1并判斷i>I是否成立,若是,進入步驟11,反之返回步驟7。
步驟11 將第m個目標寫入失跟風險集合并進入步驟14。
步驟12 令dmn=1,rn=rn+rmn,進入步驟13。
步驟14 令m=m+1,判斷m>M是否成立,若是,結束分配,反之返回步驟2。
算法步驟如圖3所示。

圖3 算法步驟Fig.3 The steps of algorithm
假設某時刻敵方使用轟炸機、戰斗機、巡航導彈三種飛行器對我方某重點目標進行攻擊。為保衛該目標我方在其周圍以前沿部署形式部署三部相控陣雷達,現建立以重點目標為原點,敵主攻方向為Y軸的坐標系。假設敵方目標發射點在區域內均勻分布,飛行方向服從主攻方向為均值,10°為方差正太分布,目標參數如表1所示。我方三部雷達采用重點方向監測模式,采用卡爾曼濾波器、勻加速模型[20]跟蹤目標,雷達參數與部署位置分別如表2、表3所示,生成戰場環境如圖4所示。

圖4 戰場環境Fig.4 Situation of battlefield

表1 目標參數Tab.1 Parameters of target

表2 雷達參數Tab.2 Parameters of radar

表3 部署位置Tab.3 Position of radar



圖5 參數影響Fig.5 The influences of parameter


由圖6a)可以看出,隨著目標數目的增加,三種算法的TSR均呈下降趨勢,其中協方差法的下降速率最快,算法性能較差。遺傳算法具有較好的全局尋優能力,因此TSR較高,但當目標數目較多時,遺傳算法存在早熟收斂、局部最優陷阱等問題,此時該方法算法性能下降比較明顯。本文算法在目標數目較少時算法性能劣于遺傳算法,但在目標數目較多時能有效避免遺傳算法中早熟收斂等問題,綜合性能較優。



圖6 算法性能比較Fig.6 Performance comparison of different algorithms
比較三種SSR(圖5)可以看出,本文算法充分利用了上一時刻分配結果,因此其SSR最低;相反,協方差法未考慮傳感器切換的影響,因此SSR較高;遺傳算法SSR介于二者之間。比較三種算法耗時(如圖5c)所示)可以看出,遺傳算法在尋找最優解過程中搜索范圍過大,計算耗時較長,算法時效性較差;與協方差法相比,本文算法在目標數量較少時,時效性較優,當目標數目增加時,本文算法耗時有所增加,但依然保持在可接受范圍內。
針對飽和攻擊情況下雷達-目標分配問題,本文提出一種基于選擇回溯的分配方法,該方法充分考慮了上一時刻分配結果,在保證跟蹤成功率基礎上,降低算法計算量、減小傳感器切換率。
但本文在風險目標判斷上過于簡單,僅考慮了目標位置與檢測概率兩項參數,此外還應考慮目標機動能力、雷達遮蔽等情況,這些因素影響有待進一步研究。