






摘要:在對30CrMnSiA鋼多軸疲勞壽命研究的基礎(chǔ)上,基于單軸拉壓和純扭S-N曲線,提出了等效S-N曲線的概念。基于等效S-N曲線,建立了預(yù)測硬質(zhì)金屬材料多軸疲勞壽命的經(jīng)驗公式。采用該公式對文獻中的多種硬質(zhì)金屬材料進行了壽命預(yù)測,預(yù)測結(jié)果顯示94.0%以上的數(shù)據(jù)點均處于±3倍疲勞壽命分散帶之內(nèi),81.8%以上的數(shù)據(jù)點處于±2倍疲勞壽命分散帶之內(nèi)。
關(guān)鍵詞:多軸疲勞;應(yīng)力幅比;相位差;S-N曲線
中圖分類號:O346.2
文獻標志碼:A文章編號:1000-582X(2023)03-094-009
A fast life prediction method for hard metals under multiaxial
high-cycle fatigue loading
LIU Tianqi1, ZHANG Guangxin1, ZHANG Tian1, LIU Hao2, QI Xinxin3, SHI Xinhong3
(1. Beijing Key Laboratory of Civil Aircraft Structures and Composite Materials, COMAC Beijing Aircraft
Technology Research Institute, Beijing 102211, P. R. China; 2. College of Aerospace and Astronautics,
Chongqing University, Chongqing 400044, P. R. China; 3. Institute of Solid Mechanics, School of
Aeronautic Science and Engineering, Beihang University (BUAA), Beijing 100191, P. R. China)
Abstract:"" According to the study of multiaxial fatigue life of 30CrMnSiA steel, the concept of equivalent S-N curve is proposed based on the uniaxial tension-compression and pure torsion S-N curves in this paper. Based on the equivalent S-N curves, an empirical formula is established to predict the multiaxial fatigue life of hard metal materials. The empirical formula is verified by predicting the fatigue life of various hard metal materials in the literature. Results show that more than 94.0% of the data points are in the ±3 times fatigue life scatter band, and more than 81.8% of the data points are in the ±2 times fatigue life scatter band.
Keywords:" multiaxial fatigue; stress amplitude ratio; phase difference; S-N curve
在工程實際中,許多結(jié)構(gòu)的危險部位都承受著多軸疲勞載荷的作用[1-2],如飛機蒙皮、起落架主起梁、航空發(fā)動機中的葉片和輪盤結(jié)構(gòu)等。不同于單軸疲勞問題,多軸疲勞的影響因素包含多個,已有研究表明對于不同的材料,應(yīng)力幅比、相位差、平均應(yīng)力等因素對疲勞壽命的影響也不相同[3-6]。
多軸高周疲勞壽命預(yù)測準則主要分為4類[7-10]:等效應(yīng)力準則、應(yīng)力不變量準則、細觀積分準則和臨界面準則。等效應(yīng)力準則[11]在靜強度理論的基礎(chǔ)上根據(jù)試驗數(shù)據(jù)得出,形式簡單,但缺乏合理的物理背景;應(yīng)力不變量準則[12]一般以應(yīng)力偏量第二不變量和靜水壓力為參量,計算方便,但是其對多軸疲勞失效機理解釋的有效性還有待驗證,尤其在非比例加載時需要進行修正;細觀積分準則最早由Dang等[13,14]基于應(yīng)力微元的概念提出,之后Papadopoulos[15-17]和Morel等[18,19]都基于該原理提出了相應(yīng)的積分準則;臨界面準則[20-22]建立在裂紋萌生和擴展的基礎(chǔ)上,認為在疲勞載荷下,裂紋萌生于一個特定的平面上,該平面上的切應(yīng)力和正應(yīng)力都會影響疲勞裂紋的萌生與擴展。無論是哪種準則,其對于多軸疲勞壽命的預(yù)測均為采用一個等效的應(yīng)力參量與單軸拉壓或純扭S-N曲線相結(jié)合的方式,等效應(yīng)力參量的計算往往涉及復(fù)雜的過程,且需要進行大量的多軸疲勞試驗進行修正,不方便工程應(yīng)用[23-25]。
筆者基于加載參量對30CrMnSiA鋼多軸疲勞壽命影響的研究,首先提出了等效S-N曲線的概念;然后,基于等效S-N曲線建立了一種快速預(yù)測硬質(zhì)金屬材料多軸疲勞壽命的經(jīng)驗公式;最后,為驗證該經(jīng)驗公式的適用性,選取文獻中多種材料的多軸疲勞試驗結(jié)果,采用所提出的經(jīng)驗公式對試驗壽命進行了預(yù)測。
1 多軸疲勞壽命快速預(yù)測方法
1.1 多軸疲勞應(yīng)力分析
對于恒幅拉扭復(fù)合加載,通常包含5個加載參量,其形式如式(1)(2)所示。
σxt=σx,asinωt+σx,m,(1)
τxyt=τxy,asinωt-δ+τxy,m,(2)
式中:σxt和τxyt分別為隨時間變化的正應(yīng)力和切應(yīng)力,σx,a和τxy,a分別為正應(yīng)力幅值和切應(yīng)力幅值,δ為正應(yīng)力和切應(yīng)力之間的相位差,σx,m和τxy,m分別為平均正應(yīng)力和平均切應(yīng)力。
定義應(yīng)力幅比為切應(yīng)力幅值與正應(yīng)力幅值的比值,如式(3)所示。
λ=τxy,aσx,a。(3)
經(jīng)過推導(dǎo)可以知道,拉扭復(fù)合加載下的應(yīng)力加載路徑是以平均應(yīng)力為中心的橢圓,橢圓的中心為(σx,m,τxy,m),橢圓的長短半軸分別為
la,lb=12σ2x,a+τ2xy,a±σ2x,a+τ2xy,a2-4σ2x,aτ2xy,asin2δ。(4)
由此可知,3種相位差δ=0°(比例加載)、δ=45°和δ=90°(非比例加載)下的拉扭復(fù)合加載路徑如圖1所示。
在研究加載參量對多軸疲勞壽命的影響規(guī)律時,通常試驗會采用相同的von Mises等效應(yīng)力作為參量,該應(yīng)力的幅值可采用“最小外接橢圓[26]”法計算,定義von Mises等效應(yīng)力的幅值為加載路徑最小外接橢圓長短半軸平方和的根。多軸疲勞載荷下的von Mises等效應(yīng)力可以表示為
σeqt=σ2xt+3τ2xyt,(5)
式(5)在數(shù)學(xué)上表示點(σxt,3τxyt)到坐標原點的距離。在多軸疲勞載荷下,von Mises等效應(yīng)力路徑同樣是一個橢圓,該橢圓的長短半軸可以表示為
laeq,lbeq=12σ2x,a+3τ2xy,a±σ2x,a+3τ2xy,a2-12σ2x,aτ2xy,asin2δ。(6)
因此,根據(jù)“最小外接橢圓”法,von Mises等效應(yīng)力幅值如下所示:
σeq,a=l2aeq+l2beq=σ2x,a+3τ2xy,a。(7)
對于單軸拉壓,則有σeq,a=σx,a;對于純扭,則有σeq,a=3τxy,a。
1.2 等效S-N曲線
在參考文獻[26][27]中,根據(jù)30CrMnSiA鋼的單軸、多軸疲勞試驗過程和結(jié)果,在研究應(yīng)力幅比對多軸疲勞壽命的影響時,采用了相同的等效von Mises應(yīng)力幅值。試驗結(jié)果表明:不同相位差下的疲勞壽命隨應(yīng)力幅比增大而增大。因此,考慮將單軸拉壓疲勞試驗的應(yīng)力幅值與純扭疲勞試驗的應(yīng)力幅值分別用von Mises等效應(yīng)力幅值表示,將單軸拉壓和純扭的S-N曲線轉(zhuǎn)變?yōu)榈刃on Mises應(yīng)力幅值壽命曲線,單軸拉壓等效S-N曲線如式(8)所示:
logNf=6.957 7-1.229 4logσx,a-565.25。(8)
純扭載荷下的等效S-N曲線如(9)所示:
logNf=39.041-11.659log3τxy,a。(9)
式(8)和式(9)中,σx,a和τxy,a的單位均為兆帕(MPa)。對于不同應(yīng)力幅比及相位差下的多軸疲勞試驗,多軸疲勞壽命分布在2條等效S-N曲線之間,如圖2所示。由此可以知道,隨著應(yīng)力幅比的增大,疲勞壽命的變化規(guī)律取決于單軸拉壓與純扭的等效von Mises S-N曲線。
Papadopoulos[15-17]認為對于硬金屬(純扭疲勞極限與單拉疲勞極限的比值處于1/3~0.8之間),相位差的影響可以忽略。對于30CrMnSiA鋼,對應(yīng)于106循環(huán)壽命的條件疲勞極限比值為0.69,屬于硬金屬,試驗結(jié)果同樣表明相位差對多軸疲勞壽命的影響并不顯著,如圖3所示。
1.3 壽命預(yù)測方法
在相等的等效von Mises應(yīng)力幅值下,分別定義單軸拉壓和純扭的疲勞壽命為NT和NS,采用式(10)估算不同應(yīng)力幅比下的多軸疲勞壽命。
logNλ=λ1+λlogNS-logNT+logNT。(10)
當(dāng)存在平均應(yīng)力時,采用Goodman準則將正應(yīng)力或切應(yīng)力等效為應(yīng)力比為-1時的應(yīng)力幅值,定義等效應(yīng)力幅比為
λ=τxy,aσx,a=τxy,a1-τxy,mτuσx,a1-σx,mσu。(11)
存在平均應(yīng)力時,等效應(yīng)力幅值表示為
σeq,a=σx,a2+3τxy,a2。(12)
采用等效S-N曲線進行多軸疲勞壽命預(yù)估步驟如下:
1)采用von Mises應(yīng)力幅值擬合單軸拉壓和純扭S-N曲線;
2)根據(jù)式(12)計算得到等效應(yīng)力幅值,并分別計算該等效應(yīng)力幅值下單軸拉壓和純扭的疲勞壽命;
3)根據(jù)式(11)計算得到等效應(yīng)力幅比,代入式(10)計算多軸疲勞壽命。
對于存在相位差的情況,采用該方法進行壽命預(yù)估時,其預(yù)測結(jié)果與相位差δ=0°時的情況相同。
2 預(yù)測方法驗證
使用30CrMnSiA鋼多軸疲勞試驗結(jié)果,同時選取文獻中共8種金屬材料共計318個數(shù)據(jù)點驗證本研究所提出的快速壽命預(yù)測方法,8種材料的單軸拉壓及純扭S-N曲線擬合結(jié)果及擬合優(yōu)度見表1。
9種金屬材料的預(yù)測結(jié)果與試驗結(jié)果的對比如圖4所示,經(jīng)過數(shù)據(jù)統(tǒng)計表明,超過94.0%的數(shù)據(jù)點都處于±3倍疲勞壽命分散帶之內(nèi),大約81.8%的數(shù)據(jù)點都處于±2倍疲勞壽命分散帶之內(nèi),本文所提出的快速壽命預(yù)測方法具有一定的適用性。
3 結(jié) 論
基于加載參量對30CrMnSiA鋼多軸疲勞壽命的影響規(guī)律,考慮多軸疲勞加載路徑的特點,提出了等效S-N曲線的概念,在此基礎(chǔ)上建立了一種多軸高周疲勞壽命快速預(yù)測方法。為了驗證該方法的適用性,對文獻中多種材料的試驗結(jié)果進行了預(yù)測。通過本研究,可以得到如下結(jié)論:
1)在相同的等效von Mises應(yīng)力幅值下,多軸加載疲勞壽命通常分布于單軸拉壓和純扭S-N曲線之間;
2)建立的多軸高周疲勞壽命快速預(yù)測方法對于多種材料預(yù)測結(jié)果顯示超過94.0%的數(shù)據(jù)點均處于±3倍疲勞壽命分散帶之內(nèi),81.8%以上的數(shù)據(jù)點處于±2倍疲勞壽命分散帶之內(nèi);
3)建立的多軸高周疲勞壽命快速預(yù)測方法參數(shù)獲取簡單,便于工程應(yīng)用,并具備較強的適用性。
參考文獻:
[1] Wang C, Shang D G, Wang X W. A new multiaxial high-cycle fatigue criterion based on the critical plane for ductile and brittle materials[J]. Journal of Materials Engineering and Performance, 2015, 24(2): 816-824.
[2] 亞伯·斯海維. 結(jié)構(gòu)與材料的疲勞[M]. 吳學(xué)仁, 等, 譯. 北京: 航空工業(yè)出版社, 2014.
Schijve J. Fatigue of structures and materials[M]. Wu X R, et al, trans. Beijing: Aviation Industry Press, 2014. (in Chinese)
[3] Socie D, Marquis G. Multiaxial fatigue[M]. Warrendale, Pennsylvania: SAE, 2000.
[4] Zhu S P, Yu Z Y, Correia J, et al. Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials[J]. International Journal of Fatigue, 2018, 112: 279-288.
[5] Montalvo D, Qiu S W, Freitas M. A study on the influence of Ni-Ti M-Wire in the flexural fatigue life of endodontic rotary files by using Finite Element Analysis[J]. Materials Science and Engineering: C, 2014, 40: 172-179.
[6] Reis L, Li B, de Freitas M. A multiaxial fatigue approach to rolling contact fatigue in railways[J]. International Journal of Fatigue, 2014, 67: 191-202.
[7] 時新紅, 鮑蕊, 張建宇, 等. 多軸高周疲勞失效準則的對比分析[J]. 航空動力學(xué)報, 2008, 23(11): 2007-2015. Shi X H, Bao R, Zhang J Y, et al. Comparative study of multiaxial high-cycle fatigue-prediction criteria[J]. Journal of Aerospace Power, 2008, 23(11): 2007-2015.(in Chinese)
[8] 時新紅, 張建宇, 鮑蕊, 等. 材料多軸高低周疲勞失效準則的研究進展[J]. 機械強度, 2008, 30(3): 515-521.
Shi X H, Zhang J Y, Bao R, et al. Development of failure criterion on high-cycle and low-cycle multiaxial fatigue[J]. Journal of Mechanical Strength, 2008, 30(3): 515-521.(in Chinese)
[9] Qi X X, Liu T Q, Shi X H, et al. A sectional critical plane model for multiaxial high-cycle fatigue life prediction[J]. Fatigue amp; Fracture of Engineering Materials amp; Structures, 2021, 44(3): 689-704.
[10] Fatemi A, Shamsaei N. Multiaxial fatigue: an overview and some approximation models for life estimation[J]. International Journal of Fatigue, 2011, 33(8): 948-958.
[11] Gough H J. Engineering steels under combined cyclic and static stresses[J]. Journal of Applied Mechanics, 1950, 17(2):113-125.
[12] Wang Y Y, Yao W X. Evaluation and comparison of several multiaxial fatigue criteria[J]. International Journal of Fatigue, 2004, 26(1): 17-25.
[13] Dang Van K, Griveau B, Message O. On a new multiaxial fatigue limit criterion: theory and application[C]∥Biaxial and Multiaxial Fatigue. London: Mechanical Engineering Publications, 1989: 479-496.
[14] Dang van K, Cailletaud G, Flavenot J F, et al. Criterion for high-cycle fatigue failure under multiaxial loading[C]∥Biaxial and Multiaxial Fatigue. London: Mechanical Engineering Publications, 1989: 459-478.
[15] Papadopoulos I V. A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals[J]. International Journal of Fatigue, 1994, 16(6): 377-384.
[16] Papadopoulos I V. A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions[J]. Fatigue amp; Fracture of Engineering Materials amp; Structures, 1995, 18(1): 79-91.
[17] Papadopoulos I V. Long life fatigue under multiaxial loading[J]. International Journal of Fatigue, 2001, 23(10): 839-849.
[18] Morel F. A fatigue life prediction method based on a mesoscopic approach in constant amplitude multiaxial loading[J]. Fatigue amp; Fracture of Engineering Materials amp; Structures, 1998, 21(3): 241-256.
[19] Morel F, Palin-Luc T, Froustey C. Comparative study and link between mesoscopic and energetic approaches in high cycle multiaxial fatigue[J]. International Journal of Fatigue, 2001, 23(4): 317-327.
[20] Kluger K, Karolczuk A, Robak G. Validation of multiaxial fatigue criteria application to lifetime calculation of S355 steel under cyclic bending-torsion loading[J]. Procedia Structural Integrity, 2019, 23: 89-94.
[21] Xu S, Zhu S P, Hao Y Z, et al. A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys[J]. Engineering Failure Analysis, 2018, 93: 55-63.
[22] de Freitas M, Reis L, Meggiolaro M A, et al. Stress scale factor and critical plane models under multiaxial proportional loading histories[J]. Engineering Fracture Mechanics, 2017, 174: 104-116.
[23] Matsubara G, Nishio K. Multiaxial high-cycle fatigue criterion considering crack initiation and non-propagation[J]. International Journal of Fatigue, 2013, 47: 222-231.
[24] Papuga J. Improvements of two criteria for multiaxial fatigue limit evaluation[J]. Bulletin of Applied Mechanics, 2010, 5(20):80-86.
[25] Carpinteri A, Boaretto J, Fortese G, et al. Fatigue life estimation of fillet-welded tubular T-joints subjected to multiaxial loading[J]. International Journal of Fatigue, 2017, 101: 263-270.
[26] Liu T Q, Shi X H, Zhang J Y, et al. Crack initiation and propagation of 30CrMnSiA steel under uniaxial and multiaxial cyclic loading[J]. International Journal of Fatigue, 2019, 122: 240-255.
[27] Liu T Q, Shi X H, Zhang J Y, et al. Multiaxial high-cycle fatigue failure of 30CrMnSiA steel with mean tension stress and mean shear stress[J]. International Journal of Fatigue, 2019, 129: 105219.
[28] Lee S B. A criterion for fully reversed out-of-phase torsion and bending[M]∥Miller K J, Brown M W. Multiaxial fatigue. Philadelphia: ASTM International, 1982: 553-568.
[29] Papuga J, Vízková I, Nesládek M, et al. Validation data set for testing the criteria for multiaxial fatigue strength estimation[J]. Fatigue amp; Fracture of Engineering Materials amp; Structures, 2018, 41(11): 2259-2271.
[30] Gasiak G, Pawliczek R. Application of an energy model for fatigue life prediction of construction steels under bending, torsion and synchronous bending and torsion[J]. International Journal of Fatigue, 2003, 25(12): 1339-1346.
[31] Karolczuk A, Kluger K. Analysis of the coefficient of normal stress effect in chosen multiaxial fatigue criteria[J]. Theoretical and Applied Fracture Mechanics, 2014, 73: 39-47.
[32] Karolczuk A, Kluger K, agoda T. A correction in the algorithm of fatigue life calculation based on the critical plane approach[J]. International Journal of Fatigue, 2016, 83: 174-183.
[33] Yip M C, Jen Y M. Biaxial fatigue crack initiation life prediction of solid cylindrical specimens with transverse circular holes[J]. International Journal of Fatigue, 1996, 18(2): 111-117.
[34] Wang Y Y, Yao W X. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading[J]. International Journal of Fatigue, 2006, 28(4): 401-408.
[35] Luo P, Yao W X, Susmel L, et al. A survey on multiaxial fatigue damage parameters under non-proportional loadings[J]. Fatigue amp; Fracture of Engineering Materials amp; Structures, 2017, 40(9): 1323-1342.
[36] 張成成. 復(fù)雜應(yīng)力場下結(jié)構(gòu)高周疲勞壽命分析[D]. 南京: 南京航空航天大學(xué), 2010.
Zhang C C. Fatigue life prediction of structures in HCF region under complex stress field[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
[37] Gates N R, Fatemi A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis[J]. International Journal of Fatigue, 2017, 100: 322-336.
[38] Karolczuk A, Papuga J, Palin-Luc T. Progress in fatigue life calculation by implementing life-dependent material parameters in multiaxial fatigue criteria[J]. International Journal of Fatigue, 2020, 134: 105509.
(編輯 鄭 潔)
收稿日期:2021-04-16 "網(wǎng)絡(luò)出版日期:2021-07-09
基金項目:國家自然科學(xué)基金資助項目(11172021)。
Supported by National Natural Science Foundation of China(11172021).
作者簡介:劉天奇(1988—),男,博士,主要從事民用飛機結(jié)構(gòu)疲勞及損傷容限研究。
通信作者:劉浩(1980—),男,博士,主要從事金屬材料復(fù)雜環(huán)境疲勞失效研究,(E-mail)liuhaocqu@cqu.edu.cn.