王鑫瑤 楊惠 李冰冰
摘要:子宮內(nèi)膜異位癥是一種常見的慢性婦科疾病,其發(fā)病機制至今尚未完全闡明。間充質干細胞是來源于中胚層的一類具有多向分化潛能的多能干細胞,可分化為多種組織和器官。子宮內(nèi)膜間充質干細胞、經(jīng)血源性間充質干細胞、脂肪間充質干細胞、骨髓間充質干細胞、臍帶血間充質干細胞可從細胞增殖分化、異位遷移、血管生成、炎癥反應及纖維化形成等方面參與子宮內(nèi)膜異位癥的發(fā)病,在疾病的進展中發(fā)揮著一定作用。間充質干細胞為闡明子宮內(nèi)膜異位癥的發(fā)病機制提供了新的思路,同時也或可成為治療子宮內(nèi)膜異位癥的潛在方法。
關鍵詞:子宮內(nèi)膜異位癥;間質干細胞;細胞運動;炎癥;發(fā)病機制
中圖分類號:R711.71文獻標志碼:ADOI:10.11958/20231271
Research progress of mesenchymal stem cells in endometriosis
Abstract: Endometriosis is a common chronic gynecological disease, and its pathogenesis has not been fully elucidated. Mesenchymal stem cells are a kind of pluripotent stem cells with multi-directional differentiation potential derived from mesoderm, which can differentiate into a variety of tissues and organs. Endometrial mesenchymal stem cells, menstrual blood-derived mesenchymal stem cells, adipose mesenchymal stem cells, bone marrow mesenchymal stem cells and umbilical cord blood mesenchymal stem cells can participate in the pathogenesis of endometriosis from cell proliferation and differentiation, ectopic migration, angiogenesis, inflammatory response and fibrosis formation, and play a certain role in progression of the disease. Mesenchymal stem cells provide new ideas for elucidating the pathogenesis of endometriosis, and may also become a potential method for the treatment of endometriosis.
Key words: endometriosis; mesenchymal stem cells; cell movement; inflammation; pathogenesis
子宮內(nèi)膜異位癥(endometriosis,EMs)是指子宮內(nèi)膜組織(腺體和間質)在子宮以外的部位浸潤、生長,繼而引發(fā)疼痛、不孕等癥狀的疾病。EMs是育齡期女性的常見疾病,也是導致痛經(jīng)、性交痛、慢性盆腔痛和不孕癥的主要原因之一[1]。EMs發(fā)病機制尚未完全闡明,目前主要有經(jīng)血逆流學說、體腔化生學說、干細胞理論等[2],同時也受遺傳、免疫等多種因素的影響。其中干細胞理論認為來源于子宮內(nèi)膜、月經(jīng)血、脂肪、骨髓、臍帶的一種或多種干細胞,如上皮細胞、間充質干細胞(mesenchymal stem cells,MSCs)、側群細胞可分化為EMs病變細胞[3]。間充質干細胞也稱間充質基質細胞,是起源于中胚層的非造血成體干細胞[4]。近年相關研究顯示,MSCs可在細胞增殖分化、異位遷移、血管生成、炎癥反應等多方面影響EMs的發(fā)展。明確MSCs在EMs發(fā)病中的作用,或可對進一步闡明EMs的發(fā)病機制具有重要意義。本文主要綜述MSCs在EMs發(fā)病機制中的作用,以期為EMs的相關研究和臨床治療提供新思路。
1 子宮內(nèi)膜間充質干細胞(endometrial mesenchymal stem cells,eMSCs)
Chan等[5]于2004年首次從切除子宮組織的單細胞懸浮液中發(fā)現(xiàn)了特殊的克隆生成細胞,為子宮內(nèi)膜中存在干細胞提供了證據(jù)。子宮內(nèi)膜干細胞可分為3類:子宮內(nèi)膜上皮干細胞、eMSCs和側群細胞[6]。Liu等[7]研究發(fā)現(xiàn),相較于非EMs女性,EMs患者異位子宮內(nèi)膜間充質干細胞(ectopic endometrial mesenchymal stem cells,ect-eMSCs)的遷移能力和血管生成能力增強,ect-eMSCs不僅可以促進EMs纖維化的發(fā)展,也可抑制M2巨噬細胞活性,導致ect-eMSCs逃脫免疫監(jiān)視,提示ect-eMSCs與在位子宮內(nèi)膜間充質干細胞(eutopic endometrial mesenchymal stem cells,eut-eMSCs)的生物學特性差異能夠影響EMs進展。
子宮內(nèi)膜細胞的異位遷移、黏附是EMs發(fā)病的必要過程,同時還涉及血管生成、免疫反應、纖維化、遺傳等多方面影響因素[8]。EMs異位病灶的建立首先需要經(jīng)歷細胞的黏附侵襲,Li等[9]通過檢測腹膜型EMs小鼠和切除卵巢的腹膜型EMs小鼠的循環(huán)血,在兩組小鼠血液中均發(fā)現(xiàn)了EMs來源的eMSCs生物標志物,如CD90、CD105、CD9和Oct3/4,且eMSCs仍保持著干細胞特性,可隨血液循環(huán)遷移,并分裂分化形成異位病灶。Wang等[10]發(fā)現(xiàn)與非EMs女性相比,EMs患者的ect-eMSCs中DNA復制ATP依賴性解旋酶/核酸酶2(ation ATP-dependent helicase/nuclease 2,DNA2)的表達升高,DNA2可參與DNA復制和修復過程,還可激活致癌因子的表達從而增強ect-eMSCs的增殖和遷移能力。Koippallil等[11]研究顯示,相較于非EMs女性,EMs患者的ect-eMSCs中基質金屬蛋白酶(matrix metalloproteinase,MMP)的表達升高,MMP通過降解細胞外基質及基底膜從而增強細胞遷移能力,更有利于建立異位病灶并且進一步發(fā)展。
細胞經(jīng)歷黏附、侵襲后,異位病灶組織細胞的生長發(fā)育需要依靠血液中氧氣和充足的營養(yǎng)物質的供應維系,血管生成則是異位病灶發(fā)生發(fā)展的另一重要條件[12]。血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)是血管生成的主要調節(jié)因子,可促進血管內(nèi)皮細胞分化、增殖及遷移,是誘導血管生成的關鍵因素[13]。有研究指出,相較于非EMs女性,VEGF和C-X-C-motif趨化因子配體8(C-X-C-motif chemokine ligand 8,CXCL8)在EMs患者的eut-eMSCs中表達明顯升高,二者可協(xié)同體內(nèi)的炎性細胞因子促進血管生成,有利于EMs的異位遷移與侵襲[11,14]。
EMs是一類慢性炎癥性疾?。?]。研究顯示EMs患者ect-eMSCs中白細胞介素-6(interleukin-6,IL-6)、干擾素-γ(interferon,IFN-γ)等炎性細胞因子表達有明顯的升高,而抗炎因子轉化生長因子(transforming growth factor-β,TGF-β)表達水平下降,這些免疫炎性因子的改變能夠抑制T細胞的增殖而導致免疫清除能力下降,促進EMs疾病和炎癥反應進一步發(fā)展[11]。
除炎癥反應外,EMs的另一主要病理特征是纖維化沉積,其特點是大量細胞外基質重組沉淀,組織學上表現(xiàn)為子宮內(nèi)膜腺體和間質周圍包裹過多致密的纖維組織導致瘢痕形成[15]。TGF-β1在EMs患者的異位子宮內(nèi)膜和腹膜組織中高表達,與纖維化過程呈正相關[16]。ect-MSCs可通過TGF-β1旁分泌促進子宮內(nèi)膜基質細胞遷移、侵襲和纖維化,且TGF-β1以smad3依賴的方式上調子宮內(nèi)膜基質細胞中的DNA甲基轉移酶3A表達,導致Ras蛋白激活劑如1(RASAL1)啟動子甲基化,減少了抗纖維化蛋白RASAL1的表達,促進EMs纖維化[17]。Zhang等[18]用非EMs女性和EMs患者的腹膜液培養(yǎng)非EMs女性的eMSCs,檢測發(fā)現(xiàn)采用EMs患者腹膜液所培養(yǎng)的eMSCs中Ⅰ型膠原蛋白、α平滑肌肌動蛋白、纖維連接蛋白和結締組織生長因子(connective tissue growth factor,CTGF)表達相對升高,提示EMs患者的腹膜液能促進eMSCs向肌成纖維細胞分化,從而導致EMs的纖維化。另有研究發(fā)現(xiàn),與非EMs女性相比,卵巢型EMs患者腹膜液中激活素A(Activin A)表達升高,Activin A可導致信號轉導轉錄激活因子3(STAT3)磷酸化進而激活Smad/CTGF通路,導致CTGF的表達升高,進而促進eMSCs分化為肌成纖維細胞,加速纖維化進程[19]。Li等[20]研究發(fā)現(xiàn),卵巢型EMs患者的ect-eMSCs中TGF-β1和Wnt1的表達較eut-eMSCs增高,TGF-β是纖維化過程中的關鍵因子,能夠促進上皮-間質轉換并激活Wnt/β-catenin通路,打破纖維發(fā)生和纖維溶解之間的平衡而導致EMs的纖維化。
另外,EMs中存在許多差異表達的微小RNA(microRNA,miRNA)對疾病發(fā)展過程中的細胞黏附、增殖分裂、血管生成等方面均有影響[21]。Mashayekhi等[22]檢測到EMs患者的eMSCs中miR-200b的表達升高,let-7b的表達下調;其中l(wèi)et-7b表達降低能夠提高eMSCs的增殖、遷移和自我更新能力,促進EMs的進一步發(fā)展;高表達的miR-200b除能夠增強eMSCs的增殖和遷移能力之外,還可協(xié)同轉錄因子性別決定區(qū)Y框蛋白2(SOX-2)和八聚體結合轉錄因子4(OCT4)促進上皮-間充質細胞的轉化,從而加快纖維化進程。
2 經(jīng)血源性間充質干細胞(menstrual blood-derived mesenchymal stem cells,MenSCs)
經(jīng)血逆流學說是EMs目前比較公認的發(fā)病學說,但仍無法完全解釋EMs的發(fā)病機制。Meng等[23]于2007年從女性經(jīng)血中分離出一類可表達EMs和胚胎干細胞標志物的細胞,即MenSCs。MenSCs源自周期性脫落的子宮內(nèi)膜,與非EMs女性相比,EMs患者的MenSCs有不同的形態(tài)以及功能[24]。EMs患者與非EMs女性的MenSCs在基因表達上有明顯不同[25],如ATF3、ID1、TYMP、COL6A1等,可多通路多方面影響EMs的發(fā)展。明確MenSCs的作用有助于闡明EMs的發(fā)病機制,對后續(xù)診療也有重要意義。
Liu等[26]研究發(fā)現(xiàn),EMs患者和健康女性的MenSCs在形態(tài)上有明顯的不同,且EMs患者的MenSCs增殖和侵襲能力明顯提高,但其免疫調節(jié)能力下降。張悅健等[27]研究發(fā)現(xiàn),與非EMs女性相比,EMs患者的MenSCs中自噬體與自噬溶酶體的數(shù)量減少導致細胞活性提高,使得脫落的子宮內(nèi)膜細胞可在宮腔外種植并繼續(xù)存活發(fā)展。De oliveira等[28]研究指出,與健康對照組相比,EMs患者的MenSCs中miR-200b-3p表達升高,其過表達可提高MenSCs的增殖能力,有利于干細胞的異位侵襲與定植。此外,miR-200b-3p還可調節(jié)VEGF以及表皮生長因子受體2參與血管生成,有助于異位病變的建立和維持。Sahraei等[29]研究發(fā)現(xiàn),EMs患者MenSCs中促凋亡基因BAX與抗凋亡基因BCL-2的比值較非EMs女性明顯下降,而有絲分裂因子、VEGF及MMP-2、MMP-9的基因表達較高,EMs患者中MenSCs表現(xiàn)出更強的增殖、侵襲以及血管生成能力,且炎性因子的表達也有明顯升高,如IL-1β、IL-6、IL-8,炎性因子可促進核因子-κB(nuclear factor κB,NF-κB)和環(huán)氧化酶(COX)-2的表達,這些免疫微環(huán)境的改變可加重EMs患者的炎癥反應,還能夠抑制細胞凋亡進而提高細胞的侵襲能力。
3 脂肪間充質干細胞(adipose mesenchymal stem cells,AD-MSCs)
研究表明,BMI與EMs疾病嚴重程度呈負相關,相較于非EMs女性,EMs患者各種脂肪因子的表達有明顯差異,如瘦素表達升高、脂聯(lián)素表達降低,這些差異表達的脂肪因子可提高異位子宮內(nèi)膜基質細胞的分裂增殖及血管生成能力,導致EMs進一步發(fā)展[30]。AD-MSCs存在于皮下脂肪組織的基質血管組織中,也稱脂肪基質細胞,有很強的增殖、黏附、血管生成以及免疫調節(jié)能力[31-32]。Zolbin等[33]用miR-342-3p模擬物和Let 7b-5p抑制劑轉染非EMs原代脂肪細胞,以模擬這些microRNAs在EMs中的狀態(tài),發(fā)現(xiàn)miR-342-3p和Let 7b-5p可顯著影響脂肪細胞代謝基因的表達;同時,該研究還發(fā)現(xiàn)EMs模型小鼠脂肪組織中干細胞數(shù)量減少,從而影響脂肪細胞增殖。Abomaray等[34]收集了來自卵巢型EMs患者的ect-eMSCs及eut-eMSCs,將其與健康女性的AD-MSCs共培養(yǎng),發(fā)現(xiàn)相對于未用AD-MSCs處理組,AD-MSCs處理組提高了2種細胞的增殖、遷移和存活能力。Falomo等[35]將取自馬的AD-MSCs與EMs及非EMs母馬的子宮內(nèi)膜組織共培養(yǎng),發(fā)現(xiàn)相較于非EMs母馬,AD-MSCs能明顯促進EMs母馬的子宮內(nèi)膜細胞IL-1β、IL-10、TNF-α、MMP-9等表達;IL-1β的升高能促進EMs的炎癥反應,而IL-10的升高則抑制炎癥反應,但是作者并未闡明AD-MSCs對子宮內(nèi)膜細胞促炎和抑炎的潛在影響,還需進一步研究。
4 骨髓間充質干細胞(bone marrow mesenchymal stem cells,BMSCs)
BMSCs是一種具有高度自我更新和潛在多向分化能力的多能干細胞,并且可調控巨噬細胞亞型轉化,使BMSCs同時具有促炎與抗炎雙重效應。EMs是一種慢性炎癥疾病,BMSCs可通過影響免疫微環(huán)境影響EMs的發(fā)展。研究證實,通過尾靜脈向EMs模型大鼠體內(nèi)注射來源于雄性大鼠的示蹤BMSCs后,可在EMs病灶處發(fā)現(xiàn)被標記的BMSCs,且BMSCs可部分分化為子宮內(nèi)膜上皮細胞,即BMSCs可通過血液循環(huán)向EMs病灶處遷移,參與EMs的發(fā)展[36]。Chen等[37]將EMs患者和非EMs女性的子宮內(nèi)膜基質細胞與BMSCs共培養(yǎng),發(fā)現(xiàn)EMs患者子宮內(nèi)膜基質細胞中周期蛋白依賴性激酶1(cyclin-dependent kinase1,CDK-1)的表達明顯升高,而正常的子宮內(nèi)膜基質細胞并無此表現(xiàn),提示BMSCs可通過誘導EMs患者的子宮內(nèi)膜基質細胞CDK-1的表達而縮短細胞周期,促進子宮內(nèi)膜基質細胞的分裂增殖,導致子宮內(nèi)膜異位病灶的進一步發(fā)展。有研究將EMs患者在位及異位子宮內(nèi)膜基質細胞與BMSCs共培養(yǎng),結果顯示BMSCs中程序性細胞死亡配體1(programmed cell death ligand 1,PD-1)的表達明顯升高[38],BMSCs移位至異位病灶時,PD-1可介導T細胞免疫應答。PD-1與配體結合時可抑制T細胞殺滅病變細胞以致異位病灶存活并繼續(xù)發(fā)展。BMSCs在EMs中的研究較少,有待進一步研究。
5 臍帶血間充質干細胞(umbilical cord blood mesenchymal stem cells,UC-MSCs)
由于UC-MSCs分化成熟程度更小,相比于上述其他MSCs有更少的免疫排斥反應,且具有多系分化潛力。近年來研究發(fā)現(xiàn)UC-MSCs具有促進血管生成及細胞功能恢復、影響炎癥反應以及抑制疤痕形成等作用[39]。Chen等[40]將封裝有人UC-MSCs的水凝膠采用子宮原位注射的方法,干預治療子宮內(nèi)膜損傷模型小鼠,結果發(fā)現(xiàn)人UC-MSCs可以促進血管生成和子宮內(nèi)膜再生,從而促進生育能力的恢復。Xu等[41]發(fā)現(xiàn)采用UC-MSCs共培養(yǎng)干預后,可上調EMs患者異位子宮內(nèi)膜細胞中緊張素同源基因PTEN的mRNA表達水平,抑制細胞體外增殖,并促進細胞凋亡。Feng等[42]發(fā)現(xiàn)采用人臍帶血間充質干細胞來源的外泌體(the exosomes derived from human umbilical cord blood mesenchymal stem cells,hUC-MSCs-exo)培養(yǎng)干預后,可抑制EMs患者的異位子宮內(nèi)膜腺上皮細胞中E-鈣黏蛋白的表達,促進N-鈣黏蛋白和波形蛋白的表達,并能提高細胞的遷移侵襲能力,促進細胞的上皮-間充質轉化。Zhang等[43]發(fā)現(xiàn),來自人UC-MSC的miR-100可通過細胞外囊泡進入到EMs患者的子宮內(nèi)膜基質細胞中并抑制硫酸乙酰肝素葡萄糖胺3-磺基轉移酶2表達,促進子宮內(nèi)膜基質細胞增殖、遷移和侵襲。
6 小結與展望
MSCs可從多方面,如細胞遷移侵襲、血管生成、纖維化形成以及免疫微環(huán)境等影響EMs的發(fā)展,為探究EMs的發(fā)病機制提供了新思路。MSCs因其良好的細胞穩(wěn)定性和較少的免疫排斥反應,或可成為治療EMs潛在的有力工具。Cheng等[44]發(fā)現(xiàn),eMSCs對腫瘤和炎癥反應部位有很好的趨向性,或可將eMSCs用于EMs的靶向治療。Chen等[45]研究顯示,UC-MSCs可降低EMs模型大鼠異位病變部位神經(jīng)纖維的密度,從而降低對痛覺的敏感度,有望為干預EMs患者疼痛問題提供借鑒。在改善卵巢功能方面,研究證實移植BMSCs后的EMs模型小鼠卵巢組織中腫瘤壞死因子α受體1的表達減低,顆粒細胞凋亡減少,從而促進卵泡生成,改善EMs的預后[46]??傊?,深入開展對MSCs功能的研究可為靶向MSCs來尋找治療EMs的新方法提供一定借鑒和參考。
參考文獻
[1] 中國醫(yī)師協(xié)會婦產(chǎn)科醫(yī)師分會,中華醫(yī)學會婦產(chǎn)科學分會子宮內(nèi)膜異位癥協(xié)作組. 子宮內(nèi)膜異位癥診治指南(第三版)[J]. 中華婦產(chǎn)科雜志,2021,56(12):812-824. Chinese Obstetricians and Gynecologists Association Cooperative Group of Endometriosis,Chinese Society of Obstetrics and Gynecology,Chinese Medical Association. Guideline for the diagnosis and treatment of endometriosis(Third edition)[J]. Chinese Journal of Obstetrics and Gynecology,2021,56(12):812-824. doi:10.3760/cma.j.cn112141-20211018-00603.
[2] LAMCEVA J,ULJANOVS R,STRUMFA I. The main theories on the pathogenesis of endometriosis[J]. Int J Mol Sci,2023,24(5):4254. doi:10.3390/ijms24054254.
[3] MARUYAMA T. A revised stem cell theory for the pathogenesis of endometriosis[J]. J Pers Med,2022,12(2):216. doi:10.3390/jpm12020216.
[4] ZHAO Y X,CHEN S R,SU P P,et al. Using mesenchymal stem cells to treat female infertility:An update on female reproductive diseases[J]. Stem Cells Int,2019,2019:9071720. doi:10.1155/2019/9071720.
[5] CHAN R W,SCHWAB K E,GARGETT C E. Clonogenicity of human endometrial epithelial and stromal cells[J]. Biol Reprod,2004,70(6):1738-1750. doi:10.1095/biolreprod.103.024109.
[6] KONG Y,SHAO Y,REN C,et al. Endometrial stem/progenitor cells and their roles in immunity,clinical application,and endometriosis[J]. Stem Cell Res Ther,2021,12(1):474. doi:10.1186/s13287-021-02526-z.
[7] LIU Y,LIANG S,YANG F,et al. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis[J]. Stem Cell Res Ther,2020,11(1):346. doi:10.1186/s13287-020-01856-8.
[8] HUNG S W,ZHANG R,TAN Z,et al. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment:A review[J]. Med Res Rev,2021,41(4):2489-2564. doi:10.1002/med.21802.
[9] LI F,ALDERMAN M H 3rd,TAL A,et al. Hematogenous dissemination of mesenchymal stem cells from endometriosis[J]. Stem Cells,2018,36(6):881-890. doi:10.1002/stem.2804.
[10] WANG X,ZENG W,XU S,et al. Up-regulation of DNA2 results in cell proliferation and migration in endometriosis[J]. J Mol Histol,2021,52(4):741-749. doi:10.1007/s10735-021-09983-z.
[11] KOIPPALLIL GOPALAKRISHNAN NAIR A R,PANDIT H,WARTY N,et al. Endometriotic mesenchymal stem cells exhibit a distinct immune phenotype[J]. Int Immunol,2015,27(4):195-204. doi:10.1093/intimm/dxu103.
[12] AYDIN G A,AYVACI H,KOC N,et al. The Relationship between decorin and VEGF in endometriosis[J]. J Coll Physicians Surg Pak,2021,31(11):1285-1290. doi:10.29271/jcpsp.2021.11.1285.
[13] BURGER M G,GROSSO A,BRIQUEZ P S,et al. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration[J]. Acta Biomater,2022,149:111-125. doi:10.1016/j.actbio.2022.07.014.
[14] HEYDARI S,KASHANI L,NORUZINIA M. Dysregulation of angiogenesis and inflammatory genes in endometrial mesenchymal stem cells and their contribution to endometriosis[J]. Iran J Allergy Asthma Immunol,2021,20(6):740-750. doi:10.18502/ijaai.v20i6.8025.
[15] MATSUZAKI S,POULY J L,CANIS M. Dose-dependent pro- or anti-fibrotic responses of endometriotic stromal cells to interleukin-1β and tumor necrosis factor α[J]. Sci Rep,2020,10(1):9467. doi:10.1038/s41598-020-66298-x.
[16] YOUNG V J,AHMAD S F,DUNCAN WC,et al. The role of TGF-β in the pathophysiology of peritoneal endometriosis[J]. Hum Reprod Update,2017,23(5):548-559. doi:10.1093/humupd/dmx016.
[17] FENG Y,DONG H,TAN B. Endometriotic mesenchymal stem cells promote the fibrosis process of endometriosis through paracrine TGF-β1 mediated RASAL1 inhibition[J]. J Obstet Gynaecol Res,2023. doi:10.1111/jog.15851. [Epub ahead of print].
[18] ZHANG Z,SUO L,CHEN Y,et al. Endometriotic peritoneal fluid promotes myofibroblast differentiation of rndometrial mesenchymal stem cells[J]. Stem Cells Int,2019,2019:6183796. doi:10.1155/2019/6183796.
[19] ZHANG Z,WANG J,CHEN Y,et al. Activin a promotes myofibroblast differentiation of endometrial mesenchymal stem cells via STAT3-dependent Smad/CTGF pathway[J]. Cell Commun Signal,2019,17(1):45. doi:10.1186/s12964-019-0361-3.
[20] LI J,DAI Y,ZHU H,et al. Endometriotic mesenchymal stem cells significantly promote fibrogenesis in ovarian endometrioma through the Wnt/β-catenin pathway by paracrine production of TGF-β1 and Wnt1[J]. Hum Reprod,2016,31(6):1224-1235. doi:10.1093/humrep/dew058.
[21] RAJA M,F(xiàn)AROOQUI N,ZUBERI N,et al. Endometriosis,infertility and MicroRNA's:A review[J]. J Gynecol Obstet Hum Reprod,2021,50(9):102157. doi:10.1016/j.jogoh.2021.102157.
[22] MASHAYEKHI P,NORUZINIA M,ZEINALI S,et al. Endometriotic mesenchymal stem cells epigenetic pathogenesis:Deregulation of miR-200b,miR-145,and let7b in a functional imbalanced epigenetic disease[J]. Cell J,2019,21(2):179-185. doi:10.22074/cellj.2019.5903.
[23] MENG X,ICHIM T E,ZHONG J,et al. Endometrial regenerative cells: a novel stem cell population[J]. J Transl Med,2007,5:57. doi:10.1186/1479-5876-5-57.
[24] CORDEIRO M R,CARVALHOS C A,F(xiàn)IGUEIREDO-DIAS M. The emerging role of menstrual-blood-derived stem cells in endometriosis[J]. Biomedicines,2022,11(1):39. doi:10.3390/biomedicines11010039.
[25] PENARIOL L,THOMé C H,TOZETTI P A,et al. What do the transcriptome and proteome of menstrual blood-derived mesenchymal stem cells tell us about endometriosis?[J]. Int J Mol Sci,2022,23(19):11515. doi:10.3390/ijms231911515.
[26] LIU Y,ZHANG Z,YANG F,et al. The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis[J]. Biol Reprod,2020,102(6):1153-1159. doi:10.1093/biolre/ioaa011.
[27] 張悅健,林陶秀,何甜甜,等. 子宮內(nèi)膜異位癥患者與健康女性的經(jīng)血源間充質干細胞自噬功能比較研究[J]. 藥物評價研究,2023,46(7):1417-1423. ZHANG Y J,LIN T X,HE T T,et al. Comparative study of autophagy in menstrual blood-derived mesenchymal stem cells from patients with endometriosis and healthy women[J]. Drug Evaluation Research,2023,46(7):1417-1423. doi:10.7501/j.issn.1674-6376.2023.07.004.
[28] DE OLIVEIRA R Z,DE OLIVEIRA BUONO F,CRESSONI A,et al. Overexpression of miR-200b-3p in menstrual blood-derived mesenchymal stem cells from endometriosis women[J]. Reprod Sci,2022,29(3):734-742. doi:10.1007/s43032-022-00860-y.
[29] SAHRAEI S S,DAVOODI ASL F,KALHOR N,et al. A comparative study of gene expression in menstrual blood-derived stromal cells between endometriosis and healthy women[J]. Biomed Res Int,2022,2022:7053521. doi:10.1155/2022/7053521.
[30] SCH?LER-TOPRAK S,ORTMANN O,BUECHLER C,et al. The complex roles of adipokines in polycystic ovary syndrome and endometriosis[J]. Biomedicines,2022,10(10):2503. doi:10.3390/biomedicines10102503.
[31] MAZINI L,ROCHETTE L,AMINE M,et al. Regenerative capacity of adipose derived stem cells(ADSCs),comparison with mesenchymal stem cells(MSCs)[J]. Int J Mol Sci,2019,20(10):2523. doi:10.3390/ijms20102523.
[32] COSTELA RUIZ V J,MELGUIZO RODR?GUEZ L,ILLESCAS MONTES R,et al. Human adipose tissue-derived mesenchymal stromal cells and their phagocytic capacity[J]. J Cell Mol Med,2022,26(1):178-185. doi:10.1111/jcmm.17070.
[33] ZOLBIN M M,MAMILLAPALLI R,NEMATIAN S E,et al. Adipocyte alterations in endometriosis:reduced numbers of stem cells and microRNA induced alterations in adipocyte metabolic gene expression[J]. Reprod Biol Endocrinol,2019,17(1):36. doi:10.1186/s12958-019-0480-0.
[34] ABOMARAY F,GIDL?F S,BEZUBIK B,et al. Mesenchymal stromal cells support endometriotic stromal cells in vitro[J]. Stem Cells Int,2018,2018:7318513. doi:10.1155/2018/7318513.
[35] FALOMO M E,F(xiàn)ERRONI L,TOCCO I,et al. Immunomodulatory role of adipose-derived stem cells on equine endometriosis[J]. Biomed Res Int,2015,2015:141485. doi:10.1155/2015/141485.
[36] 彭艷,何援利,劉芳,等. 骨髓間充質干細胞參與子宮內(nèi)膜異位癥形成的實驗研究[J]. 實用婦產(chǎn)科雜志,2014,30(7):515-518. PENG Y,HE Y L,LIU F,et al. Contribution of bone marrow mesenchymal stem cells involved to the pathogenesis of endometriosis[J]. Journal of Practical Gynecologic Endocrinology,2014,30(7):515-518.
[37] CHEN P,MAMILLAPALLI R,HABATA S,et al. Endometriosis cell proliferation induced by bone marrow mesenchymal stem cells[J]. Reprod Sci,2021,28(2):426-434. doi:10.1007/s43032-020-00294-4.
[38] CHEN P,MAMILLAPALLI R,HABATA S,et al. Endometriosis stromal cells induce bone marrow mesenchymal stem cell differentiation and PD-1 expression through paracrine signaling[J]. Mol Cell Biochem,2021,476(4):1717-1727. doi:10.1007/s11010-020-04012-1.
[39] ZHANG L,LI Y,DONG Y C,et al. Transplantation of umbilical cord-derived mesenchymal stem cells promotes the recovery of thin endometrium in rats[J]. Sci Rep,2022,12(1):412. doi:10.1038/s41598-021-04454-7.
[40] CHEN L,LI L,MO Q,et al. An injectable gelatin/sericin hydrogel loaded with human umbilical cord mesenchymal stem cells for the treatment of uterine injury [J]. Bioeng Transl Med,2022,8(1):e10328. doi:10.1002/btm2.10328.
[41] XU L N,LIN N,XU B N,et al. Effect of human umbilical cord mesenchymal stem cells on endometriotic cell proliferation and apoptosis[J]. Genet Mol Res,2015,14(4):16553-16561. doi:10.4238/2015.December.11.2.
[42] FENG Y,ZHAN F,ZHONG Y,et al. Effects of human umbilical cord mesenchymal stem cells derived from exosomes on migration ability of endometrial glandular epithelial cells[J]. Mol Med Rep,2020,22(2):715-722. doi:10.3892/mmr.2020.11137.
[43] ZHANG F,LI F, LU J. microRNA-100 shuttled by human umbilical cord MSC-secreted extracellular vesicles induces endometriosis by inhibiting HS3ST2[J]. Cell Signal,2023,102:110532. doi:10.1016/j.cellsig.2022.110532.
[44] CHENG Y,LI L,WANG D,et al. Characteristics of human endometrium-derived mesenchymal stem cells and their tropism to endometriosis[J]. Stem Cells Int,2017,2017:4794827. doi:10.1155/2017/4794827.
[45] CHEN Y,LI D,ZHANG Z,et al. Effect of human umbilical cord mesenchymal stem cells transplantation on nerve fibers of a rat model of endometriosis[J]. Int J Fertil Steril,2015,9(1):71-80. doi:10.22074/ijfs.2015.4211.
[46] DWININGSIH S R,DARMOSOEKARTO S,HENDARTO H,et al. Effects of bone marrow mesenchymal stem cell transplantation on tumor necrosis factor-alpha receptor 1 expression, granulosa cell apoptosis, and folliculogenesis repair in endometriosis mouse models[J]. Vet World,2021,14(7):1788-1796. doi:10.14202/vetworld.2021.1788-1796.