肖偉軍 胡玉林 汪喬英 段雅婕 胡會剛



DOI:10.13925/j.cnki.gsxb.20230228
摘? ? 要:【目的】初步探討黃酮醇合成酶FLS基因在香蕉果實中生物學功能?!痉椒ā坎捎肦T-PCR和PCR法克隆香蕉MaFLS1基因,對其進行生物信息學分析。運用qRT-PCR的方法研究其表達模式,同源重組構建MaFLS1基因的過表達載體,通過農桿菌介導的葉盤法轉化Micro-Tom番茄,測定T1代果實中總黃酮含量。【結果】香蕉MaFLS1基因開放閱讀框含有1080對堿基,編碼359個氨基酸,理論等電點為5.41,預測分子質量為39 436.94 Da,是一種穩(wěn)定的親水酸性蛋白,屬于α-酮戊二酸依賴性雙加酶家族。通過分析香蕉MaFLS1的氨基酸序列,發(fā)現(xiàn)其不含信號肽和跨膜結構。系統(tǒng)進化樹分析表明,F(xiàn)LS在不同物種間具有高度的氨基酸序列保守性。MaFLS1基因在香蕉果實發(fā)育成熟后期高度表達,前期基本不表達。通過測定轉基因番茄中總黃酮的含量發(fā)現(xiàn)其總黃酮含量極顯著高于野生型果實?!窘Y論】MaFLS1在果實成熟后期高度表達,且能夠顯著增加果實中總黃酮的含量。
關鍵詞:香蕉;MaFLS1;生物信息學;功能分析
中圖分類號:S668.1 文獻標志碼:A 文章編號:1009-9980(2024)02-0229-12
Cloning, bioinformatics and functional analysis of MaFLS1 in banana
XIAO Weijun1, HU Yulin1, WANG Qiaoying1, 2, DUAN Yajie1, HU Huigang1*
(1South Subtropical Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences/Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, Guangdong, China; 2College of Horticulture & Forestry Sciences of Huazhong Agricultural Uninersity, Wuhan 430070, Hubei, China)
Abstract: 【Objective】 Banana is an important tropical fruit crop, and it contains abundant flavonoids. Flavonoids are the most important and widely involved in plant growth and development, which play an important role in plant stress resistance. Although the flavonol synthase gene has been studied in other plants, its function has not been reported in banana fruit. In this paper, the function of MaFLS1 gene in banana pulp was preliminarily identified by carrying out transgenic heterologous functional verification on micro Tom tomato. 【Methods】 The open reading frame of the MdFLS1 gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR) and polymerase chain reaction (PCR). The sequences were obtained and analyzed by various bioinformatics methods, i.e. TMHMM online software, SignalP, SOPMA, MEGA7.0 software and so on. The expression pattern of MaFLS1 was studied by qRT-PCR during banana fruit ripening. The over-expression vector of MaFLS1 gene was constructed by homologous recombination and transformed as heterologous gene into Solanum lycopersicum L. (micro-Tom) by bladed disc conversion method with recombinant agrobacterium transformants, and the phenotypes of T1 generation transgenic positive plants and wild-type plants were observed, such as plant height, leaf color, fruit size and fruit color, and the total flavonoids were detected by Spectrophotometer. 【Results】 We used the reverse transcribed Xiangfen 1 flesh cDNA as the template, primers were designed by Primer Premier 5.0, and the PCR amplification was performed. The amplification results showed that the size of the amplified band was consistent with the reference sequence. Sequence analysis showed that the length of open reading box of the MaFLS1 contained 1080 bp bases and encoded 359 amino acids, the theoretical PI was 5.41, and the molecular mass was 39 436.94 Da. The unstable coefficient of the MaFLS1 protein was 37.35, and the total average value of hydrophilicity was -0.178, which belonged to be a stable hydrophilic acidic protein. The position of the MaFLS1 protein in banana was predicted, which was localized in the cytoplasm by using subcellular localization website (https://wolfpsort.hgc.jp/). The results of TMHMM online software analysis indicated that the MaFLS1 protein had no transmembrane domain, and there was also no signal peptide by using SignalP software. SOPMA online software (http://web. expasy. org/) was applied to predict the secondary structure of the MaFLS1 protein, and the results showed that the protein was mainly composed of α-helix (34.26%), irregular curls (42.9%), extended chains (16.71%) and β-corner (6.13%). The prediction of the tertiary structure of this protein was carried out by SWISS-MODEL online software (http://swissmodel.expasy.org/). When the sequence of a protein was highly similar to a known structural protein sequence, the structure of the protein can be modeled. The conserved domain of MaFLS1 was predicted through the Protein Conservative Domain Prediction website (SMART), and the results showed that the MaFLS1 protein contained two functional domains, one was the highly conserved N-terminal region of a protein with 2-oxoglutarate/Fe (Ⅱ) dependent dioxide, located in the 49th to 160th amino acid positions. In plants, Fe (Ⅱ) 2OG dioxygenase domain enzymes catalyze the formation of plant hormones such as ethylene, gibberellin, pigments and flavonoids. The other was an enzyme structure with a Fe2+and 2-ketoglutarate (2OG) dependent dioxygenase domain, located in the 206th-306th amino acids. The enzyme usually uses dioxin to catalyze the oxidation of organic substrate, mainly by using ferrous as the active site cofactor and 2OG as the co substrate, and decarboxylates to form succinate and CO2. DNAMAN software analysis showed that the amino acid similarity was about 51% between MaFLS1 protein and other species, and it was showed that FLS genes had a highly conserved amino acid sequence between different species by using MEGA7.0 software, and it was showed the genetic relationship between MaFLS1 protein and MaFLS3 and MaFLS2 was relatively close, it may be because banana belongs to herbaceous plants, and its hereditary distance is far away from the other species. The result of real-time PCR indicated that the expression level of the MaFLS1 gene was high in the later stage of fruit ripening, but it was almost not expressed in the early stage, and the results showed that after 65 d after cutting off buds, the relative expression increased sharply, indicating that the gene was expressed in the later stage of fruit development, which may participate in the maturity process of banana fruits. By measuring the total flavonoid content in the transgenic tomato, it was found that the total flavonoid content in wild-type fruits was 0.46 mg·g-1,which was significantly lower than the 0.58 mg·g-1in transgenic fruits, indicating that the MaFLS1 gene can indeed increase the total flavonoid content in fruits, and it was found that the transgenic fruits were smaller and lighter in color than the wild-type fruits, which may be possibly due to increased synthesis of flavonol branches and reduced anthocyanin content. 【Conclusion】 By comparing the expression of the MaFLS1 gene in the process of fruit maturity, the results showed that the expression of the gene increased significantly in the later stage of banana fruit maturity. Simultaneously, the gene can significantly increase the total flavonoid content in the tomato fruit by determining the content of total flavonoid.
Key words: Banana; MaFLS1; Bioinformatics analysis; Functional analysis
香蕉(Musa nana Lour.)為芭蕉科芭蕉屬植物,是一種重要的熱帶水果,年產(chǎn)量占全球鮮果產(chǎn)量的16%以上,在熱帶地區(qū)具有重要的經(jīng)濟價值。中國是世界上栽培香蕉的古老國家之一,種植面積約為35萬hm2,位居世界第三,每年消費量達1300萬t,位居中國第四大鮮果[1-3]。香蕉作為重要的經(jīng)濟作物,在海南、廣東、云南、廣西等地的脫貧攻堅戰(zhàn)中發(fā)揮著重要作用。香蕉不僅含有豐富的礦物質元素、膳食纖維等,而且含有豐富的類黃酮和多酚,而類黃酮和多酚具有抗氧化、抗衰老以及抵抗病毒等生物功能,其營養(yǎng)價值較高,被廣大消費者所喜愛[4]。
黃酮醇是類黃酮最主要的一類物質,在植物生長發(fā)育過程中起著重要作用[5-7]。在植物的側根形成過程中,槲皮素(一種黃酮醇)會影響根系中生長素的運輸和分布,從而影響側根的生成[8-11]。此外,黃酮醇還能夠影響花粉的活力和萌發(fā)。Zhang等[12]利用病毒誘導的基因沉默技術(VIGS)沉默辣椒中的二氫黃酮醇還原酶(DFR)合成酶基因的表達,導致類黃酮含量降低,同時影響了花粉發(fā)育和花粉管伸長。由于DFR和黃酮醇合成酶(FLS)共同競爭底物二氫黃酮醇,當FLS活性降低時會影響黃酮醇含量的降低,但花青素合成并不受影響,從而影響植物花色的形成[13-16]。已有研究表明,黃酮醇在植物的生物和非生物脅迫中發(fā)揮著重要作用[15,17-24]。擬南芥在強紫外照射下,擬南芥中的生長素合成減少,但是槲皮素合成卻急劇升高,用來調控谷胱甘肽還原酶(GR)、谷胱甘肽過氧化物酶(GP)、谷胱甘肽-S-轉移酶(GST)、抗壞血酸過氧化物酶(APX)、超氧化物歧化酶(SOD)和過氧化物酶(POX)等抗氧化酶的活性,清除自由基,從而減輕逆境對細胞DNA、RNA和蛋白質等生物高分子的損傷[6,25]。在高溫天氣下,植物通過槲皮素和ABA的互作來調節(jié)氣孔的關閉,減少水分的流失[8]。此外,當植物遭遇重金屬脅迫時,其體內槲皮素的含量急劇增加,從而減輕重金屬對植物的傷害。
植物體內黃酮醇的合成由多個基因協(xié)同參與,相互交叉影響[26-27]。黃酮醇生物合成作為類黃酮代謝的一個重要分支,其合成途徑為4-香豆酰-CoA和丙二酰-CoA,在查耳酮合成酶(chalcone synthase,CHS)和查耳酮異構酶(chalcone isomerase,CHI)的作用下生成柚皮素,然后在黃烷酮羥化酶,如黃烷酮3-羥化酶(F3H)的催化下生成二氫黃酮醇。二氫黃酮醇是DFR和FLS的共同底物,分別形成花青素和黃酮醇物質。因此,F(xiàn)LS是黃酮醇合成的關鍵酶。FLS已經(jīng)在多種植物中被廣泛克隆和鑒定。該基因最早在紫羅蘭和矮牽牛花組織中被發(fā)現(xiàn),隨后在擬南芥、蘋果、杜鵑、芍藥、風信子、楊梅等多種植物中被分離鑒定和克隆[13,14,28-36]。黃酮醇的合成除了受到關鍵合成酶基因的調控外,同時還在轉錄水平上受MYB轉錄因子、bHLH轉錄因子和WD40蛋白的調控[5,15,17],這些轉錄因子能夠激活或抑制黃酮醇早期生物合成步驟中CHS、CHI、F3H、FLS等相關基因的表達,共同控制黃酮醇的生物合成??傊?,植物體內黃酮醇的合成受到多種基因和轉錄因子的調控,而且在不同的植物體內具有普遍性,同時又有特殊性。
黃酮醇在香蕉果實中的合成代謝研究尚未見報道,而黃酮醇對香蕉的生長發(fā)育以及抗逆上有著重要作用,因此對香蕉中的黃酮醇合成酶進行克隆和功能研究對提高香蕉果實品質和抗逆性有非常重要的理論基礎和應用價值。筆者通過前期對香粉1號果實不同成熟時期進行轉錄組測序分析,發(fā)現(xiàn)1個在果實成熟后期表達量顯著增加的黃酮醇合成酶MaFLS1,對其進行克隆和生物信息學分析,并通過異源轉基因驗證其功能,為利用MaFLS1進行香蕉果實品質育種奠定理論基礎。
1 材料和方法
1.1 試驗材料
材料為中國熱帶農業(yè)科學院南亞熱帶作物研究所湛江院區(qū)試驗基地種植的香粉1號果實。分別取抽薹開花斷蕾后25、45、65、85、88 d果肉,用水果刀切片后迅速放入液氮中冷卻,放至實驗室-80 ℃冰箱中保存。
1.2 香粉1號果肉總RNA的提取與cDNA的合成
植物總RNA的提取使用北京華越洋生物有限公司的通用型植物快速RNA提取試劑盒,提取香粉1號25 d、45 d、65 d、85 d果肉中的總RNA,通過1%瓊脂糖凝膠電泳檢測RNA的質量,用NanoDrop2000微型紫外分光光度計(Thermo Scientific)測定RNA的濃度。用TaKaRa生物技術有限公司的反轉錄試劑盒[PrimeScript? RT reagent Kit with gDNA Eraser (Perfect Real Time)]進行反轉錄得到cDNA,存放于-20 ℃冰箱中備用。
1.3 MaFLS1基因引物設計和PCR擴增
從筆者團隊前期的測序結果中篩選到了黃酮醇合成酶基因MaFLS1,在香蕉基因網(wǎng)站上(https://banana-genome-hub.southgreen.fr/)查找參考序列。根據(jù)參考序列的編碼區(qū)(CDS序列)利用軟件Primer primer 5.0分別設計編碼區(qū)引物MaFLS1-F、MaFLS1-R(表1)。
以提取的香粉1號果肉組織總RNA反轉錄的cDNA為模板,進行PCR擴增。50 μL反應體系如下:10× PCR Buffer for KOD-Plus-Neo 5 μL,2 mmol·L-1dNTPs 5 μL,25 mmol·L-1MgSO43 μL,引物(10 μmol·L-1each) 2 μL,cDNA 5 μL,加ddH2O至50 μL。反應程序:94 ℃預變性2 min,98 ℃變性10 s,退火溫度為56 ℃ 30 s,68 ℃延伸1 min,反應循環(huán)數(shù)為40個。
1.4 PCR產(chǎn)物回收、克隆及測序
將PCR后的產(chǎn)物經(jīng)1%的瓊脂糖凝膠電泳后,在凝膠成像儀上確定目的條帶,并用試劑盒(MiniBEST Agarose Gel DNA Extraction Kit Ver. 4.0,TaKaRa)回收純化目的片段,并將純化后的目的片段與pEASY-T1 Cloning Kit(TransGen)克隆載體連接,并轉化大腸DH5α,挑選單菌落進行陽性鑒定,將陽性單菌落送至廣州艾基生物科技有限公司進行測序。將測序后的序列與參考序列比對。
1.5 生物信息學分析
在NCBI網(wǎng)站上搜索其他物種FLS基因的氨基酸序列,并用MEGA 7.0軟件構建系統(tǒng)進化樹。用SMART在線網(wǎng)站預測功能結構域。在ExPASy(http://web.expasy.org/compute_pi/)網(wǎng)站對MaFLS1基因編碼蛋白的理化性質進行預測。利用在線網(wǎng)站https://services.healthtech.dtu.dk/services/TMHMM-2.0/進行基因的跨膜結構預測。使用信號肽預測網(wǎng)站(https://services.healthtech.dtu.dk/services/SignalP-5.0/)進行信號肽的預測。在SOPMA在線網(wǎng)站(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)預測MaFLS1蛋白二級結構。蛋白三級結構使用SWISS-MODEL在線網(wǎng)站預測。
1.6 香粉1號果肉中MaFLS1基因表達分析
采用實時熒光定量RT-qPCR方法分析香蕉果肉MaFLS1基因的表達情況,MaFLS1基因的熒光定量引物以及內參基因引物見表1。PCR反應在賽默飛公司下的ABI QuantStudio 6 Flex熒光定量儀上進行。反應體系為:PowerUp? SYBR? Green Master Mix (2X) 10 μL,各1 μL的上下游引物,2 μL的cDNA模板,用ddH2O補足到20 μL。反應程序:95 ℃預變性2 min,95 ℃變性15 s,56 ℃退火15 s,72 ℃延伸1 min,總共40個循環(huán)。用2-??CT方法計算MaFLS1基因的相對表達量。
1.7 目的基因與過表達載體質粒同源重組
通過TaKaRa公司的In-Fusion引物在線設計網(wǎng)站(https://takara.teselagen.com/#/Design-Page)設計引物(表1)。以已測序正確的陽性質粒為模板,使用KOD-Plus-Neo高保真酶進行PCR擴增并膠回收。使用Clontech公司的In-Fusion?HD Cloning Kit進行無縫克隆,采用熱激法轉化大腸桿菌DH5α,涂板過夜,挑單菌落,PCR菌液陽性鑒定后送廣州艾基生物有限公司測序。
1.8 番茄轉化,篩選和鑒定
用根癌農桿菌GV3101介導的葉盤法轉化Micro-Tom番茄,獲得T0代苗。將T0代轉基因番茄苗移栽到營養(yǎng)土中,待葉子稍大時取葉片,用CTAB法提取葉片基因組DNA,對目的基因進行PCR陽性鑒定。收取T0代果實中的種子即為T1代,播種T1代種子以及野生型番茄種子(WT),待葉子稍大時取葉片,用CTAB法提取葉片基因組DNA,對目的基因進行PCR陽性鑒定。取T1代陽性植株以及WT生長一致的果實液氮速凍后保存于-80 ℃冰箱,用于果實總黃酮的提取。
1.9 番茄果實總黃酮的提取與測定
總黃酮含量的測定采用亞硝酸鈉-硝酸鋁-氫氧化鈉顯色法,具體操作參考魏長賓主編的《熱帶水果品質分析實驗指導》[37]。
2 結果與分析
2.1 MaFLS1基因的克隆
以反轉錄后的香粉1號果肉cDNA為模板,設計引物并進行PCR擴增,擴增結果出現(xiàn)了條帶大小一致的片段(圖1)。連接到克隆載體上,陽性鑒定后送測序。測序后的基因編碼區(qū)(CDS)全長1080 bp,編碼359個氨基酸。
2.2 MaFLS1蛋白的生物信息學分析
2.2.1 MaFLS1蛋白的理化性質、亞細胞定位預測以及二三級結構預測 通過ExPASy在線網(wǎng)站(https://web.expasy.org/protparam/)對MaFLS1編碼的蛋白進行理化性質預測。結果顯示該基因編碼的蛋白含有359個氨基酸,相對分子質量為39 436.94 Da,理論等電點(pI)為5.41,不穩(wěn)定系數(shù)為37.35(屬于穩(wěn)定蛋白類),親水性總平均值為-0.178,因此推測為穩(wěn)定的親水酸性蛋白。通過亞細胞定位網(wǎng)站(https://wolfpsort.hgc.jp/)預測該基因蛋白在細胞中的位置,結果顯示其可能定位于細胞質中。此外,通過相關網(wǎng)站預測其信號肽以及跨膜結構情況,結果顯示其沒有信號肽和跨膜結構。該基因蛋白質二級結構利用SOPMA在線軟件(http:/web.expasy.org/)進行預測,結果(圖2)顯示,二級結構占比分別是α-螺旋34.26%,無規(guī)則卷曲42.9%,延伸鏈16.71%,β-轉角為6.13%(圖2-A)。該蛋白的三級結構預測由SWISS-MODEL在線軟件(http://swissmodel.expasy.org/)完成(圖2-B)。當一個蛋白質的序列與一個已知結構蛋白質序列高度相似的時候,該蛋白質的結構就可以被建模出來。
2.2.2 MaFLS1蛋白的保守結構域預測 通過蛋白保守結構域預測網(wǎng)站(SMART)預測MaFLS1的保守結構域,結果顯示該蛋白含有兩個功能結構域(圖3)。一個是具有2-氧戊二酸/Fe(Ⅱ)依賴性二氧化物的蛋白質的高度保守的N端區(qū)域,在第49~160個氨基酸位置。另一個是具有Fe2+和2-酮戊二酸(2OG)依賴性雙加氧酶結構域的酶結構,在第206~306個氨基酸位置,該酶通常使用雙氧分子催化有機底物的氧化,主要是通過使用亞鐵作為活性位點輔因子和2OG作為共底物,脫羧為琥珀酸鹽和CO2。而在植物中,F(xiàn)e(Ⅱ)2OG雙加氧酶域酶催化植物激素的形成,如乙烯、赤霉素、色素和黃酮。
2.2.3 MaFLS1氨基酸序列與其他物種同源性分析及進化樹構建 通過NCBI上的Gene查找相關物種的FLS基因序列及其蛋白序列,將蘋果(MdFLS:GenBank ID NP_001306179.1)、香蕉(MaFLS1:GenBank ID XP_009384795.1;MaFLS2:GenBank ID XP_009404656.1;MaFLS3:GenBank ID XP_009402233.1)、擬南芥(AtFLS1~AtFLS6)、桃(PpFLS:GenBank ID AJO70134.1)、椰子(CnFLS:GenBank ID KAG1339093.1)、苦蕎(FtFLS1:GenBank ID AEC33116.1,F(xiàn)tFLS2:GenBank ID AGE13752.1)等物種的FLS基因通過DNAMAN進行比對分析(圖4),發(fā)現(xiàn)其與其他物種的FLS氨基酸相似率為50%左右。將不同物種的FLS基因蛋白序列使用MEGA 7軟件構建系統(tǒng)發(fā)生樹(圖5)。結果顯示,MaFLS1基因蛋白與該物種的MaFLS3、MaFLS2的親緣關系較近,與椰子CnFLS處于同一分支,同屬于單子葉植物,而與其他物種的親緣關系較遠,但和葡萄(VvFLS)的親緣關系較近,可能兩者功能類似。
2.3 香蕉MaFLS1在香粉1號果實發(fā)育不同時期的表達分析
如圖6所示,MaFLS1在香粉1號果實發(fā)育的前期表達量很低,幾乎不表達,在抽花斷蕾后的85 d,表達量開始增加,直到88 d,此時果實已經(jīng)完全成熟可以食用,而MaFLS1的表達量急劇增加,說明該基因是在果實發(fā)育的后期表達,因此推測該基因在香蕉果實成熟后期發(fā)揮重要作用。此外,從圖6中可以看出,MaFLS1在88 d的表達量與其他4個時期差異顯著,另外4個時期之間差異不顯著。
2.4 過表達MaFLS1番茄轉基因植株果實中總黃酮含量的測定
2.4.1 MaFLS1-35sn融合表達載體的獲得 通過同源重組的方法將目的片段與過表達載體pcambia1301-35sn連接,采用熱激法轉化大腸桿菌DH5α,涂板挑單菌落,PCR陽性鑒定,陽性單菌落測序(圖7)。選擇測序正確的單菌落質粒通過凍融法轉化根癌農桿菌GV3101。
2.4.2 轉基因番茄植株的陽性鑒定 如圖8所示,從T1代植株中鑒定得到5株陽性苗。經(jīng)表型觀察,轉基因番茄植株比野生型植株矮小,且生長發(fā)育慢于野生型。
2.4.3 T1代陽性植株果實總黃酮含量的測定 在果實成熟期(果實百分之百轉為紅色)利用亞硝酸鈉-硝酸鋁-氫氧化鈉顯色法測定轉基因以及野生型果實總黃酮含量,結果顯示,陽性轉基因果實中的總黃酮含量(w,后同)(0.58 mg·g-1)極顯著高于野生型果實(0.46 mg·g-1)(圖9),說明MaFLS1確實能夠增加果實中總黃酮含量。
3 討 論
FLS是影響植物黃酮醇合成和積累的重要因素,而黃酮醇是植物生長發(fā)育過程中一類重要的次生代謝物。筆者課題組前期已經(jīng)在相關期刊上發(fā)表了香粉1號果實不同發(fā)育時期代謝組數(shù)據(jù)[38],發(fā)現(xiàn)香粉1號在果實成熟后期黃酮醇的物質種類極其豐富,因此很有必要對黃酮醇合成相關基因開展研究。筆者在本研究中首次克隆了香蕉MaFLS,命名為MaFLS1,并對其氨基酸序列進行了生物信息學分析。通過對其蛋白保守結構域分析,發(fā)現(xiàn)MaFLS1 N端為α-同戊二酸依賴性雙加酶結構域,C端為酮戊二酸/鐵離子依賴加氧酶結構域,這與蘋果、擬南芥、洋蔥等植物中FLS家族蛋白的分析結果一致[13,29-30,33,36],說明在不同植物中FLS家族蛋白的氨基酸序列保守性較高,可以保證FLS在不同物種中表現(xiàn)相同的生物功能。香蕉果實不同發(fā)育階段MaFLS1的熒光定量表達結果表明,隨著果實的成熟,其表達量逐漸增加,特別是在后期極顯著增加,說明其可能參與了果實的成熟,這與高鵬釗等[4]的研究結果相似。此外,MaFLS1在斷蕾后88 d的表達量急劇上升,而前期幾乎不表達或表達量極低,推測該基因在香蕉果實成熟前期可能受到其他基因的調控作用,導致該基因在前期幾乎不表達。
此外,筆者在本研究中通過異源超表達MaFLS1并測定轉基因番茄果實中總黃酮的含量,發(fā)現(xiàn)轉基因果實中總黃酮的含量極顯著高于野生型果實,說明MaFLS1確實參與了總黃酮的合成,超表達MaFLS1能夠促進植物體內總黃酮的合成與積累。但由于T1代果實數(shù)量不夠,為了優(yōu)先保證T2代苗,沒有利用HPLC法測定具體是哪種或者哪幾種類黃酮含量的增加或減少。因此,為了進一步研究MaFLS1具體是合成哪種類黃酮,以及是否具有表達特異性,下一步需要大量種植T2代轉基因番茄,取不同組織進行熒光定量表達分析以及類黃酮測定,最終確定MaFLS1合成產(chǎn)物是哪種黃酮醇。
4 結 論
通過RT-PCR克隆得到了一個香蕉黃酮醇合成酶基因MaFLS1,并在番茄上進行了初步基因功能驗證,結果顯示該基因能夠增加果實中總黃酮的含量,將為以后的香蕉品質育種提供理論依據(jù)。
參考文獻 References:
[1] 方偉,唐誠,王玉梅. 廣東省香蕉產(chǎn)業(yè)發(fā)展現(xiàn)狀、面臨瓶頸及對策[J]. 中國果樹,2022(12):90-93.
FANG Wei,TANG Cheng,WANG Yumei. Current situation,bottleneck and countermeasures of banana industry in Guangdong Province[J]. China Fruits,2022(12):90-93.
[2] 何俞均,王芳. 基于波特鉆石理論的中國香蕉產(chǎn)業(yè)競爭力分析[J]. 中國熱帶農業(yè),2022(1):19-26.
HE Yujun,WANG Fang. Analysis of Chinas banana industrial competitiveness based on porters diamond theory[J]. China Tropical Agriculture,2022(1):19-26.
[3] 肖媛. 中國香蕉價格波動傳導機制研究[D]. 武漢:華中農業(yè)大學,2022.
XIAO Yuan. Study on the transmission mechanism of banana price fluctuations in China[D]. Wuhan:Huazhong Agricultural University,2022.
[4] 高鵬釗,苗紅霞,張建斌,徐碧玉,劉菊華. 3個香蕉品種黃酮含量與果實發(fā)育成熟的關系[J]. 熱帶作物學報,2016,37(10):1894-1899.
GAO Pengzhao,MIAO Hongxia,ZHANG Jianbin,XU Biyu,LIU Juhua. The relationship of flavonoids of three banana varieties and fruit development and ripening[J]. Chinese Journal of Tropical Crops,2016,37(10):1894-1899.
[5] HU P F,SURIGUGA,ZHAO M,CHEN S Q,WU X H,WAN Q. Transcriptional regulation mechanism of flavonoids biosynthesis gene during fruit development in Astragalus membranaceus[J]. Frontiers in Genetics,2022,13:972990.
[6] KUREPA J,SHULL T E,SMALLE J A. Friends in arms:Flavonoids and the auxin/cytokinin balance in terrestrialization[J]. Plants,2023,12(3):517.
[7] SINGH P,ARIF Y,BAJGUZ A,HAYAT S. The role of quercetin in plants[J]. Plant Physiology and Biochemistry,2021,166:10-19.
[8] 柳苗苗,蔡偉建,張斌斌,趙密珍,王靜,劉懷鋒. 槲皮素對草莓生長發(fā)育、光合和生理生化特性影響的綜合評價[J]. 江蘇農業(yè)科學,2022,50(21):165-172.
LIU Miaomiao,CAI Weijian,ZHANG Binbin,ZHAO Mizhen,WANG Jing,LIU Huaifeng. Comprehensive evaluation on effects of quercetin on growth,photosynthesis,physiological and biochemical characteristics of strawberry[J]. Jiangsu Agricultural Sciences,2022,50(21):165-172.
[9] VILLACAMPA A,F(xiàn)A?AN?S-PUEYO I,MEDINA F J,CISKA M. Root growth direction in simulated microgravity is modulated by a light avoidance mechanism mediated by flavonols[J]. Physiologia Plantarum,2022,174(3):e13722.
[10] TAN H J,MAN C,XIE Y,YAN J J,CHU J F,HUANG J R. A crucial role of GA-regulated flavonol biosynthesis in root growth of Arabidopsis[J]. Molecular Plant,2019,12(4):521-537.
[11] SILVA-NAVAS J,MORENO-RISUENO M A,MANZANO C,T?LLEZ-ROBLEDO B,NAVARRO-NEILA S,CARRASCO V,POLLMANN S,GALLEGO F J,DEL POZO J C. Flavonols mediate root phototropism and growth through regulation of proliferation-to-differentiation transition[J]. The Plant Cell,2016,28(6):1372-1387.
[12] ZHANG Z S,LIU Y,YUAN Q L,XIONG C,XU H,HU B W,SUO H,YANG S,HOU X L,YUAN F,PEI Z M,DAI X Z,ZOU X X,LIU F. The bHLH1-DTX35/DFR module regulates pollen fertility by promoting flavonoid biosynthesis in Capsicum annuum L.[J]. Horticulture Research,2022,9:uhac172.
[13] 杜靈娟,陳凱利,劉雅莉. 葡萄風信子FLS1基因克隆及其表達與花色性狀之間的關聯(lián)性分析[J]. 西北林學院學報,2017,32(1):106-113.
DU Lingjuan,CHEN Kaili,LIU Yali. Cloning of flavonol synthase gene (FLS1) and relativity analysis of its expression with the flower color in grape hyacinth[J]. Journal of Northwest Forestry University,2017,32(1):106-113.
[14] LEI T,HUANG J,RUAN H X,QIAN W,F(xiàn)ANG Z,GU C Y,ZHANG N N,LIANG Y X,WANG Z Y,GAO L P,WANG Y S. Competition between FLS and DFR regulates the distribution of flavonols and proanthocyanidins in Rubus chingii Hu[J]. Frontiers in Plant Science,2023,14:1134993.
[15] WANG Y G,ZHOU L J,WANG Y X,GENG Z Q,DING B Q,JIANG J F,CHEN S M,CHEN F D. An R2R3-MYB transcription factor CmMYB21 represses anthocyanin biosynthesis in color fading petals of chrysanthemum[J]. Scientia Horticulturae,2022,293:110674.
[16] 靳俊婷,索曉靜,丁紅元,郭春磊,王東升,張京政,曹飛. 黃酮醇在果樹中的功能的研究進展[J]. 河北果樹,2021(4):1-3.
JIN Junting,SUO Xiaojing,DING Hongyuan,GUO Chunlei,WANG Dongsheng,ZHANG Jingzheng,CAO Fei. Research progress of function of flavonols in fruit trees[J]. Hebei Fruits,2021(4):1-3.
[17] LI B Z,F(xiàn)AN R N,GUO S Y,WANG P T,ZHU X H,F(xiàn)AN Y T,CHEN Y X,HE K Y,KUMAR A,SHI J P,WANG Y,LI L H,HU Z B,SONG C P. The Arabidopsis MYB transcription factor,MYB111 modulates salt responses by regulating flavonoid biosynthesis[J]. Environmental and Experimental Botany,2019,166:103807.
[18] CHEN G,WANG Y P,LIU X L,DUAN S Y,JIANG S H,ZHU J,ZHANG Y G,HOU H M. The MdmiR156n regulates drought tolerance and flavonoid synthesis in apple calli and Arabidopsis[J]. International Journal of Molecular Sciences,2023,24(7):6049.
[19] GAUTAM H,SHARMA A,TRIVEDI P K. The role of flavonols in insect resistance and stress response[J]. Current Opinion in Plant Biology,2023,73:102353.
[20] 葛詩蓓,張學寧,韓文炎,李青云,李鑫. 植物類黃酮的生物合成及其抗逆作用機制研究進展[J]. 園藝學報,2023,50(1):209-224.
GE Shibei,ZHANG Xuening,HAN Wenyan,LI Qingyun,LI Xin. Research progress on plant flavonoids biosynthesis and their anti-stress mechanism[J]. Acta Horticulturae Sinica,2023,50(1):209-224.
[21] YILDIZTUGAY E,OZFIDAN-KONAKCI C,KUCUKODUK M,TURKAN I. Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris[J]. Frontiers in Plant Science,2020,11:682.
[22] PARVIN K,HASANUZZAMAN M,BHUYAN M H M B,MOHSIN S M,F(xiàn)UJITA M. Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems[J]. Plants,2019,8(8):247.
[23] NAKABAYASHI R,YONEKURA-SAKAKIBARA K,URANO K,SUZUKI M,YAMADA Y,NISHIZAWA T,MATSUDA F,KOJIMA M,SAKAKIBARA H,SHINOZAKI K,MICHAEL A J,TOHGE T,YAMAZAKI M,SAITO K. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. The Plant Journal,2014,77(3):367-379.
[24] MAHAJAN M,YADAV S K. Effect of quercetin and epicatechin on the transcript expression and activity of antioxidant enzymes in tobacco seedlings[J]. American Journal of Biochemistry and Molecular Biology,2012,3(1):81-90.
[25] LIU L L,GREGAN S M,WINEFIELD C,JORDAN B. Comparisons of controlled environment and vineyard experiments in Sauvignon Blanc grapes reveal similar UV-B signal transduction pathways for flavonol biosynthesis[J]. Plant Science,2018,276:44-53.
[26] WEN W W,ALSEEKH S,F(xiàn)ERNIE A R. Conservation and diversification of flavonoid metabolism in the plant kingdom[J]. Current Opinion in Plant Biology,2020,55:100-108.
[27] FUJINO N,TENMA N,WAKI T,ITO K,KOMATSUZAKI Y,SUGIYAMA K,YAMAZAKI T,YOSHIDA S,HATAYAMA M,YAMASHITA S,TANAKA Y,MOTOHASHI R,DENESSIOUK K,TAKAHASHI S,NAKAYAMA T. Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species[J]. The Plant Journal,2018,94(2):372-392.
[28] WANG Z,WANG S S,WU M Z,LI Z F,LIU P P,LI F,CHEN Q S,YANG A G,YANG J. Evolutionary and functional analyses of the 2-oxoglutarate-dependent dioxygenase genes involved in the flavonoid biosynthesis pathway in tobacco[J]. Planta,2019,249(2):543-561.
[29] 鄭雪蓮,李嘉儀,楊俊,鄭國華. 枇杷黃酮醇合成酶FLS基因表達與黃酮醇積累的相關性分析[J]. 福建農業(yè)科技,2019(5):1-6.
ZHENG Xuelian,LI Jiayi,YANG Jun,ZHENG Guohua. Correlation analysis between flavonol synthetase genetic expression and flavono accumulation in loquat[J]. Fujian Agricultural Science and Technology,2019(5):1-6.
[30] 劉曉,路靜,郝玉金,由春香. 蘋果黃酮醇合成酶基因MdFLS1的克隆、生物信息學分析及催化活性鑒定[J]. 果樹學報,2018,35(8):905-916.
LIU Xiao,LU Jing,HAO Yujin,YOU Chunxiang. Cloning,bioinformatics analysis and catalytic activity identification of MdFLS1 gene in apple[J]. Journal of Fruit Science,2018,35(8):905-916.
[31] 李海鴻. 葡萄風信子(Muscari)黃酮醇合酶FLS(flavonol synthase)基因克隆和功能分析[D]. 楊凌:西北農林科技大學,2018.
LI Haihong. Clong and functional analysis of FLS (flavonol synthase) gene from Muscari armeniacm[D]. Yangling:Northwest A & F University,2018.
[32] 史旻,孫靜,陶俊. 芍藥PlFLS基因生物信息學分析及對擬南芥的遺傳轉化[J]. 華南農業(yè)大學學報,2018,39(5):93-100.
SHI Min,SUN Jing,TAO Jun. Bioinformatics analysis of Paeonia lactiflora PlFLS gene and its genetic transformation in Arabidopsis thaliana[J]. Journal of South China Agricultural University,2018,39(5):93-100.
[33] 王振寶,楊妍妍,劉冰江,霍雨猛,李艷偉,孫亞玲,吳雄. 洋蔥黃酮醇合成酶基因的克隆與表達分析[J]. 山東農業(yè)科學,2022,54(12):18-24.
WANG Zhenbao,YANG Yanyan,LIU Bingjiang,HUO Yumeng,LI Yanwei,SUN Yaling,WU Xiong. Cloning and expression analysis of flavonol synthase gene in onion[J]. Shandong Agricultural Sciences,2022,54(12):18-24.
[34] 唐亞琴,梅抗抗,陳瑤,謝琴鼎,黃乾明,陳華萍. 油橄欖類黃酮生物合成相關酶的研究進展[J]. 基因組學與應用生物學,2018,37(5):2110-2117.
TANG Yaqin,MEI Kangkang,CHEN Yao,XIE Qinding,HUANG Qianming,CHEN Huaping. Research progress of biosynthesis related enzymes of flavonoid in Olea europaea L.[J]. Genomics and Applied Biology,2018,37(5):2110-2117.
[35] 石水蓮,李威,李可,呂玲玲. 植物FLS研究進展[J]. 分子植物育種,2019,17(18):5980-5985.
SHI Shuilian,LI Wei,LI Ke,L? Lingling. Advances of FLS in plants[J]. Molecular Plant Breeding,2019,17(18):5980-5985.
[36] 邢夢云. 楊梅FLSs和F35H調控楊梅素生物合成的機制研究[D]. 杭州:浙江大學,2021.
XING Mengyun. Regulation of myricetin biosynthesis by FLSs and F35H in Morella rubra[D]. Hangzhou:Zhejiang University,2021.
[37] 魏長賓. 熱帶水果品質分析實驗指導[M]. 北京:中國農業(yè)出版社,2017.
WEI Changbin. Experimental guidance on quality analysis of tropical fruits[M]. Beijing:China Agriculture Press,2017.
[38] HU H G,WANG J X,HU Y L,XIE J H. Nutritional component changes in Xiangfen 1 banana at different developmental stages[J]. Food & Function,2020,11(9):8286-8296.
收稿日期:2023-06-14 接受日期:2023-11-29
基金項目:海南省自然科學基金青年基金項目(323QN297);國家香蕉產(chǎn)業(yè)技術體系湛江試驗站項目(CARS-31-17);農業(yè)農村部物種品種資源保護費項目(102125171630060009001);中國熱帶農業(yè)科學院國家熱帶農業(yè)科學中心科技創(chuàng)新團隊(CATASCXTD202308)
作者簡介:肖偉軍,男,研究實習員,碩士,主要從事香蕉遺傳育種研究。E-mail:xiaoweijun1990@163.com
*通信作者 Author for correspondence. E-mail:huhuigang@sina.com