999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

利用角度變換方法解決空間角問題

2024-05-08 13:19:45王道金
數理化解題研究·高中版 2024年3期

王道金

摘 要:空間角是立體幾何中的重要問題.在空間坐標系下解決空間角問題思路直接,但有時候運算量比較大,而且弱化了對圖形本質的認識,如果能夠抓住空間角之間的邏輯關系,運用等價轉化思想,實現有效降維,就可以簡化求解過程.文章通過四個基本事實,得到空間角的變換依據,展示了角度變換在解決空間角問題中的有效應用.

關鍵詞:空間角;邏輯關系;等價轉化;降維;角度變換

中圖分類號:G632?? 文獻標識碼:A?? 文章編號:1008-0333(2024)07-0045-04

空間角包括二面角、線面角、線線角,平面角是空間角的基礎,文[1]和文[2]指出了常用的解決空間角問題的幾何法(添加輔助線結合空間角的定義)和空間向量法(建立空間坐標系).文[3]則提出了解決空間角問題的幾何法與空間向量法(提出了方程思想),也提出了構造法.筆者發現,在特定環境下,空間角之間可以相互轉化,利用空間角度的變換可以簡化空間角的作圖和計算.有幾個關于空間角關系的基本事實,可以用來簡化空間角的求解過程.下面以四個基本事實作為依據,以角度變換的視角求解高考中的空間角問題.

1 對有公共棱的二面角實施和差變換

變換依據 如圖1,平面ABEF在二面角D-AB-M的兩個半平面ABCD和ABNM之間,二面角D-AB-M大小為θ,二面角D-AB-E大小為α,二面角E-AB-M大小為β,則有θ=α+β.

問題1 (2023年全國Ⅱ卷20)如圖2,三棱錐A-BCD中,DA=DB=DC,BDCD,ADB=ADC=60°,E為BC中點,

(1)證明:BC⊥AD;

又DE⊥BC,所以BC⊥平面ADE.所以BC⊥AD.

(2)如圖3,二面角D-AB-F的大小設為θ,可以看成二面角D-AB-C和二面角F-AB-C組成的.

二面角F-AB-C為直二面角,作EM⊥AB于點M,連接DM,則由DE⊥平面ABC得到∠DME為二面角D-AB-C的平面角.

(1)證明:DE⊥平面ACD;

(2)求二面角B-AD-E的大小.

分析 三個二面角D1-AC-D,D1-AC-B1,B1-AC-B之和為π,可以先求二面角D1-AC-D與二面角B1-AC-B.

設二面角D1-AC-D的大小為α,設二面角

B1-AC-B的大小為β,

可以證明AC⊥AB,AC⊥平面ABB1,∠B1AB=β,tanβ=2.如圖7,設H為AC中點,連接DH,D1H,則有DH⊥AC.

2 對二面角實施降維變換

變換依據 如圖8,OP⊥平面ABNM,OQ⊥平面ABCD,則∠POQ與二面角M-AB-D的平面角相等或者互補.

問題4 (2015年湖北理19)《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱

問題5 (2016年全國Ⅰ卷理18)如圖11,在以A, B, C, D, E, F為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD= 90°,且二面角D-AF-E與二面角C-BE-F都是60°.求二面角E-BC-A的余弦值.

分析 如圖12,考慮尋找平面ABCD與平面BCE的垂線,作CM⊥EF,垂足為點M,作MN⊥AB,垂足為點N,連接CN,則AB⊥平面CMN.作MP⊥CN于點P,則MP⊥平面ABC.作MH⊥CE于點H,則由平面BCE⊥平面EFDC得到MH⊥平面BCE[3].

3 對二面角的半平面實施位置變換

變換依據 如圖13,平面ABFE∥平面MNCD,則二面角D-AB-E與二面角A-CD-M的大小互補.

問題6 (2014年全國Ⅰ卷19)如圖14,三棱柱ABC-A1B1C1中,側面BB1C1C為菱形,AB⊥B1C.若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

4 對線面角實施降維變換

變換依據 如圖16,直線AB與平面α相交,

分析 設法找到平面PAM的垂線,先求此垂線與PC所成的角,如圖18,取PA的中點K,OK∥PC,設I為AK的中點,則OI⊥AK.設AM與BO交于點N,由BO⊥AC,BO⊥平面PAC得到BO⊥AK.

所以AK⊥平面INO.

問題8 (2021年全國甲卷19)如圖19,已知直三棱柱ABC-A1B1C1中,側面AA1B1B為正方形,AB=BC=2, E,F分別為AC和CC1的中點,D為棱A1B1上的點,BF⊥A1B1.當B1D為何值時,面BB1C1C與面DFE所成的二面角的正弦值最小?

分析 因為AB⊥平面BCC1B1,要使面BB1C1C與面DFE所成的二面角的正弦值最小,需要AB與平面DEF所成角最大.

EF為定直線,AB與平面DEF所成角最大值為AB與EF所成角,EF∥AC1,所以需要平面AC1B與平面DEF垂直.

又平面AC1B與直線B1C垂直,所以需要B1C∥平面DEF,如圖20.

5 結束語

從上面的求解過程可以看出,角度變換方法可以直接抓住幾何本質,以較小的運算量解決空間角度問題,在教學中可以引導學生自覺加以應用,這對培養學生的空間想象力,提升學生的基本學科素養方面大有益處,值得研究.

參考文獻:

[1]王冬冬.高考立體幾何空間角解題技巧[J].數理化解題研究,2019(22):10-11.

[2] 張宇.例談“空間角”的求解策略[J].中學數學,2023(01):78-79.

[3] 張宏儷.聚焦立體幾何中空間角的求解[J].高中數理化,2021(23):13-15.

主站蜘蛛池模板: 广东一级毛片| 原味小视频在线www国产| 国产性爱网站| 欧美 亚洲 日韩 国产| 91国内外精品自在线播放| 色爽网免费视频| 91青青草视频在线观看的| 老色鬼久久亚洲AV综合| 三上悠亚一区二区| 国产福利一区二区在线观看| 久久久久亚洲av成人网人人软件| 国产网站一区二区三区| 亚洲乱码在线视频| 国产成人av大片在线播放| 亚洲h视频在线| 免费精品一区二区h| 国产在线精品人成导航| 亚洲欧洲日产国产无码AV| 国产成人免费高清AⅤ| 亚洲欧州色色免费AV| 国产丰满成熟女性性满足视频| 亚洲日韩高清在线亚洲专区| 国产精品成人啪精品视频| 亚洲精品不卡午夜精品| 国产在线一二三区| 永久成人无码激情视频免费| 在线观看的黄网| 2020精品极品国产色在线观看| 久久亚洲国产一区二区| 88av在线播放| 亚洲中文精品久久久久久不卡| 国产美女一级毛片| 成人国产一区二区三区| 亚洲无码精彩视频在线观看 | 久久久久国产精品免费免费不卡| 乱人伦视频中文字幕在线| 亚洲精品无码AⅤ片青青在线观看| 国产99视频在线| 亚洲日本中文综合在线| 伊伊人成亚洲综合人网7777| 国产精品刺激对白在线 | 99国产精品一区二区| 国产福利免费视频| 波多野结衣视频网站| 欧美不卡视频一区发布| 久久久久青草大香线综合精品| 久久五月天国产自| 欧美午夜视频| 亚洲无码视频一区二区三区| 成人精品区| 国产欧美一区二区三区视频在线观看| 午夜国产理论| 亚洲国产一成久久精品国产成人综合| 亚洲人成电影在线播放| 国产精品亚洲а∨天堂免下载| 97国产成人无码精品久久久| 国产精品久久国产精麻豆99网站| 亚洲欧美日韩中文字幕在线| 久久天天躁狠狠躁夜夜2020一| 国产在线观看成人91| 91福利在线看| 天天躁狠狠躁| 国产精品妖精视频| 成人在线天堂| 亚洲视频一区在线| 青青草原国产一区二区| 青青草a国产免费观看| 欧美性天天| 国产亚洲精品自在久久不卡| 精品無碼一區在線觀看 | 日韩欧美国产精品| 亚洲自偷自拍另类小说| 午夜性刺激在线观看免费| 国产免费网址| 亚洲性日韩精品一区二区| 精品国产Av电影无码久久久| 毛片在线播放a| 人妻丝袜无码视频| 欧美亚洲第一页| 制服丝袜一区二区三区在线| 久久综合色天堂av| 成人福利在线免费观看|