







[摘要] Lon蛋白酶是一種存在于細胞中的ATP依賴型蛋白酶,主要負責細胞內異常蛋白質的催化分解,以維持生物體內蛋白質的質量水平。Lon廣泛參與細胞凋亡、細胞分化和DNA修復等細胞活動。近年來研究發現,哺乳動物細胞中的線粒體Lon(LONP1)異常表達與一系列疾病的發生發展相關,包括線粒體缺陷相關疾病、神經退行性疾病以及癌癥等。鑒于LONP1活性的檢測與調控對相關疾病的早期診斷和治療的重要性,本文針對LONP1結構、功能、與相關疾病的關系、活性調控及檢測方法作一系統綜述。
[關鍵詞] Lon蛋白酶;結構與功能;活性檢測;功能調控;構效關系
[中圖分類號] TQ617.3" [文獻標志碼] A" [文章編號] 1671-7783(2024)04-0354-10
DOI: 10.13312/j.issn.1671-7783.y230057
[引用格式]渠允薇,張世紀,張鐸騰,等. 線粒體蛋白酶LONP1結構、功能與相關疾病研究進展[J]. 江蘇大學學報(醫學版), 2024, 34(4): 354-363.
[基金項目]國家自然科學基金資助項目(No. 22077101)
[作者簡介]渠允薇(1996—),女,博士研究生;程夏民(通訊作者),副教授,碩士生導師,E-mail: ias_xmcheng@njtech.edu.cn;李林(通訊作者),教授,博士生導師,E-mail: ifelli@xmu.edu.cn
蛋白酶又稱蛋白水解酶或肽酶,負責生物體內蛋白質的分解,從而調控相應的細胞功能。其中,蛋白酶體又稱為自分隔蛋白酶,依賴于泛素蛋白酶體系統實現蛋白質降解的功能[1],主要存在于真核細胞胞膜以及胞核中[2]。蛋白酶體還廣泛參與細胞活動,如細胞凋亡、細胞周期調節和DNA修復等[3-4]。在哺乳動物線粒體中,主要有3種依賴ATP的低聚物蛋白酶執行類似功能,即Lon、Clp-like和AAA蛋白酶[2,5]。其中,Lon是位于線粒體基質內的同源多聚體復合物[6],主要負責降解壽命短、折疊不良或受損的蛋白質[5,7],且維持線粒體基因組的穩定[8]。此外,Lon還具有結合線粒體DNA和蛋白伴侶的功能[8-10]。研究發現,Lon在氧化應激、缺血缺氧以及神經退行性疾病中均呈異常表達[11]。目前已知的人類Lon有線粒體Lon(LONP1)和過氧化物酶體Lon(LONP2)兩種。鑒于LONP1活性檢測與調控對相關疾病的早期診斷和治療的重要性,本文針對LONP1結構、功能、與相關疾病的關系、活性調控以及檢測方法作一全面綜述。
1 Lon蛋白酶分類、結構與胞內定位
Lon蛋白酶的名稱來源于大腸埃希菌Lon基因突變體表型[12]。大腸埃希菌同型寡聚Lon是第一個被鑒定的ATP依賴型蛋白酶,命名為EcLon;因其晶體結構已經完整解析,所以一直都是研究ATP依賴型蛋白酶的主要模型[13-14]。Lon蛋白酶家族所有Lon蛋白酶的多肽鏈均包含一個絲氨酸蛋白酶結構域(P結構域)以及參與核苷酸結合和ATP水解的Walker型ATP酶功能域(AAA+結構域),有的還包括一個擴展的線粒體基質靶向序列[N端結構域,包含具有盤旋螺旋(CC)構象的序列片段,圖1][15-17]。根據對P結構域的晶體結構分析,Lon蛋白酶在MEROPS數據庫中可以分為兩個Lon蛋白酶亞家族:LonA(以大腸埃希菌Lon為代表)和LonB(主要存在于古細菌中)[18](圖1A、1B)。隨后在嗜熱細菌中發現的Lon被歸為第三個Lon亞結構,即LonC,其蛋白酶結構域和ATP酶功能域類似于LonB蛋白酶(圖1C)[19]。最近,在枯草芽孢埃希菌中發現了LonBA,該蛋白酶具有LonA和LonB蛋白酶兩者的結構特征,其蛋白酶活性中心屬于A型(圖1D)[15]。
由于LONP1表達與線粒體功能的維持密切相關,因此研究多集中于LONP1(圖1E)。LONP1常以六聚體同源多聚體復合物形式存在,形成一個中空的環形結構,可以特異性地將底物包裹并催化水解[20]。LONP1由相應的LONP1基因(也稱PRSS15)編碼,位于19號染色體p13.2區域,長約29 000個堿基對。LONP1主要轉錄變體已在30多年前報道,該轉錄變體是一種約3.4 kb的mRNA[21]。LONP1編碼的蛋白質含有956個氨基酸,每個單體分子量約106 kD,包含N端結構域、P結構域和AAA+結構域,這三個序列在進化中一直保持高度保守[21]。AAA+結構域由兩部分組成,即ATP結合部分(α和β結構域)和ATP水解部分(α結構域)。LONP1水解活性的重要特征之一是受ATP刺激。P結構域攜帶絲氨酸和賴氨酸活性位點殘基,形成催化二元組[22]。
2 LONP1功能
LONP1功能豐富,主要包括水解靶蛋白,結合線粒體DNA以及多種線粒體蛋白。因此,在維持線粒體功能方面發揮重要作用,并且成為疾病治療的重要靶標。
2.1 LONP1作為蛋白酶的功能表現
作為蛋白酶,LONP1的重要功能是通過識別和降解被氧化修飾的蛋白質來維持線粒體的平衡[23]。在哺乳動物細胞中,通過遺傳操作或完整生物體內的生理條件(氧化壓力、老化等因素)下調LONP1表達,可導致線粒體內受損蛋白積累[7,24-25]。LONP1作用底物較為廣泛,包括特異性和非特異性兩種。其中,特異性底物包括烏頭酸酶、δ-氨基乙酰丙酸合酶1(5-aminolevulinic acid synthase,ALAS-1)、類固醇合成急性調節蛋白(steroidogenic acute regulatory protein,StAR)、線粒體轉錄因子A(mitochondrial transcription factor A,TFAM)和細胞色素C氧化酶Ⅳ亞型1(cytochrome C oxidase 4 isoform 1,COX4-1)等。
LONP1首次在人類WI38/VA13肺成纖維細胞線粒體基質中發現,負責降解氧化的線粒體烏頭酸酶[23,25-26]。烏頭酸酶與線粒體mRNA翻譯、氧化應激反應、鐵代謝以及腫瘤抑制有關[27]。在衰老和某些與氧化應激有關的疾病中,烏頭酸酶失活和積累是導致細胞功能紊亂和死亡的一個主要病理特征[28-29]。
ALAS-1是控制肝臟和骨髓細胞中血紅素生物合成的第一速率控制酶[30]。研究表明,細胞內積累的血紅素通過負反饋下調ALAS-1表達,該負反饋涉及轉錄抑制、mRNA降解和線粒體ALAS-1蛋白輸入的阻斷[31-33]。血紅素積累可促進LONP1對線粒體基質中ALAS-1的依賴性降解,進而有助于調控血紅素的生物合成[34]。
StAR是一種重要的核編碼線粒體蛋白,介導類固醇激素合成的限制性步驟,在腎上腺皮質、胎盤和性腺細胞中,其經由LONP1降解[35]。StAR將膽固醇從線粒體外膜轉移至線粒體內膜,繼而膽固醇側鏈裂解細胞色素的酶復合物將其轉化為第一種類固醇孕烯醇酮[36]。在線粒體內,LONP1主要負責降解StAR,因此對LONP1進行調控可以調節類固醇激素的合成[35]。
TFAM是LONP1重要的底物之一[37]。TFAM是處于線粒體DNA復制、轉錄和遺傳紐帶上的高遷移率族蛋白,其直接調節哺乳動物線粒體DNA(mtDNA)的拷貝數[38-40]。LONP1通過調控TFAM降解進而調控DNA拷貝數和轉錄[37]。TFAM可經cAMP依賴性蛋白激酶磷酸化,從而損傷自身結合DNA和激活轉錄的能力,也可誘導LONP1對磷酸化TFAM的降解從而進行調節[40]。
COX4-1也受LONP1調節,其主要功能是催化線粒體的呼吸過程。在哺乳動物細胞中,COX4-1和COX4-2亞型表達受O2調節。缺氧誘導因子1(hypoxia inducible factor-1,HIF-1)是一種轉錄激活因子,可作為所有多細胞動物中氧穩態的主要調節劑[41]。HIF-1通過增加LONP1和COX4-2轉錄進而調控COX4亞單位的組成,并且HIF-1誘導LONP1過量表達可促進COX4-1降解。COX4亞單位表達的變化使得線粒體ATP生成、O2消耗和不同O2濃度下活性氧生成得到優化[41]。
2.2 LONP1作為mtDNA結合蛋白的功能表現
作為DNA結合蛋白,LONP1與mtDNA的結合相對保守[42-43]。LONP1結合特定的單鏈DNA,即輕鏈啟動子非編碼DNA和重鏈啟動子編碼DNA中的序列,兩者都是啟動mtDNA復制和轉錄的關鍵位點[43]。盡管LONP1在維持mtDNA和調節其拷貝數方面發揮作用,但確切的功能和機制仍不清楚。
2.3 LONP1作為蛋白伴侶的功能表現
作為蛋白伴侶,LONP1可以結合76種不同的線粒體蛋白,如熱休克蛋白60(heat shock protein 60,HSP60)、結核桿菌熱休克蛋白70(mycobacterium Tuberculosis heat shock protein 70,mtHSP70)和肌球蛋白等[44-45]。其中,HSP60和mtHSP70蛋白的穩定性與氧化應激時的表達水平相關;LONP1通過維持HSP60-mtHSP70蛋白復合物的穩定性進而調節細胞凋亡[44,46]。
3 LONP1表達異常與疾病的關系
LONP1表達異常如基因突變、表達水平上調或者下調,可引起一系列細胞功能異常和疾病。
3.1 LONP1基因突變與疾病的關系
1991年報道的腦、眼、牙、耳、骨骼異常(cerebral,ocular,dental,auricular,skeletal anomalies,CODAS)綜合征是一種罕見的多系統發育障礙[47]。2015年,兩個獨立的團隊分別證明了LONP1中雜合或純合突變可導致CODAS綜合征[48-49]。進一步對CODAS變體的結構分析發現,該病是由LONP1的AAA+結構域中的4種特定氨基酸經替換引起,進而導致底物特異性水解蛋白活性的缺陷以及線粒體形態和功能改變[48]。CODAS綜合征的發現為因LONP1功能喪失進而危害機體健康提供了證據。
3.2 LONP1表達上調與疾病的關系
研究指出,線粒體腦肌病伴乳酸血癥和腦卒中樣發作(mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes,MELAS)綜合征、肌陣攣性癲癇伴破碎樣紅纖維綜合征(myoclonus epilepsy associated with ragged-red fibers,MERRF)與LONP1表達和活性改變有關[50-52]。mtDNA發生A3243G突變是MELAS最常見誘因,該突變的永生B細胞中LONP1表達水平增加,并且LONP1聚集于突變基因組和缺失復合物I(NDUFS3)所在的線粒體中[53]。同樣,mtDNA的tRNALys基因中發生A8344G突變導致MERRF,其特點是LONP1表達增加,但活性降低,由此表明,在MERRF中,LONP1表達上調可能是對氧化損傷引起的酶活性降低的補償[54]。
弗里德賴希共濟失調(Friedreich′s ataxia,FRDA)是一種罕見的遺傳性神經退行性疾病[55],染色體9q13純合的GAA三核苷酸重復擴增導致共濟蛋白基因的轉錄缺陷,最終導致線粒體共濟蛋白表達量減少并形成FRDA[55]。在FRDA模型小鼠中,共濟蛋白缺失可導致心臟變性、呼吸鏈復合物Ⅰ-Ⅲ和烏頭酸酶缺乏以及線粒體鐵蓄積[56]。在此情況下,LONP1表達上調與呼吸鏈酶缺乏相關,同時蛋白水解活性增強與復合物Ⅰ(NDUFS3)、復合物Ⅱ(SDHB)和復合物Ⅲ(Rieske)的Fe-S亞單位減少相關[57]。
缺氧、缺血/再灌注或缺血預處理可引發活性氧過度產生,進一步引發心肌細胞凋亡[58]。研究發現,缺氧誘導活性氧依賴性心肌細胞凋亡,而在缺氧誘導的心肌細胞中LONP1表達上調[59]。因此,LONP1表達下調可降低活性氧水平,從而緩解低氧誘導的心肌細胞凋亡[23]。此外,在常氧條件下,LONP1過表達可刺激活性氧的產生并誘導心肌細胞凋亡,調控LONP1表達具有治療低氧誘導心肌細胞凋亡的潛在可能[59-60]。
LONP1在癌癥中的作用包括維持腫瘤細胞在缺氧條件下的存活[41,60-61]、侵襲和轉移[62]以及產生治療抵抗[63]。不同于正常生理細胞,癌細胞中大部分來自葡萄糖的碳水化合物通過無氧糖酵解分解為乳酸,此即沃伯格效應(Warburg effect)[64]。HIF-1誘導糖酵解發生,癌細胞通過增強糖酵解為缺氧條件下腫瘤細胞的存活提供足夠的ATP[60]。在此途徑中,LONP1通過降解COX4-1異構體,從而在缺氧條件下維持細胞呼吸效率[41]。采用小鼠黑色素瘤B16F10細胞對LONP1在體內腫瘤形成和轉移過程中的功能進行研究,結果表明,高水平LONP1是黑色素瘤預后不良的標志[62]。LONP1不但參與腫瘤細胞缺氧生存和代謝過程,還誘導修復mtDNA從而增強對放療和化療的抵抗[63]。此外,研究發現,LONP1在其他不同類型的人類癌癥中表達上調[62,64-66]。因此,對細胞中LONP1活性進行檢測和調控可能為癌癥診斷與治療提供一定的幫助。
3.3 LONP1表達下調與疾病的關系
PINK1是線粒體靶向絲氨酸/蘇氨酸激酶,PINK1和Parkin基因功能的喪失或者突變可導致早發的常染色體隱性的帕金森病(Parkinson′s disease,PD)[67]。LONP1通過促進線粒體基質中PINK1的降解,在調節PINK1-Parkin通路中發揮重要作用[68]。PINK1在正常生理細胞中選擇性地聚集在缺陷線粒體外膜,從而啟動自身自噬降解[69-70]。LONP1表達下調致線粒體基質中被修飾后的PINK1在線粒體中急劇積累,從而激活體內的PINK1-Parkin途徑,導致線粒體自噬無法正常進行從而引發PD[68]。
肌萎縮側索硬化癥(amyotrophic lateral sclerosis,ALS)是一種嚴重的神經退行性疾病[71],約10% ALS患者是家族性肌萎縮側索硬化癥(familial amyotrophic lateral sclerosis,fALS)。編碼超氧化物歧化酶1(superoxide dismutase 1,SOD1)的基因突變是fALS中最常見的缺陷[72-73]。在表達突變G93A-SOD1基因的NSC34細胞(一種運動神經元樣細胞系)中,LONP1表達下調[74]。由此表明,LONP1表達下調與fALS中運動神經元凋亡之間可能存在直接關系[74]。
內質網是膜和分泌蛋白實現正確折疊和寡聚化的細胞器[75]。體外缺血和體內缺氧均會誘發嚴重的內質網應激[76]。在培養的星形膠質細胞和腦缺血模型(大腦中動脈閉塞)的大鼠中,缺氧和缺血可分別誘導LONP1 mRNA和蛋白表達[77]。抵抗內質網應激需要激活蛋白激酶R樣內質網激酶(protein kinase R-like endoplasmic reticulum kinase,PERK),同時蛋白質合成衰減,從而減少進入內質網的蛋白質,降低內質網負荷。在PERK(-/-)細胞中,內質網應激導致LONP1表達被抑制,證實LONP1參與內質網應激過程[77]。
4 蛋白酶活性調控與檢測
抑制劑調控蛋白酶體(包括Lon在內)的活性是治療相關疾病的一種重要手段,而活性檢測是監測功能變化的重要手段之一。然而,目前只有少數廣譜蛋白酶抑制劑可以抑制LONP1活性,其結構分析對于理性設計開發LONP1特異性抑制劑有一定的指導意義。
4.1 LONP1功能抑制
從結構而言,蛋白酶抑制劑可以簡單地分為肽類抑制劑(圖2)和非肽類抑制劑兩大類(Pn為蛋白酶體抑制劑,Ln為Lon蛋白酶抑制劑)。
4.1.1 肽類抑制劑 大多數蛋白酶體抑制劑是含有活性基團的短肽,可與催化性N末端Thr1Oγ形成共價鍵(圖3),如肽醛類(Ln1,圖2)[78-79],多肽硼酸鹽(Ln2amp;Pn1,圖2)[80-81]和肽乙烯基砜(Pn2,圖2)[82-83]。
肽醛MG132進入細胞后,可擴散至線粒體并抑制類固醇生成的StAR降解。由于Lon蛋白酶的水解活性類似于蛋白酶體,所以通過對市售肽類蛋白酶體抑制劑的篩選,發現蛋白酶體抑制劑MG262是腸道沙門氏菌中Lon蛋白酶的ATP依賴型抑制劑(Ln2,圖2)[84]。
硼替佐米(Pn1)中硼原子與LONP1中Ser855羥基上的氧原子進行共價結合(圖4),同時該分子上的氧原子和氮原子分別與Ser855、Lys898、Asp852和Trp770的氮原子和氧原子之間具有氫鍵作用力[85],由此大大提高Pn1與LONP1的結合能力。
4.1.2 非肽類抑制劑 1996年Pochet等[86]研究發現,香豆素衍生物可以抑制α-糜蛋白酶(α-chymotrypsin,α-CT)和人類白細胞彈性蛋白酶(human leukocyte elastase,HLE)活性(圖5)。由于α-CT、HLE以及LONP1同屬于絲氨酸蛋白酶,因此對于香豆素衍生物的篩選和結構優化有助于開發絲氨酸蛋白酶的特異性抑制劑[87]。2008年,Bayot等[88]在此基礎上通過篩選香豆素衍生物,發現了可以特異性抑制LONP1活性的結構。綜上所述,香豆素衍生物的結構對于開發LONP1特異性抑制劑,乃至抑制劑型熒光探針具有一定意義。香豆素衍生物是低分子量非肽類的高效多功能蛋白酶抑制劑。6-氯甲基-2-氧代-2H-1-苯并吡喃-3-羧酸的烷基(芳基酯、酰胺)是α-CT的高效抑制劑。結構與活性抑制結果的關系表明,苯環上取代基的位置顯著影響化合物對絲氨酸蛋白酶的抑制作用[86]。鄰位或間位取代是抑制效果較為明顯的結構,其中間位取代衍生物Pn3[m-6-(氯甲基)-2H-1-苯并吡喃-3-甲酸酯]是該系列中效果最好的α-CT抑制劑(kinact/KI=762 700 M-1s-1,Pn3,圖5)[86]。將Pn3中的苯酯替換為吡啶酯并且對6號位進行各種取代,研究表明,在沒有6-氯甲基取代時,HLE通過形成短暫的酰基酶而被特異性抑制(Pn4,圖5)[87]。
α-CT被6-氯甲基衍生物不可逆抑制(3b的kinact/KI=107 400 M-1s-1,Pn5,圖5)。與此同時,研究結果也表明6號位的氯甲基是導致抑制劑通過自殺機制失活的必要條件。由此可知,通過調節取代基的結構和種類,香豆素衍生物可作為絲氨酸蛋白酶的廣譜抑制劑或HLE的特異性抑制劑[87]。2008年,研究人員通過對5個香豆素化合物庫進行篩選,并且分析了它們對酵母蛋白酶體的影響從而評估其對LONP1的特異性[Ln3(a-e),圖5];結果顯示,在37 ℃、pH=8條件下,化合物10 μmol/L Ln3(a-e)與0.4 mmol/L LONP1響應迅速,并呈時間依賴性,通過形成穩定的酰基酶而達到瞬時失活的狀態(圖3A)[88]。
早期研究發現,合成的三萜類化合物CDDO(2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid;Ln4,圖6)及其衍生物通過一種與線粒體蛋白聚集相關的新型線粒體介導的途徑促進B淋巴細胞凋亡[83];LONP1在人類B細胞淋巴瘤細胞系和患者衍生的樣本中過表達,同時LONP1敲除可導致淋巴瘤細胞死亡[83]。研究者假設通過使LONP1水解功能失活,進而促進CDDO誘導的蛋白聚集和淋巴瘤細胞凋亡,一系列結果證明CDDO可以通過抑制LONP1的水解活性促進B淋巴細胞凋亡。由此表明,LONP1可能是一種新型抗癌藥物靶點[83]。
2010年,研究人員從肉桂中提取了三椏烏藥內酯A(Obtusilactone A,OA,Ln5,圖6)和芝麻素[(-)-sesamin,Ln6,圖6],在體外,這兩種分子都可抑制重組Lon的活性。在活細胞中,OA導致烏頭堿酶呈時間和劑量依賴性顯著積累[89]。根據分子對接分析得知,OA和(-)-sesamin可與LONP1活性位點Ser855和Lys898殘基結合而發揮作用(圖7)。在LONP1表達水平較高的非小細胞肺癌細胞系中,OA或(-)-sesamin都可以下調LONP1表達,從而觸發由Caspase-3介導的細胞凋亡[89]。
4.2 LONP1活性檢測
目前,在各種疾病模型中,檢測細胞內LONP1表達量應用最廣泛的為依賴抗原抗體結合反應的生物學法,具體包括蛋白質印跡法[62]、PCR[66]以及特異性肽底物[90]等,但均操作煩瑣、耗時費力,同時也無法用于活細胞檢測。
2021年,Zhan等[91]開發了一種檢測大腸埃希菌Lon的納米探針,分別用異硫氰酸熒光素(FITC)和5-羧基四甲基羅丹明(5-TAMRA)標記的硒醇修飾的肽鏈與納米顆粒結合,使肽鏈分別在特定位點被Lon和Caspase-3水解,導致熒光團從金納米顆粒的表面逃逸并伴隨熒光增強(圖8)。與此同時,該探針可以原位實時監測活體心肌細胞中LONP1和Caspase-3表達,已成功應用于LONP1-Caspase-3凋亡信號通路變化監測,以評估缺氧條件下心肌細胞的狀態(圖8)。此外,結合線粒體H2O2探針(MitoPY1),研究發現LONP1和活性氧對缺氧誘導的心肌細胞凋亡具有協同作用[91]。但是,納米探針檢測限較高,反應時間較長,無法在活細胞內定位LONP1等。因此,結合LONP1的反應活性位點、特異性反應基團及高亮度熒光團的研究,可為后續活細胞內LONP1的高時空分辨的熒光成像以及相關疾病的研究提供有效的分子工具。
5 總結與展望
綜上所述,LONP1作為哺乳動物線粒體內對ATP具有依賴性的主要蛋白酶之一,其作用底物廣泛,并在降解受損蛋白、維持線粒體基因組穩定性方面發揮重要作用,其表達異常與多種疾病密切相關。因此,LONP1的高效抑制和精確檢測對相關疾病的預防、診斷和治療具有重要意義。目前已報道的LONP1特異性抑制劑主要包括香豆素衍生物、三萜類化合物以及肉桂中提取物為主的非肽類抑制劑,開發高效的LONP1活性檢測探針是未來研究其生物醫學功能的重要方向之一。
[參考文獻]
[1] Baumeister W, Walz J, Zuhl F, et al. The proteasome: Paradigm of a self-compartmentalizing protease[J]. Cell, 1998, 92(3): 367-380.
[2] Bulteau AL, Szweda LI, Friguet B. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging[J]. Exp Gerontol, 2006, 41(7): 653-657.
[3] Dahlmann B. Proteasomes[J]. Essays Biochem, 2005, 41: 31-48.
[4] Bader N, Grune T. Protein oxidation and proteolysis[J]. Biol Chem, 2006, 387(10/11): 1351-1355.
[5] Escobar-Henriques M, Langer T. Mitochondrial shaping cuts[J]. Biochim Biophys Acta, Mol Cell Res, 2006, 1763(5/6): 422-429.
[6] Leidhold C, Voos W. Chaperones and proteases-guardians of protein integrity in eukaryotic organelles[J]. Ann N Y Acad Sci, 2007, 1113: 72-86.
[7] Bota DA, Ngo JK, Davies KJA. Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death[J]. Free Radical Biol Med, 2005, 38(5): 665-677.
[8] Lu B, Yadav S, Shah PG, et al. Roles for the human ATP-dependent lon protease in mitochondrial DNA maintenance[J]. J Biol Chem, 2007, 282(24): 17363-17374.
[9] Liu T, Lu B, Lee I, et al. DNA and RNA binding by the mitochondrial Lon protease is regulated by nucleotide and protein substrate[J]. J Biol Chem, 2004, 279(14): 13902-13910.
[10] Suzuki CK, Rep M, van Dijl JM, et al. ATP-dependent proteases that also chaperone protein biogenesis[J]. Trends Biochem Sci, 1997, 22(4): 118-123.
[11] Bota DA, Davies KJA. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders[J]. Free Radical Biol Med, 2016, 100: 188-198.
[12] Amerik AY, Antonov VK, Gorbalenya AE, et al. Site-directed mutagenesis of La protease: A catalytically active serine residue[J]. FEBS Lett, 199 287(1/2): 211-214.
[13] Swamy KH, Goldberg AL. E. coli contains eight soluble proteolytic activities, one being ATP dependent[J]. Nature, 198 292(5824): 652-654.
[14] Vieux EF, Wohlever ML, Chen JZ, et al. Distinct quaternary structures of the AAA plus Lon protease control substrate degradation[J]. Proc Natl Acad Sci U S A, 2013, 110(22): E2002-E2008.
[15] Wlodawer A, Sekula B, Gustchina A, et al. Structure and the mode of activity of Lon proteases from diverse organisms[J]. J Mol Biol, 202 434(7): 167504.
[16] Goldberg AL, Moerschell RP, Chung CH, et al. ATP-dependent protease La (lon) from Escherichia coli[J]. Methods Enzymol, 1994, 244: 350-375.
[17] Gustchina A, Li M, Andrianova AG, et al. Unique structural fold of LonBA protease from Bacillus subtilis, a member of a newly identified subfamily of Lon proteases[J]. Int J Mol Sci, 202 23(19): 11425.
[18] Rotanova TV, Botos I, Melnikov EE, et al. Slicing a protease: Structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains[J]. Protein Sci, 2006, 15(8): 1815-1828.
[19] Liao JH, Kuo CI, Huang YY, et al. A Lon-like protease with no ATP-powered unfolding activity[J]. PLoS One, 201 7(7): e40226.
[20] Pomatto LC, Raynes R, Davies KJ. The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1[J]. Biol Rev Camb Philos Soc, 2017, 92(2): 739-753.
[21] Wang N, Gottesman S, Willingham MC, et al. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease[J]. Proc Natl Acad Sci U S A, 1993, 90(23): 11247-11251.
[22] Ondrovicova G, Liu T, Singh K, et al. Cleavage site selection within a folded substrate by the ATP-dependent lon protease[J]. J Biol Chem, 2005, 280(26): 25103-25110.
[23] Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism[J]. Nat Cell Biol, 200 4(9): 674-680.
[24] Levine RL. Commentary on “Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death” by D.A. Bota, J.K. Ngo, and K.J.A. Davies[J]. Free Radic Biol Med, 2005, 38(11): 1445-1446.
[25] Bota DA, Van Remmen H, Davies KJ. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress[J]. FEBS Lett, 200 532(1/2): 103-106.
[26] Delaval E, Perichon M, Friguet B. Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart[J]. Eur J Biochem, 2004, 271(22): 4559-4564.
[27] Sriram G, Martinez JA, McCabe ER, et al. Single-gene disorders: What role could moonlighting enzymes play?[J]. Am J Hum Genet, 2005, 76(6): 911-924.
[28] Lushchak OV, Piroddi M, Galli F, et al. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species[J]. Redox Rep, 2014, 19(1): 8-15.
[29] Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconitase[J]. Proc Natl Acad Sci U S A, 1997, 94(21): 11168-11172.
[30] Podvinec M, Handschin C, Looser R, et al. Identification of the xenosensors regulating human 5-aminolevulinate synthase[J]. Proc Natl Acad Sci U S A, 2004, 101(24): 9127-9132.
[31] Handschin C, Lin JD, Rhee J, et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1 alpha[J]. Cell, 2005, 122(4): 505-515.
[32] Zheng JY, Shan Y, Lambrecht RW, et al. Differential regulation of human ALAS1 mRNA and protein levels by heme and cobalt protoporphyrin[J]. Mol Cell Biochem, 2008, 319(1/2): 153-161.
[33] Dailey TA, Woodruff JH, Dailey HA. Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase[J]. Biochem J, 2005, 386(Pt 2): 381-386.
[34] Tian Q, Li T, Hou WH, et al. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells[J]. J Biol Chem, 201 286(30): 26424-26430.
[35] Granot Z, Kobiler O, Melamed-Book N, et al. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by lon protease: The unexpected effect of proteasome inhibitors[J]. Mol Endocrinol, 2007, 21(9): 2164-2177.
[36] Miller WL. Mitochondrial specificity of the early steps in steroidogenesis[J]. J Steroid Biochem Mol Biol, 1995, 55(5/6): 607-616.
[37] Matsushima Y, Goto Y, Kaguni LS. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM)[J]. Proc Natl Acad Sci U S A, 2010, 107(43): 18410-18415.
[38] Ekstrand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals[J]. Hum Reprod, 2004, 13(9): 935-944.
[39] Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids[J]. J Biol Chem, 2008, 283(6): 3665-3675.
[40] Lu B, Lee J, Nie XB, et al. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease[J]. Mol Cell, 2013, 49(1): 121-132.
[41] Fukuda R, Zhang HF, Kim JW, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells[J]. Cell, 2007, 129(1): 111-122.
[42] Charette MF, Henderson GW, Doane LL, et al. DNA-stimulated ATPase activity on the lon (CapR) protein[J]. J Bacteriol, 1984, 158(1): 195-201.
[43] Fu GK, Markovitz DM. The human LON protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner[J]. Biochemistry, 1998, 37(7): 1905-1909.
[44] Kao TY, Chiu YC, Fang WC, et al. Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex[J]. Cell Death Dis, 2015, 6(2): e1642.
[45] Desautels M, Goldberg AL. Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria[J]. J Biol Chem, 198 257(19): 1673-1679.
[46] Deocaris CC, Kaul SC, Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60[J]. Cell Stress Chaperones, 2006, 11(2): 116-128.
[47] Shebib SM, Reed MH, Shuckett EP, et al. Newly recognized syndrome of cerebral, ocular, dental, auricular, skeletal anomalies: CODAS syndrome-a case report[J]. Am J Med Genet, 199 40(1): 88-93.
[48] Strauss KA, Jinks RN, Puffenberger EG, et al. CODAS syndrome is associated with mutations of LONP encoding mitochondrial AAA+ Lon protease[J]. Am J Hum Genet, 2015, 96(1): 121-135.
[49] Dikoglu E, Alfaiz A, Gorna M, et al. Mutations in LONP a mitochondrial matrix protease, cause CODAS syndrome[J]. Am J Med Genet A, 2015, 167(7): 1501-1509.
[50] Pavlakis SG, Phillips PC, Dimauro S, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome[J]. Ann Neurol, 1984, 16(4): 481-488.
[51] Montoya J, Playan A, Solano A, et al. Diseases of the mitochondrial DNA[J]. Rev Neurol, 2000, 31(4): 324-333.
[52] Shoffner JM, Lott MT, Lezza AM, et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(lys) mutation[J]. Cell, 1990, 61(6): 931-937.
[53] Felk S, Ohrt S, Kussmaul L, et al. Activation of the mitochondrial protein quality control system and actin cytoskeletal alterations in cells harbouring the MELAS mitochondrial DNA mutation[J]. J Neurol Sci, 2010, 295(1/2): 46-52.
[54] Wu SB, Ma YS, Wu YT, et al. Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome[J]. Mol Neurobiol, 2010, 41(2/3): 256-266.
[55] Koeppen AH. Friedreich′s ataxia: Pathology, pathogenesis, and molecular genetics[J]. J Neurol Sci, 201 303(1/2): 1-12.
[56] Rotig A, deLonlay P, Chretien D, et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia[J]. Nat Genet, 1997, 17(2): 215-217.
[57] Guillon B, Bulteau AL, Wattenhofer-Donze M, et al. Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins[J]. FEBS J, 2009, 276(4): 1036-1047.
[58] Budinger GRS, Duranteau J, Chandel NS, et al. Hibernation during hypoxia in cardiomyocytes—Role of mitochondria as the O2 sensor[J]. J Biol Chem, 1998, 273(6): 3320-3326.
[59] Baehrecke EH. Autophagy: Dual roles in life and death?[J]. Nat Rev Mol Cell Biol, 2005, 6(6): 505-510.
[60] Kuo CY, Chiu YC, Lee AYL, et al. Mitochondrial Lon protease controls ROS-dependent apoptosis in cardiomyocyte under hypoxia[J]. Mitochondrion, 2015, 23: 7-16.
[61] Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions—Its stabilization by hypoxia depends on redox-induced changes[J]. J Biol Chem, 1997, 272(36): 22642-22647.
[62] Mazure NM, Pouyssegur J. Hypoxia-induced autophagy: cell death or cell survival?[J]. Curr Opin Cell Biol, 2010, 22(2): 177-180.
[63] Tangeda V, Lo YK, Babuharisankar AP, et al. Lon upregulation contributes to cisplatin resistance by triggering NCLX-mediated mitochondrial Ca2+ release in cancer cells[J]. Cell Death Dis, 202 13(3): 241.
[64] Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191): 309-314.
[65] Bernstein SH, Venkatesh S, Li M, et al. The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives[J]. Blood, 201 119(14): 3321-3329.
[66] Liu YZ, Lan LH, Huang K, et al. Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer[J]. Oncotarget, 2014, 5(22): 11209-11224.
[67] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism[J]. Nature, 1998, 392(6676): 605-608.
[68] Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria[J]. Autophagy, 2013, 9(11): 1750-1757.
[69] Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. J Cell Biol, 2008, 183(5): 795-803.
[70] Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J]. PLoS Biol, 2010, 8(1): e1000298.
[71] Julien JP. Amyotrophic lateral sclerosis: Unfolding the toxicity of the misfolded[J]. Cell, 200 104(4): 581-591.
[72] Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis[J]. Nature, 1993, 362(6415): 59-62.
[73] Deng HX, Hentati A, Tainer JA, et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase[J]. Science, 1993, 261(5124): 1047-1051.
[74] Fukada K, Zhang FJ, Vien A, et al. Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis[J]. Mol Cell Proteomics, 2004, 3(12): 1211-1223.
[75] Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum[J]. Cell, 2000, 101(5): 451-454.
[76] Paschen W. Role of calcium in neuronal cell injury: Which subcellular compartment is involved?[J]. Brain Res Bull, 2000, 53(4): 409-413.
[77] Hori O, Ichinoda F, Tamatani T, et al. Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease[J]. J Cell Biol, 200 157(7): 1151-1160.
[78] Groll M, Ditzel L, Lwe J, et al. Structure of 20S proteasome from yeast at 2.4 A resolution[J]. Nature, 1997, 386(6624): 463-471.
[79] Braun HA, Umbreen S, Groll M, et al. Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines[J]. J Biol Chem, 2005, 280(31): 28394-28401.
[80] Adams J, Behnke M, Chen SW, et al. Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids[J]. Bioorg Med Chem Lett, 1998, 8(4): 333-338.
[81] Adams J, Kauffman M. Development of the proteasome inhibitor VeleadeTM (Bortezomib)[J]. Cancer Invest, 2004, 22(2): 304-311.
[82] Bogyo M, McMaster JS, Gaczynska M, et al. Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors[J]. Proc Natl Acad Sci U S A, 1997, 94(13): 6629-6634.
[83] Ovaa H, van Swieten PF, Kessler BM, et al. Chemistry in living cells: Detection of active proteasomes by a two-step labeling strategy[J]. Angew Chem Int Ed, 2003, 42(31): 3626-3629.
[84] Frase H, Hudak J, Lee I. Identification of the proteasome inhibitor MG262 as a potent ATP-dependent inhibitor of the Salmonella enterica serovar typhimurium Lon protease[J]. Biochemistry, 2006, 45(27): 8264-8274.
[85] Shin M, Watson ER, Song AS, et al. Structures of the human LONP1 protease reveal regulatory steps involved in protease activation[J]. Nat Commun, 202 12(1): 3239.
[86] Pochet L, Doucet C, Schynts M, et al. Esters and amides of 6-(chloromethyl)-2-oxo-2H-1-benzopyran-3-carboxylic acid as inhibitors of alpha-chymotrypsin: Significance of the “aromatic” nature of the novel ester-type coumarin for strong inhibitory activity[J]. J Med Chem, 1996, 39(13): 2579-2585.
[87] Doucet C, Pochet L, Thierry N, et al. 6-substituted 2-oxo-2H-1-benzopyran-3-carboxylic acid as a core structure for specific inhibitors of human leukocyte elastase[J]. J Med Chem, 1999, 42(20): 4161-4171.
[88] Bayot A, Basse N, Lee I, et al. Towards the control of intracellular protein turnover: Mitochondrial Lon protease inhibitors versus proteasome inhibitors[J]. Biochimie, 2008, 90(2): 260-269.
[89] Wang HM, Cheng KC, Lin CJ, et al. Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints[J]. Cancer Sci, 2010, 101(12): 2612-2620.
[90] Lee I, Berdis AJ. Adenosine triphosphate-dependent degradation of a fluorescent lambda N substrate mimic by Lon protease[J]. Anal Biochem, 200 291(1): 74-83.
[91] Zhan RH, Guo WF, Gao XN, et al. Real-time in situ monitoring of Lon and Caspase-3 for assessing the state of cardiomyocytes under hypoxic conditions via a novel Au-Se fluorescent nanoprobe[J]. Biosens Bioelectron, 202 176: 112965.
[收稿日期] 2023-02-20" [編輯] 劉星星