




摘" " 要:【目的】克隆桃PpWRKY4基因,探究其在桃果實類胡蘿卜素代謝過程中的調控機制。【方法】以白肉桃中油桃14號果實為材料,分析了其果實中類胡蘿卜素含量變化趨勢,克隆桃中PpWRKY4基因,對其進行生物信息學和表達分析。通過亞細胞定位、酵母單雜交技術和雙熒光素酶試驗確定PpWRKY4對PpCCD4的調控機制。【結果】隨著中油桃14號果實成熟,PpCCD4基因表達量逐漸升高,類胡蘿卜素含量(w,后同)由1.97 μg·g-1降至0.68 μg·g-1。PpWRKY4基因CDS區共1764 bp,編碼587個氨基酸,蛋白分子質量為64.06 ku,等電點為6.00;通過氨基酸序列比對,其包含兩個WRKY保守基序,為Ⅰ類WRKY蛋白。PpWRKY4基因在桃果實發育前期高表達,后期表達量較低,與PpCCD4表達趨勢相反。亞細胞定位結果表明PpWRKY4定位在細胞核。酵母單雜交技術和LUC試驗表明PpWRKY4通過結合PpCCD4啟動子抑制其表達。【結論】PpWRKY4通過負調控PpCCD4表達進而調控桃果實類胡蘿卜素降解,研究結果為進一步解析桃果實類胡蘿卜素積累分子機制提供理論基礎。
關鍵詞:桃;WRKY轉錄因子;果肉顏色;類胡蘿卜素
中圖分類號:S662.1 文獻標志碼:A 文章編號:1009-9980(2024)08-1504-10
PpWRKY4 regulates carotenoids accumulation in peach fruit by affecting the expression of PpCCD4
SONG Conghao1, JIANG Chao1, JIN Ziqing1, ZHANG Haipeng1, 2, 3, WANG Xiaobei1, 2, 3, HOU Nan1, 2, 3, CHENG Jun1, 2, 3, WANG Wei1, 2, 3, ZHENG Xianbo1, 2, 3, FENG Jiancan1, 2, 3, LIAN Xiaodong1, 2, 3*, TAN Bin1, 2, 3*
(1College of Horticulture, Henan Agricultural University, Zhengzhou 450046, Henan, China; 2Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, Henan, China; 3Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, Henan, China)
Abstract: 【Objective】 Peach (Prunus persica) is one of the most important economic fruit tree in the world. The color of fruit flesh is a notable feature for consumers and one of the important breeding objectives. The flesh color of white/yellow is a typical Mendelian trait controlled by a single locus (Y), and white phenotype (YY or Yy) is fully dominant over the yellow one (yy). The yellow-flesh peach mainly depends on the accumulation of carotenoids in chromoplasts. The carotenoids is considered as an indispensable part for human diet health and nutrition. The previous studies indicated that three types of the PpCCD4 mutation caused no expression or extremely lower expression of the PpCCD4 in yellow-flesh peach, suggesting that the carotenoids would be negatively correlated with the expression of the PpCCD4. Although the PpCCD4 is considered as the key gene controlling the white/yellow flesh trait of peach, the regulatory mechanism of carotenoids degradation remains unclear. The PpWRKY4, a WRKY transcription factors associated with carotenoids degradation, was isolated from a white-flesh peach exhibiting lower carotenoids content in this study and the regulatory mechanism of the PpWRKY4 was explored in carotenoid metabolism of peach fruit. 【Methods】 The carotenoids content and the relative expression of the PpCCD4 at S1-S4 stages of the fruits of Zhongyoutao 14 (CN14) were analyzed, respectively. The PpWRKY4 (the homology of OfWRKY3) was cloned by PCR. PpWRKY4 and other three homologous proteins were analyzed for domains using MEGA 11. The expression pattern of the PpWRKY4 and PpCCD4 at S1-S4 periods of the fruits of CN14 were obtained by qRT-PCR. The cis-elements of the PpCCD4 promoter were analyzed using PlantRegMap and a binding site map was drawn by GSDS. The CDS of the PpWRKY4 was inserted into pSAK277-GFP vector, and then transformed into GV3101 and Marker mixed annotated Nicotiana benthamiana. The fluorescence in tobacco leaf cells was observed using laser scanning confocal microscopy after 36-48 h. The PpWRKY4 was cloned and inserted into pGADT7 and transfected into Y1HGold with PpAbAi-PpCCD4-promoter for Y1H assay. The CDS of the PpWRKY4 was cloned into the pSAK277 vector to create the effector. The promoter sequence of the PpCCD4 (-2 Kb upstream of ATG) was cloned into the dual reporter vector pGreenII-0800. The Agrobacterium cells containing pSAK277:PpWRKY4 and pGreenⅡ-0800:PpCCD4 were co-infiltrated into the tobacco leaves, and the leaves infiltrated with the empty vector pSAK277 and pGreenII-0800:PpCCD4 were used as controls. 48 h after infiltration, the luciferase (LUC) and Renilla luciferase (REN) activities were measured using a dual-luciferase assay kit. 【Results】 The expression pattern of the PpCCD4 and the carotenoids content during the S1-S4 periods of the fruits of CN14 showed opposite tendency. The relative expression of the PpCCD4 increased gradually, while the carotenoids content of CN14 fruits significantly decreased, ranged from 1.97 μg·g-1 at S1 stage to 0.68 μg·g-1 at S4 stage. Several cis-elements of the PpCCD4 promoter were observed, mainly including Dof, MADS, MYB, bHLH, WRKY etc. The PpWRKY4 contained 1764 bp of ORF (open reading frame) and encoded 587 amino acids, which contained two WRKY conserved domains, as the character of a group I of WRKY gene subfamily. The sequence alignment results indicated that PpWRKY4 showed the highest expected value with OfWRKY3 which is a key transcription activator of the OfCCD4 gene participating in biosynthesis of carotenoids. qRT-PCR analysis of S1-S4 periods of the fruits of CN14 showed that the PpWRKY4 showed the opposite expression pattern of the PpCCD4. The expression level of the PpWRKY4 showed higher at S1 stage and then sharply decreased at S2-S4 stages. Based on the expression patterns of the PpWRKY4 and PpCCD4, the PpWRKY4 might negatively regulate the PpCCD4. The subcellular localization analysis demonstrated that the PpWRKY4 would be a nucleus-localized transcription factor. The Y1H results showed that the yeast cells containing the PpWRKY4 and PpCCD4 were able to grow well in SD-Leu/AbA200, but the yeast containing the empty AD vector and the PpCCD4 did not, indicating that the PpWRKY4 was bound to the PpCCD4. The results of dual-luciferase assays using the transiently transformed tobacco leaves indicated that the activity of the PpCCD4 promoter greatly decreased after co-infiltration of the promoter reporter construct with a construct expressing PpWRKY4. These results showed that the PpWRKY4 would be bound to the integral PpCCD4 and repressed its transcription. 【Conclusion】 A homology of OfWRKY3 denoted as the PpWRKY4 was cloned in CN14 peach. The PpWRKY4 is a typical group I WRKY transcription factor with two WRKY domains. The PpWRKY4 was expressed higher at S1 stage of CN14 fruits than that at S2-S4 stages, showing opposite expression pattern with the PpCCD4. The PpWRKY4 could directly bind to the PpCCD4 and inhibited its expression. The PpWRKY4 was likely a transcription inhibitor of the PpCCD4 gene, involved in regulating carotenoids accumulation.
Key words: Peach (Prunus persica); WRKY transcription factor; Flesh color; Carotenoids
桃是我國重要的栽培果樹之一,其味甜多汁、香氣濃郁、營養物質豐富,深受廣大消費者喜愛。類胡蘿卜素是植物體次生代謝產物中的一類重要物質,是人體維生素A生物合成的前體,并且具有抗氧化作用[1]。隨著人民生活水平不斷提高,人們更加注重健康,黃肉桃因富含類胡蘿卜素而受到追捧。類胡蘿卜素裂解加氧酶基因家族(carotenoid cleavage dioxygenases,CCDs)是類胡蘿卜素降解的關鍵基因[2]。白肉桃中由于PpCCD4高表達而引起類胡蘿卜素降解,導致果實中不能積累類胡蘿卜素;而黃肉桃中由于PpCCD4基因突變,類胡蘿卜素降解受阻而大量積累,果肉呈現黃色[3-5]。深入研究類胡蘿卜素生物合成和積累的代謝調控網絡,對富含類胡蘿卜素桃品種改良具有重要意義。
WRKY轉錄因子是植物中特有的一類轉錄因子超家族[6]。WRKY基因以高度保守的WRKY結構域而命名,其包含一個七肽序列(WRKYGQK),并緊鄰一個Cx4–5Cx22–23HxH或Cx7Cx23HxC的鋅指蛋白基序[7]。WRKY轉錄因子根據其DNA結合結構域的數量和鋅指蛋白基序的特征可分為三類。第Ⅰ類具有兩個WRKY結構域。第Ⅱ類只有一個WRKY結構域,其鋅指蛋白基序與第Ⅰ類相同,為Cys(2)-His(2),其包含的WRKY基因最多;基于氨基酸序列差異,Ⅱ類可進一步劃分為Ⅱa、Ⅱb、Ⅱc、Ⅱd和Ⅱe 5個亞群。第Ⅲ類WRKY轉錄因子鋅指蛋白基序為Cx7Cx23HxC[8]。WRKY家族成員在植物中被相繼發現和鑒定,其在不同植物中數量各不相同,如在水稻(Oryza sative)中存在109個[9]、玉米中(Zea mays)119個[10]、擬南芥中(Arabidopsis thaliana)74個[11]、蘋果中(Malus domestica)56個[12]、番茄中(Solanum lycopersicum)81個[13]和桃中(Prunus persica)58個[14]。
WRKY蛋白通常作為抑制因子或激活因子,參與植物多種發育過程,如生物脅迫、非生物脅迫、發育過程以及生物合成等[7-8,15]。過表達小麥TaWRKY2轉錄因子調節抗旱相關基因表達,進而增強小麥植株抗旱性[16]。甘蔗ScWRKY3負調控煙草茄病鐮刀菌藍色變種的抗性[17]。OsWRKY45的過表達除了增強抗病能力外,還增強了耐鹽性和耐旱性[18]。WRKY轉錄因子調控植物對溫度脅迫的抗性,包括對高溫[19]和冷脅迫[20-21]。越來越多的研究證明,WRKY轉錄因子參與植物次生物質代謝過程。桂花中OfWRKY3通過調控OfCCD4表達進而可能影響揮發性物質β-ionone合成[22]。番茄WRKY32基因調控YELLOW FRUITED-TOMATO 1基因表達,調控類胡蘿卜素積累,進而影響果實顏色[23]。SlWRKY35通過激活番茄果實MEP(2-C-methyl-D-erythritol 4-phosphate)通路正向調控類胡蘿卜素生物合成[24]。雖然WRKY參與植物代謝調控逐漸增多,但是,WRKY基因是否參與調控桃果實類胡蘿卜素降解尚不清楚。基于此,筆者在本研究中測定了中油桃14號果實四個時期(S1、S2、S3、S4)類胡蘿卜素含量變化和PpCCD4基因表達趨勢,PpCCD4基因啟動子元件分析發現其包含WRKY轉錄因子結合元件,進一步克隆了PpWRKY4,并初步驗證了PpWRKY4能夠調控PpCCD4基因表達。研究結果將有助于對桃類胡蘿卜素積累分子機制的理解,同時為桃果肉顏色改良提供理論基礎。
1 材料和方法
1.1 試驗材料
中油桃14號果實取自河南農業大學科教園區,分別采集果實的S1、S2、S3和S4四個時期的果肉組織進行類胡蘿卜素提取和檢測,提取DNA用于PpCCD4基因啟動子克隆,提取RNA用于PpWRKY4基因克隆和qRT-PCR分析。
1.2 類胡蘿卜素提取和檢測
稱取5 g研磨成粉的桃果實樣品進行類胡蘿卜素提取。在樣品中加入色素提取液(正己烷、丙酮、無水酒精體積比2∶1∶1,含0.01%BHT)。采用UV755B型紫外可見分光光度計在波長450 nm下進行掃描,測定桃果實總類胡蘿卜素含量。類胡蘿卜素的提取與測定參考朱運欽等[25]的方法。
1.3 PpCCD4基因啟動子克隆和轉錄因子結合位點預測
以中油桃14號的DNA為模板,使用引物(PpCCD4-p-F:TGGTAGTTACTAGGGTGTTGTTGCC,PpCCD4-p-R:AAAAAGGTAGTGAGGTGTGGGA)進行啟動子序列擴增。將克隆得到的PpCCD4啟動子序列利用PlantRegMap(https://plantregmap.gao-lab.org/)網站預測轉錄因子結合位點,并利用GSDS(https://gsds.gao-lab.org/)繪制結合位點圖譜。
1.4 PpWRKY4基因克隆及蛋白序列分析
以中油桃14號的cDNA為模板,使用高保真酶2×Phanta Flash Master Mix(P520,諾唯贊生物科技)和引物(PpWRKY4-G-F:ATGGACGCAACCACACTC,PpWRKY4-G-R:CTATGGACCTGTTAGTACCCTT)進行編碼區段(coding sequence,CDS)擴增;使用MEGA11軟件,將擬南芥AtWRKY20、葡萄VvWRKY20和桂花OfWRKY3蛋白氨基酸序列進行比對分析。PCR擴增和載體構建參照譚彬等[26]的方法進行。
1.5 基因表達分析
將中油桃14號發育期果實的RNA進行反轉錄合成cDNA,利用實時熒光定量PCR儀檢測PpCCD4和PpWRKY4基因相對表達量。定量引物序列:PpCCD4-F:GGCTAGAGAGCCCGAGAATC,PpCCD4-R:GAGGAGACTTGGCATCCATC;PpWRKY4-F:GATCGGCCGTGATGACAAGC,Pp-WRKY4-R:CCAACATCCATCCTCCTCCTT,內參基因PpEF2(Elongation factor 2),PpEF2-F:GGTGTGACGATGAAGAGTGATG,PpEF2-R:TGAAGG-AGAGGGAAGGTGAAAG。利用2-ΔΔCT法計算基因相對表達量[26],每個樣品3次重復。
1.6 亞細胞定位
將PpWRKY4編碼區序列(不含終止密碼子)克隆到含有綠色熒光蛋白的載體pSAK277-GFP上,構建PpWRKY4-GFP融合表達載體,將融合表達載體轉入GV3101農桿菌菌株中。將陽性菌液注射煙草葉片,48 h后取樣,使用激光共聚焦顯微鏡(尼康A1R HD25)觀察熒光信號。
1.7 酵母單雜交驗證PpWRKY4結合PpCCD4啟動子
將PpCCD4基因起始密碼子上游2000 bp片段(PpCCD4-promoter)連接到pAbAi載體上,之后轉化到Y1H Gold酵母菌株中,在SD/?Ura瓊脂板上培養2~3 d,篩選陽性菌株。隨后,篩選PpAbAi- PpCCD4-promoter背景抑制質量濃度200 ng·mL-1的AbA。
將PpWRKY4的編碼區序列連接到pGADT7載體上,將pGADT7-PpWRKY4質粒轉化進含PpAbAi-PpCCD4-promoter質粒的酵母菌株中。將陽性對照(pAbAi-p53+ pGADT7-rec-53)、陰性對照(pAbAi-PpCCD4-promoter+pGADT7-EMPTY)和試驗組(pAbAi-PpCCD4-promoter+pGADT7-PpWRKY4),分別在SD-leu和SD-leu+200 ng·mL-1 AbA培養基中觀察酵母生長情況。
1.8 雙熒光素酶報告系統檢測PpWRKY4對PpCCD4的調控作用
將PpCCD4-promoter連接到pGreenII 0800-LUC載體中作為報告質粒,將PpWRKY4編碼序列連接到pSAK277載體上作為效應質粒。將兩種質粒分別轉化農桿菌,并進行擴繁(OD600=0.9~1.1)。離心后(10 min,4000 r·min-1),使用重懸液(0.5 mol·L-1 MES,10 mmol·L-1 MgCl2,100 mmol·L-1 AS)重懸菌體并調整菌液OD600=0.8左右。注射煙草葉片,培養48 h后,按照Promega雙熒光素酶報告基因檢測試劑盒實驗方法,測定酶活性。
1.9 數據統計與分析
利用SPSS 17.0軟件對數據進行顯著性分析,采用Excel 2010進行數據統計和作圖。
2 結果與分析
2.1 中油桃14號果實類胡蘿卜素含量及PpCCD4表達模式分析
對不同發育階段中油桃14號果實類胡蘿卜素含量進行測定,結果顯示,在果實發育S1時期類胡蘿卜素含量為1.97 μg·g-1,隨后類胡蘿卜素含量急劇下降,S2時期為0.64 μg·g-1,S2-S4時期果實中類胡蘿卜素含量差異不顯著(圖1-A)。對類胡蘿卜素裂解加氧酶PpCCD4基因在中油桃14號果實不同發育時期表達分析顯示,其在S1時期低表達,隨后急劇上升,說明類胡蘿卜素的降解是由PpCCD4的高表達所導致的。對PpCCD4上游2000 bp序列進行轉錄因子結合元件分析,發現區域內包含多種轉錄因子結合基序,包括Dof、MADS、MYB、bHLH以及WRKY等(圖1-B)。由此推測,PpCCD4可能會受到WRKY、MYB等轉錄因子的調控。
2.2 PpWRKY4基因克隆與表達分析
以中油桃14號果肉組織cDNA為模板克隆PpWRKY基因,測序分析發現,其CDS區共1764 bp,編碼587個氨基酸,預測PpWRKY4蛋白分子質量為64.06 ku,等電點為6.00。序列比對結果顯示PpWRKY4與AtWRKY20和OfWRKY3高度同源,含有兩個WRKY保守結構域,屬于Ⅰ類WRKY蛋白(圖2-A)。對PpWRKY4基因在中油桃14號果實不同發育期表達趨勢分析發現PpWRKY4在S1時期高表達,隨后急劇下降(圖2-B),與PpCCD4表達趨勢相反,且PpCCD4基因啟動子區有WRKY結合元件,據此推測PpWRKY4可能負調控PpCCD4表達。
2.3 PpWRKY4亞細胞定位
為了確認PpWRKY4蛋白在細胞內可能發揮作用的部位,構建了pSAK277-PpWRKY4-GFP融合表達載體和pSAK277-GFP空載,通過農桿菌侵染煙草。亞細胞定位結果顯示PpWRKY4-GFP融合蛋白僅在煙草表皮細胞的細胞核中觀察到綠色熒光(圖3),表明PpWRKY4定位于細胞核。
2.4 PpWRKY4與PpCCD4啟動子的互作分析
為了驗證候選的PpWRKY4是否可以直接結合在PpCCD4啟動子上,將PpCCD4啟動子片段(PpCCD4P)連接到PAbAi載體上,并轉化到酵母中,PAbAi-PpCCD4-promoter質粒在AbA為200 ng·mL-1下被抑制生長。將PpWRKY4的CDS全長連接到pGADT7載體上,與PAbAi-PpCCD4-promoter載體共轉,驗證PpWRKY4是否可以結合PpCCD4啟動子。結果顯示,當SD-leu培養基中AbA質量濃度為0時,陽性對照p53-promoter+AD-Rec-p53、陰性對照PpCCD4-promoter+AD-empty、PpCCD4-promoter+AD-PpWRKY4均可以正常生長;當培養基中AbA質量濃度為200 ng·mL-1時,僅有陽性對照和PpCCD4-promoter+AD-PpWRKY4可以正常生長,陰性對照酵母的生長受到嚴重的抑制,表明PpWRKY4可以結合PpCCD4啟動子(圖4)。
2.5 PpWRKY4抑制PpCCD4表達
為了進一步明確PpWRKY4對PpCCD4基因的轉錄調控活性,利用雙熒光素酶系統,構建pSAK277-PpWRKY4過表達載體,以及將PpCCD4啟動子片段連接到pGreenII0800-LUC載體上。利用農桿菌介導方法,將pSAK277-PpWRKY4和pGreenII0800-LUC-PpCCD4-promoter共轉化煙草葉片。結果顯示,陰性對照的LUC/REN值是試驗組PpWRKY4的4倍左右,表明PpWRKY4可顯著抑制PpCCD4啟動子活性(圖5)。
3 討 論
桃果肉顏色是一個重要的農藝性狀,其類胡蘿卜素含量變異豐富[27-29]。桃果肉顏色(黃肉/白肉)是受一對等位基因控制的質量性狀,白肉對黃肉為顯性,PpCCD4為控制該性狀的關鍵基因[3,5]。PpCCD4的表達與類胡蘿卜素含量具有顯著相關性,在白肉桃中隨著果實成熟PpCCD4表達量逐漸升高,而類胡蘿卜素含量逐漸降低;黃肉桃果實中,由于PpCCD4基因突變,導致其功能喪失或表達量降低,類胡蘿卜素積累,果肉呈現黃色[25,30]。目前,關于桃果實類胡蘿卜素積累的研究主要集中在類胡蘿卜素含量的差異以及合成通路相關結構基因表達分析[3-5,25,31]方面,而對類胡蘿卜素合成通路相關結構基因的轉錄調控因子研究還不清楚。本研究中,在白肉桃中油桃14號果實發育過程中,PpCCD4表達量隨著果實成熟而提高,導致類胡蘿卜素降解,果肉呈現白色。對PpCCD4啟動子元件分析發現,共檢測到多種轉錄因子結合位點,其中包含兩個WRKY轉錄因子結合基序。
WRKY轉錄因子超家族是植物中最大的轉錄因子家族之一[6]。WRKY蛋白在調節多種形態、發育、生理和生化過程,以及對生物/非生物脅迫的反應中起著重要作用[32-35]。目前,桃中鑒定到WRKY家族基因58個,其根據基因保守結構域特性和聚類分析,可將其分為3類;通過表達趨勢分析,共有36個基因在休眠芽中表達,其中6個PpWRKYs可能參與桃休眠過程[14]。在桃干旱脅迫響應分子機制研究中,PpWRKY18基因表達受干旱脅迫誘導,而復水后,其表達量下降,推測其可能參與干旱脅迫的響應[36]。本研究中克隆了桃PpWRKY4基因,對其氨基酸序列分析發現為Ⅰ類WRKY蛋白,且與桂花OfWRKY3高度同源。桂花中,OfWRKY3調控OfCCD4表達,推測其可能通過調控PpCCD4基因表達參與類胡蘿卜素代謝[22]。
在植物中,許多代謝物的生物合成或降解受到與這些通路相關的結構基因的轉錄調控,而這種調控作用主要依賴于特定轉錄因子的調節[37]。植物中類胡蘿卜素合成和積累受到類胡蘿卜素生物合成、降解酶及存儲相關基因的影響,其受眾多轉錄因子調控[38]。在柑橘中,CsERF61(ethylene response factor)能夠結合至CsLCYB2(lycopene β-cyclase)基因的啟動子激活其表達,參與類胡蘿卜素合成[39]。在番茄中,通過對類胡蘿卜素生物合成途徑相關結構基因SlDXS1(1-deoxy-D-xylulose 5-phosphate synthase)和SlPSY1(phytoene synthase)表達模式與已知調控基因表達模式分析,發現SlWRKY35可以控制MEP(2-C-methyl-D-erythritol 4-phosphate)途徑的初級代謝,從而誘導下游類胡蘿卜素的生物合成[24]。甜瓜CmWRKY49調控CmPSY1進而促進β-胡蘿卜素積累[40]。本研究分析發現,PpWRKY4基因在桃果實發育過程中的表達趨勢與類胡蘿卜素合成關鍵基因PpCCD4的表達趨勢相反,且亞細胞定位結果顯示PpWRKY4蛋白定位在細胞核,與轉錄因子在細胞核中發揮的作用相符。進一步通過酵母單雜交技術、LUC試驗,證明PpWRKY4負調控PpCCD4。以上研究結果表明,PpWRKY4可能具有調控類胡蘿卜素積累的功能,在桃果實顏色調控中發揮重要作用,為桃果實顏色形成研究提供更多理論基礎。
4 結 論
筆者在研究中克隆了中油桃14號中PpWRKY4基因,為Ⅰ類WRKY轉錄因子。隨著果實成熟,中油桃14號果實的類胡蘿卜素含量顯著降低,PpWRKY4表現出與類胡蘿卜素降解基因PpCCD4相反的表達模式。進一步研究證明,PpWRKY4可直接與PpCCD4基因啟動子結合并抑制其表達,因此,PpWRKY4通過影響PpCCD4表達參與調節桃類胡蘿卜素的積累,為調節桃的肉色提供了理論依據。
參考文獻 References:
[1] MIKI W. Biological functions and activities of animal carotenoids[J]. Pure and Applied Chemistry,1991,63(1):141-146.
[2] YUAN H,ZHANG J X,NAGESWARAN D,LI L. Carotenoid metabolism and regulation in horticultural crops[J]. Horticulture Research,2015,2:15036.
[3] ADAMI M,DE FRANCESCHI P,BRANDI F,LIVERANI A,GIOVANNINI D,ROSATI C,DONDINI L,TARTARINI S. Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach[J]. Plant Molecular Biology Reporter,2013,31(5):1166-1175.
[4] BRANDI F,BAR E,MOURGUES F,HORVáTH G,TURCSI E,GIULIANO G,LIVERANI A,TARTARINI S,LEWINSOHN E,ROSATI C. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMC Plant Biology,2011,11:24.
[5] FALCHI R,VENDRAMIN E,ZANON L,SCALABRIN S,CIPRIANI G,VERDE I,VIZZOTTO G,MORGANTE M. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach[J]. The Plant Journal,2013,76(2):175-187.
[6] CHI Y J,YANG Y,ZHOU Y,ZHOU J,FAN B F,YU J Q,CHEN Z X. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Molecular Plant,2013,6(2):287-300.
[7] RUSHTON P J,SOMSSICH I E,RINGLER P,SHEN Q J. WRKY transcription factors[J]. Trends in Plant Science,2010,15(5):247-258.
[8] RUSHTON D L,TRIPATHI P,RABARA R C,LIN J,RINGLER P,BOKEN A K,LANGUM T J,SMIDT L,BOOMSMA D D,EMME N J,CHEN X F,FINER J J,SHEN Q J,RUSHTON P J. WRKY transcription factors:Key components in abscisic acid signalling[J]. Plant Biotechnology Journal,2012,10(1):2-11.
[9] ROSS C A,LIU Y,SHEN Q J. The WRKY gene family in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology,2007,49(6):827-842.
[10] WEI K F,CHEN J,CHEN Y F,WU L J,XIE D X. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize[J]. DNA Research,2012,19(2):153-164.
[11] üLKER B,SOMSSICH I E. WRKY transcription factors:From DNA binding towards biological function[J]. Current Opinion in Plant Biology,2004,7(5):491-498.
[12] 許瑞瑞,張世忠,曹慧,束懷瑞. 蘋果WRKY轉錄因子家族基因生物信息學分析[J]. 園藝學報,2012,39(10):2049-2060.
XU Ruirui,ZHANG Shizhong,CAO Hui,SHU Huairui. Bioinformatics analysis of WRKY transcription factor genes family in apple[J]. Acta Horticulturae Sinica,2012,39(10):2049-2060.
[13] HUANG S X,GAO Y F,LIU J K,PENG X L,NIU X L,FEI Z J,CAO S Q,LIU Y S. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum[J]. Molecular Genetics and Genomics,2012,287(6):495-513.
[14] CHEN M,TAN Q P,SUN M Y,LI D M,FU X L,CHEN X D,XIAO W,LI L,GAO D S. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy[J]. Molecular Genetics and Genomics,2016,291(3):1319-1332.
[15] ZHANG W W,ZHAO S Q,GU S,CAO X Y,ZHANG Y,NIU J F,LIU L,LI A R,JIA W S,QI B X,XING Y. FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca[J]. Plant Physiology,2022,189(2):1037-1049.
[16] GAO H M,WANG Y F,XU P,ZHANG Z B. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat[J]. Frontiers in Plant Science,2018,9:997.
[17] WANG L,LIU F,ZHANG X,WANG W J,SUN T T,CHEN Y F,DAI M J,YU S X,XU L P,SU Y C,QUE Y X. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane[J]. International Journal of Molecular Sciences,2018,19(12):4059.
[18] QIU Y P,YU D Q. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany,2009,65(1):35-47.
[19] WANG C T,RU J N,LIU Y W,LI M,ZHAO D,YANG J F,FU J D,XU Z S. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants[J]. International Journal of Molecular Sciences,2018,19(10):3046.
[20] ZHANG Y,YU H J,YANG X Y,LI Q,LING J,WANG H,GU X F,HUANG S W,JIANG W J. CsWRKY46,a WRKY transcription factor from cucumber,confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiology and Biochemistry,2016,108:478-487.
[21] SUN X M,ZHANG L L,WONG D C J,WANG Y,ZHU Z F,XU G Z,WANG Q F,LI S H,LIANG Z C,XIN H P. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33,improving cold tolerance[J]. The Plant Journal,2019,99(5):988-1002.
[22] HAN Y J,WU M,CAO L Y,YUAN W J,DONG M F,WANG X H,CHEN W C,SHANG F D. Characterization of OfWRKY3,a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans[J]. Plant Molecular Biology,2016,91(4/5):485-496.
[23] ZHAO W H,LI Y H,FAN S Z,WEN T J,WANG M H,ZHANG L D,ZHAO L X. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1,a core component of ethylene signal transduction[J]. Journal of Experimental Botany,2021,72(12):4269-4282.
[24] YUAN Y,REN S Y,LIU X F,SU L Y,WU Y,ZHANG W,LI Y,JIANG Y D,WANG H H,FU R,BOUZAYEN M,LIU M C,ZHANG Y. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit[J]. The New Phytologist,2022,234(1):164-178.
[25] 朱運欽,曾文芳,牛良,蔡祖國,魯振華,潘磊,崔國朝,王志強. ‘中油桃9號’及其黃肉突變體花和葉片中類胡蘿卜素代謝及相關基因的時空表達[J]. 園藝學報,2018,45(10):1869-1880.
ZHU Yunqin,ZENG Wenfang,NIU Liang,CAI Zuguo,LU Zhenhua,PAN Lei,CUI Guochao,WANG Zhiqiang. Temporal and spatial expression of carotenoid metabolism and relative genes in flowers and leaves of CN9 nectarine and its yellow-fleshed mutant[J]. Acta Horticulturae Sinica,2018,45(10):1869-1880.
[26] 譚彬,魏鵬程,栗煥楠,連曉東,陳譚星,鄭先波,程鈞,王偉,王小貝,馮建燦. 桃PEBP基因家族全基因組鑒定及桃TFL1基因功能分析[J]. 果樹學報,2020,37(10):1443-1454.
TAN Bin,WEI Pengcheng,LI Huannan,LIAN Xiaodong,CHEN Tanxing,ZHENG Xianbo,CHENG Jun,WANG Wei,WANG Xiaobei,FENG Jiancan. Genome-wide identification of PEBP gene family and functional analysis of TFL1 gene in peach (Prunus persica)[J]. Journal of Fruit Science,2020,37(10):1443-1454.
[27] WU J L,FAN J Q,LI Y,CAO K,CHEN C W,WANG X W,FANG W C,ZHU G R,WANG L R. Characterizing of carotenoid diversity in peach fruits affected by the maturation and varieties[J]. Journal of Food Composition and Analysis,2022,113:104711.
[28] ZHAO B T,SUN M,LI J Y,SU Z W,CAI Z X,SHEN Z J,MA R J,YAN J,YU M L. Carotenoid profiling of yellow-flesh peach fruit[J]. Foods,2022,11(12):1669.
[29] CAO S F,LIANG M H,SHI L Y,SHAO J R,SONG C B,BIAN K,CHEN W,YANG Z F. Accumulation of carotenoids and expression of carotenogenic genes in peach fruit[J]. Food Chemistry,2017,214:137-146.
[30] 范家琪,吳金龍,李勇,別航靈,王蛟,郭健,曹珂,王力榮. 桃類胡蘿卜素合成關鍵基因PpCCD4的表達與啟動子活性分析[J]. 果樹學報,2020,37(9):1271-1280.
FAN Jiaqi,WU Jinlong,LI Yong,BIE Hangling,WANG Jiao,GUO Jian,CAO Ke,WANG Lirong. Expression and promoter activity analysis of PpCCD4 closely related to carotenoid synthesis in peach[J]. Journal of Fruit Science,2020,37(9):1271-1280.
[31] BAI S L,TUAN P A,TATSUKI M,YAEGAKI H,OHMIYA A,YAMAMIZO C,MORIGUCHI T. Knockdown of carotenoid cleavage dioxygenase 4 (CCD4) via virus-induced gene silencing confers yellow coloration in peach fruit:Evaluation of gene function related to fruit traits[J]. Plant Molecular Biology Reporter,2016,34(1):257-264.
[32] WANG X,LI J J,GUO X F,MA Y,QIAO Q,GUO J. PlWRKY13:A transcription factor involved in abiotic and biotic stress responses in Paeonia lactiflora[J]. International Journal of Molecular Sciences,2019,20(23):5953.
[33] MAO G H,MENG X Z,LIU Y D,ZHENG Z Y,CHEN Z X,ZHANG S Q. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. The Plant Cell,2011,23(4):1639-1653.
[34] WANG L N,ZHU W,FANG L C,SUN X M,SU L Y,LIANG Z C,WANG N,LONDO J P,LI S H,XIN H P. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biology,2014,14:103.
[35] GOVARDHANA M,KUMUDINI B S. In-silico analysis of cucumber (Cucumis sativus L.) Genome for WRKY transcription factors and cis-acting elements[J]. Computational Biology and Chemistry,2020,85:107212.
[36] 李森,王慶杰,陳修德,張蕊,李玲,杜桂英,付喜玲. 桃WRKY轉錄因子PpWRKY18克隆及表達分析[J]. 核農學報,2021,35(9):1987-1993.
LI Sen,WANG Qingjie,CHEN Xiude,ZHANG Rui,LI Ling,DU Guiying,FU Xiling. Cloning and expression analysis of transcription factor PpWRKY18 in peach[J]. Journal of Nuclear Agricultural Sciences,2021,35(9):1987-1993.
[37] LACCHINI E,GOOSSENS A. Combinatorial control of plant specialized metabolism:Mechanisms,functions,and consequences[J]. Annual Review of Cell and Developmental Biology,2020,36:291-313.
[38] 陸晨飛,高月霞,黃河,戴思蘭. 植物類胡蘿卜素代謝及調控研究進展[J]. 園藝學報,2022,49(12):2559-2578.
LU Chenfei,GAO Yuexia,HUANG He,DAI Silan. Carotenoid metabolism and regulation in plants[J]. Acta Horticulturae Sinica,2022,49(12):2559-2578.
[39] ZHU K J,SUN Q,CHEN H Y,MEI X H,LU S W,YE J L,CHAI L J,XU Q,DENG X X. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061[J]. Journal of Experimental Botany,2021,72(8):3137-3154.
[40] DUAN X Y,JIANG C,ZHAO Y P,GAO G,LI M,QI H Y. Transcriptome and metabolomics analysis revealed that CmWRKY49 regulating CmPSY1 promotes β-carotene accumulation in orange fleshed oriental melon[J]. Horticultural Plant Journal,2022,8(5):650-666.
收稿日期:2024-05-07 接受日期:2024-05-15
基金項目:河南省高等學校重點科研項目計劃基礎研究專項(24ZX010);河南省重點研發與推廣專項(科技攻關)(232102110211);河南省高等學校重點科研項目(23A210023)
作者簡介:宋聰豪,男,在讀碩士研究生,主要從事桃分子生物學與種質創新研究。E-mail:songconghao773x@163.com
*通信作者 Author for correspondence. E-mail:btan@henau.edu.cn;E-mail:lianxd@henau.edu.cn