










摘" " 要:【目的】探討冰溫(-1 ℃)貯藏下玉露香梨果心差異代謝物及其對褐變的影響機制?!痉椒ā?利用超高效液相色譜-質譜法對Y-I-C(-1 ℃,貯藏240 d)和Y-S-C(0 ℃,貯藏240 d)處理組進行非靶向代謝組學分析,通過主成分分析、偏最小二乘判別分析和KEGG富集等多元統計,篩選組間果心差異代謝物,結合貯藏期間生理變化探討冰溫對果心褐變的影響?!窘Y果】玉露香梨采后果心共鑒定出331種代謝產物,包括黃酮、苯丙烷類、萜類、糖及糖醇、生物堿、有機酸、脂質、氨基酸、醌類、單寧、核苷酸等類物質。相對于Y-C(采后0 d)處理,Y-S-C處理組果心共有27種差異代謝物顯著下調,4種物質上調。與0 ℃貯藏相比,-1 ℃貯藏延緩了果心多酚氧化酶活性的上升及總酚、總黃酮的氧化,抑制了果心褐變。Y-I-C與Y-S-C處理組篩選出50種顯著差異代謝物,Y-I-C處理組上調的26種物質主要為苯丙烷類、黃酮類、有機酸類等物質,差異代謝物富集在代謝通路、氨基酸代謝、次生代謝產物的生物合成、碳水化合物代謝等途徑?!窘Y論】-1 ℃冰溫貯藏下鄰苯二酚、熊果苷、檸檬酸等物質的上調增強了果實的抗氧化性,并通過相關途徑協同影響果心氧化代謝。
關鍵詞:玉露香梨;冰溫;代謝組學;果心褐變
中圖分類號:S661.2 文獻標志碼:A 文章編號:1009-9980(2024)08-1665-13
Effect of ice temperature storage on core browning of Yuluxiang pear based on metabolomics analysis
ZHAO Yingli1, 2, ZHANG Wei1, YANG Zhiguo1, 2, WANG Liang1, 2, CHEN Huiyan1, LI Chao1, 2
(1College of Food Science and Engineering/Institute of Storage and Fresh Preservation of Agricultural Products, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China; 2Shanxi Center of Technology Innovation for Storage and Processing of Fruit and Vegetable, Jinzhong 030801, Shanxi, China)
Abstract: 【Objective】 Due to the factors such as harvest maturity and storage conditions, the fruit core of Yuluxiang pear is prone to browning during long-term storage, affecting fruit quality after storage. Ice temperature storage is a storage method to store fruits under the temperature between 0 ℃ and freezing point, which can effectively delay fruit metabolism, reduce occurrence of fruit browning, maintain the color of fruit core and fruit quality of Yuluxiang pear. Metabolomics can detect and analyze the types, quantities, and changes of metabolites to find relative relationship between metabolites and physiological and pathological changes during a specific physiological period and under specific conditions. Therefore, untargeted metabolomics with metabolic profiling analysis can be used to analyze the changes in metabolites during browning process of Yuluxiang pear, and further explore the impact of ice temperature technology on fruit core browning to provide theoretical reference for clarifying the mechanism and controlling of pear browning. 【Methods】 The fruits of Yuluxiang pear with soluble solid content of 11.5%-12.5% were selected as the test material using near-infrared fruit non-destructive detector. After pre-cooling, the fruits were packaged in high permeability CO2 polythene fresh keeping bag and stored at (-1.0±0.5) ℃ and (0.0±0.5) ℃, respectively. Regular sampling was conducted to measure the core browning index, total phenols, total flavonoids and polyphenol oxidase enzyme activity at every 60 days of cold storage. Each sample was represented by three biological replicates. The ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to perform untargeted metabolomics analysis on the fruit core of Yuluxiang pear after 240 days stored at -1 ℃ and 0 ℃. The metabolomics samples were Y-C (0 day post harvest), Y-S-C [stored at (0.0±0.5) ℃ for 240 days], Y-I-C [stored at (-1.0±0.5) ℃ for 240 days]. Using multivariate statistics such as principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA), the kyoto encyclopedia of genes and genomes (KEGG) database, differential metabolites and metabolic pathways were screened and analyzed. Combining with the determination of physiological indexes, the effect of ice temperature on pear core browning was analyzed. 【Results】 The core browning occurred in cold storage at 0 ℃ on 120th day after harvest and the browning symptoms only occurred in the fruit corn during storage period. With the increase of polyphenol oxidase activity, the total phenol content in the core of Yuluxiang pear at 0 ℃ gradually decreased, and the total flavonoid content also showed a downward trend. The ice temperature storage at -1 ℃ delayed the decrease in total phenolic and total flavonoid content, maintained a certain level of antioxidant capacity, inhibited the increase in polyphenol oxidase activity, and lightened core browning. The metabolomics analysis revealed that a total of 331 metabolites with different relative contents were obtained in the core tissue of Yuluxiang pear before and after storage, which were mainly classified into flavonoids (72), phenylpropanoids (56), terpenes (44), sugars and polyols (40), alkaloids (34), organic acids (15), lipids (13), amino acids and their derivatives (10), tannins (4), quinones (4), nucleotides (2) and other unclassified compounds (37). Among them, the higher relative content of metabolites were organic acids, sugars and polyols and alkaloids. In the Y-S-C vs Y-C samples, 31 differentially expressed metabolites were identified based on a variable importance in the projection (VIP) > 1.0 and t-test < 0.05, among them, 4 metabolic compounds were up-regulated and 27 metabolic compounds were down-regulated. Compared with Y-C treatment, phenylpropanoid substances such as protocatechuic acid, catechol, dendrophenol and ferulic acid were down-regulated after cold storage at 0 ℃, and organic acids such as trifluoroacetic acid, 2-isopropylmalic acid, and methylsuccinic acid were down-regulated, sugars and polyols, and flavonoids were all down-regulated as well. These differential metabolites were mapped to 11 KEGG pathways, among these pathways, valine, leucine and isoleucine biosynthesis, pyruvate metabolism, and fructose and mannose pathways were significantly enriched. 50 species differentially expressed metabolites were identified in Y-I-C vs Y-S-C samples, the numbers of up-regulated and down-regulated metabolites were 26 and 24 respectively. There were 11 phenylpropanoids, among them, catechol, arbutin, protocatechuicaldehyde, quinic acid, and ferulic acid were up-regulated in expression levels when stored at -1 ℃ compared with 0 ℃. There are 7 organic acid substances, among them, malic acid, 2-isopropylmalic acid, trifluoroacetic acid, and citric acid were up-regulated in expression levels when stored at -1 ℃ compared with 0 ℃. Other types included sugars and polyols (8), terpenes (6), flavonoids (5), lipids (3), amino acid (2), alkaloids (2), quinone (1) and others (5). The KEGG enrichment pathway enriched 50 significantly different metabolites in 25 metabolic pathways, among them, the more concentrated pathways included metabolic pathways, amino acid metabolism, biosynthesis of other secondary metabolites, carbohydrate metabolism, as well as lipid metabolism, metabolism of cofactors and vitamins, environmental information processing, metabolism of terpenoids and polyketides, membrane transport and other pathways. 【Conclusion】 The ice temperature storage (-1 ℃) delayed the increase of polyphenol oxidase activity and the oxidation of total phenols and flavonoids, and inhibited core browning of Yuluxiang pear. 50 species differentially expressed metabolites were screened out in the pear core, and 26 substances were mainly up-regulated, including phenylpropanoids, flavonoids, organic acids, etc. Through KEGG metabolic pathway enrichment analysis, it was found that they significantly contributed to metabolic pathways, amino acid metabolism, and biosynthesis of other secondary metabolites. In addition, TCA cycle, glycolysis/gluconeogenesis, and fatty acid degradation were also involved. The ice temperature treatment increased the antioxidant capacity of the fruits by up-regulating substances such as catechol, arbutin, and citric acid and synergistically affected the oxidative metabolism of the fruit core through related pathways.
Key words: Yuluxiang pear; Ice temperature; Metabolomics; Core browning
玉露香梨以果肉酥脆、汁多香甜[1]等特性作為近年來發展迅速的優新梨品種,在山西及華北地區的栽培面積及產量均不斷上升。但玉露香梨受采收成熟度[2]和貯藏條件[3-4]等因素的影響,在中長期貯藏中果心部位易發生褐變,成為影響其貯后品質的主要因素。梨果褐變目前仍是貯藏領域研究的重點方向,酶促褐變是影響梨果褐變的主要因素[5-6],且受品種易褐變敏感性[7]、成熟度[8-9]、貯藏環境溫度[10]及氣體組分[11-12]等諸多因素的影響。冰溫貯藏是將果品貯藏于0 ℃至冰點之間的貯藏方式,可有效延緩果實代謝,減輕果實褐變的發生。-0.5~-0.2 ℃的冰溫貯藏抑制了多酚氧化酶(polyphenol oxidase,PPO)活性,減緩了磨盤柿和次郎甜柿總酚含量的下降,減輕了果實褐變[13]。冰溫貯藏結合1-MCP處理提高乍娜葡萄采后貯藏品質和果實抗氧化性,降低了果梗褐變指數[14]。-0.7 ℃抑制了冷藏期間庫爾勒香梨果實呼吸和乙烯代謝,保持了香梨品質,減少了貨架期果心褐變[15]。冰溫貯藏雖可有效緩解玉露香梨果實生理代謝及色澤變化[3,16],但對玉露香梨果心褐變的影響未見深入研究,因此探討冰溫對玉露香梨果心褐變的影響及其機制,對玉露香梨采后商品品質的保持有一定意義。
代謝組學是系統生物學的重要組成部分,可利用代謝產物積累、變化尋找特定生理時期、特定條件下其與表型及生理的關系[17],已廣泛應用于采后果實品質及生理病害分析中。Gong等[18]研究了科特蘭(Cortland)和紅元帥(Red Delicious)兩個蘋果品種在0~1 ℃下虎皮病發生過程中果皮的代謝組學變化,發現59種差異代謝物在DPA和1-MCP處理中發生了顯著變化。易褐變絲瓜品種35D-7酶促褐變前后的差異代謝物分析表明,229種差異代謝物中,松柏醛、紫丁香苷和異綠原酸A參與主要褐變過程[19]。王森[20]利用廣靶次生代謝組學在石榴褐變與健康假種皮中共鑒定出89種顯著差異代謝物,分析認為黃酮類、黃酮醇和異黃酮類的生物合成,尤其是苯丙烷類的生物合成途徑是參與假種皮褐變的主要途徑。非靶向代謝技術具有快速、檢測范圍廣等特點,可分析代謝物質的整體變化及其對內外在影響因素的響應規律[21-22],為此采用液相色譜-質譜非靶向技術結合代謝輪廓分析方法可對玉露香梨果實褐變過程中代謝物變化進行分析,進一步探討冰溫技術對梨果品質及褐變發生的影響,為玉露香梨采后品質控制提供技術參考。
1 材料和方法
1.1 材料
2021年9月15日于山西省隰縣采收玉露香梨,為防止冰溫對果實造成低溫傷害,利用NCS001近紅外水果無損傷檢測儀(SACMI,意大利)篩選成熟度一致的果實[可溶性固形物含量(w,后同)為11.5%~12.5%,采用凍結法測定果實冰點溫度-1.74~-1.68 ℃,冰溫貯藏果溫控制在-1.0 ℃),0~2 ℃預冷12 h后高滲出CO2保鮮袋(770 mm × 950 mm,0.018~0.020 mm厚,山西龍田保鮮技術開發有限公司]包裝,設置(-1.0±0.5)℃(冰溫)、(0.0±0.5)℃(冷藏)貯藏,每個處理設3個生物學重復,定期取樣觀察褐變發生情況及測定生理指標。組學樣品分別為:Y-C(采后0 d,健康組織);Y-S-C[(0.0±0.5) ℃貯藏240 d,褐變組織];Y-I-C[(-1.0±0.5) ℃貯藏240 d,未褐變組織],共3組果心,取樣部位:果心線內去除種子后組織,液氮速凍,-80 ℃超低溫儲存用于組學分析。
1.2 指標測定
果心褐變指數:果實沿橫徑切開,褐變分級標準及指數計算參照張微等[16]的方法略有調整。
總酚含量:取0.2 g果心凍樣加入2.5 mL提取液,60 ℃,300 W,12 000 r·min-1超聲提取30 min,25 ℃離心10 min,取上清液采用總酚含量檢測試劑盒測定,結果以mg·g-1表示。
總黃酮含量:提取方法同總酚含量,測定參照蘇艷麗等[7]的方法略作調整,結果以mg·g-1表示。
PPO活性:采用鄰苯二酚比色法測定[2],結果以U·g-1表示。
代謝物提?。悍Q取0.1 g果心樣品(4 ℃解凍),加入300 μL冷乙腈,研磨。冰水浴超聲提取30 min,4 ℃,12 000 r·min-1離心10 min。取100 μL,37 ℃真空離心濃縮至干,100 μL乙腈溶解殘渣,4 ℃、12 000 r·min-1離心10 min,取10 μL上清液進樣,用UPLC-MS檢測。
色譜條件:Waters BEH C18 Column (100 mm×2.1 mm,1.7 μm),柱溫:35 ℃。流動相:A:0.1%甲酸,1 mmol·L-1乙酸銨,B:乙腈,流速:0.3 mL·min-1。梯度洗脫程序見表1。
質譜條件:正、負離子模式檢測。離子源:氣體1∶50 psi,氣體2∶50 psi。離子源溫度:500 ℃(正離子)和450 ℃(負離子)。噴射電壓:5500 V(正離子)和4400 V(負離子)。飛行時間質量掃描范圍:100~1200 Da,0.2 s,產品離子掃描范圍:50~1000 Da,0.01 s。二級質譜采用information dependent acquisition(IDA)獲得。
1.3 數據分析
代謝物組學數據預處理:利用北京百泰派克生物科技有限公司提供的實驗平臺進行分析,利用Analysis Base File Converter軟件、MS-DIAL 4.60軟件進行預處理,獲得的峰信息在MassBank、Respect、GNPS數據庫檢索匹配,根據質譜信息分析代謝產物。使用主成分分析(principal component analysis,PCA)、偏最小二乘判別分析(partial least squares-discriminant analysis,PLS-DA)方法進行代謝物的差異分析,依據投影重要度(variable importance in the projection,VIP)(VIP>1)、t檢驗(p<0.05)篩選差異代謝物。利用KEGG數據庫進行代謝通路注釋分析。
2 結果與分析
2.1 不同貯藏溫度下玉露香梨果心褐變指數的變化
由圖1可知,貯藏120 d時,0 ℃下玉露香梨果心發生褐變,褐變指數為1.11%。-1 ℃果心褐變出現在180 d。貯藏中后期,不同貯藏溫度下玉露香梨果心褐變指數均呈上升的趨勢,180 d、240 d時0 ℃果心褐變指數顯著升高,極顯著高于-1 ℃貯藏下的果心褐變指數。貯藏240 d時,0 ℃與-1 ℃下玉露香梨果心褐變指數分別為15.56%、9.70%。整個貯藏期不同溫度下果肉色澤雖因衰老泛黃,但均未發生褐變。
2.2 不同貯藏溫度下玉露香梨果心總酚含量的變化
不同溫度貯藏期間玉露香梨果心總酚含量均呈逐漸下降的趨勢(圖2)。貯藏前期,2個溫度下果心總酚含量差異不顯著。120 d后0 ℃果心總酚含量下降幅度增加,-1 ℃果心總酚含量在180 d降幅增加,但仍顯著高于0 ℃果心總酚含量。貯藏240 d時,0 ℃和-1 ℃下玉露香梨果心總酚含量分別較入貯時下降了40.13%、23.66%。
2.3 不同貯藏溫度下玉露香梨果心總黃酮含量的變化
入貯時玉露香梨果心中總黃酮含量為12.03 mg·g-1(圖3)。隨貯藏時間的延長,不同溫度處理下果心總黃酮含量變化趨勢相同,均在入貯初期60 d上升后逐漸下降。貯藏期間-1 ℃果心總黃酮含量在60 d、120 d和240 d顯著高于0 ℃果心總黃酮含量,且貯藏后期下降的趨勢也較為緩慢。
2.4 不同貯藏溫度下玉露香梨果心多酚氧化酶活性的變化
不同貯藏溫度下玉露香梨果心PPO活性的變化如圖4所示,果心PPO活性在入貯后呈上升的趨勢,0 ℃下果心PPO活性峰出現在120 d,達到74.29 U·g-1,此時0 ℃果心褐變出現并快速發展。-1 ℃下果心PPO活性峰值出現在180 d,為68.06 U·g-1,-1 ℃下延緩了果心在貯藏中褐變的發生及癥狀的發展。
2.5 玉露香梨果心代謝產物鑒定分析
利用UPLC-MS對玉露香梨果心進行非靶標代謝組學分析檢測,發現不同溫度處理貯藏前后果心組織均含有不同相對含量的331種代謝產物(圖5),其中包括72種黃酮,56種苯丙烷類,44種萜類,40種糖及糖醇,34種生物堿,15種有機酸,13種脂質,10種氨基酸,4種單寧,4種醌類,2種核苷酸和37種其他未歸類化合物。
對鑒定出的代謝產物種類分布情況進行分析,對數據進行歸一化處理后,按物質種類對主要代謝物進行了分類,圖6為玉露香梨采后果心(Y-C)代謝產物類別及相對含量,其中相對含量較高的物質為有機酸、糖及糖醇、生物堿、苯丙烷類及黃酮類物質等。有機酸類代謝物質中檸檬酸在果心中相對含量較高。糖及糖醇類物質中D-甘露糖醇、半乳糖醇相對含量較高。苯丙烷類物質中鄰苯二酚、2,6-二叔丁基對甲苯酚、2,5-二羥基苯甲酸、原兒茶酸相對含量較高。黃酮類物質中黃杞苷、豆苷、槲皮素等物質相對含量較高。氨基酸類代謝產物中L-天門冬氨酸相對含量較高。
2.6 玉露香梨果心代謝物PCA及PLS-DA分析
主成分分析可判別數據組內的重復性和組間的差異性,對3組果心代謝產物進行主成分分析,從PCA得分圖(圖7-A)可以看出,Y-C、Y-S-C及Y-I-C處理果心代謝物具有不同的空間,雖在Y-S-C處理中1個重復偏離程度較大,但各組代謝產物之間的分離趨勢明顯。尤其是Y-S-C與Y-I-C處理數據輪廓可以清晰地分離開,說明0 ℃和-1 ℃貯藏后果心之間的代謝產物存在一定的差異。其中橫坐標PC1和縱坐標PC2分別代表著主成分1和主成分2的得分。PC1解釋72.5%總方差變量,PC2解釋了19.7%總方差變量。所有樣品信息均落于95%置信區間中,數據重復性較好、可信度較高。
PCA分析雖可提取大部分數據信息,但對組間差異不敏感。為進一步探討不同溫度處理組間的差異,采用PLS-DA可選擇區分各組特征變量,以確定Y-I-C與Y-S-C處理之間的關系。圖7-B顯示,兩組處理區分效果明顯,具有顯著的差異。該模型的解釋率為67.9%,2個主成分的解釋率分別為47.6%、20.3%?;赑LS-DA建立了代謝物表達量與分組關系之間的模型,可有效提取組間變異信息,但也會導致數據模型存在過擬合。為此進行模型交叉驗證,主要參考R2(代表分組的預測率)、Q2(代表模型預測的準確率)等參數。結果表明,R2=0.992 7、Q2=0.711 6,說明該評估模型可靠有效,不存在過擬合,確認PLS-DA模型的建立具有有效性。
2.7 玉露香梨果心差異代謝產物篩選
依據VIP>1和p值<0.05篩選各組間顯著差異代謝物。在Y-S-C與Y-C處理組間發現31種差異顯著代謝產物(表2),4種物質上調,27種物質下調。顯著差異代謝物中包括苯丙烷類物質6種,糖及糖醇類5種,有機酸3種,黃酮類物質3種,萜類物質3種,脂質2種,生物堿3種,氨基酸1種,核苷酸1種,其他類4種。與采后初始(Y-C)相比,鄰苯二酚、石斛酚、阿魏酸和原兒茶酸等苯丙烷類物質在0 ℃冷藏后下調,且差異倍數較大(表3)。三氟乙酸、2-異丙基蘋果酸、甲基丁二酸等有機酸糖及糖醇、黃酮類物質在0 ℃冷藏后均下調。推測與有機酸、糖類等物質隨果實衰老代謝發生降解,酚類物質作為底物發生氧化有關。
Y-I-C與Y-S-C處理果心代謝物篩選發現了50種差異代謝物(表2)。-1 ℃冰溫貯藏后果心26種代謝產物上調,24種物質下調。差異代謝物包括苯丙烷類11種,其中鄰苯二酚、反式-4-羥基肉桂酸、熊果苷、奎寧酸、阿魏酸與Y-S-C相比,Y-I-C表達量上調。有機酸類物質7種,其中L-蘋果酸、2-異丙基蘋果酸、三氟乙酸、檸檬酸與Y-S-C相比,Y-I-C表達量上調。其他差異代謝物還包括糖及糖醇類8種、萜類6種、黃酮類5種、脂類3種、生物堿2種、氨基酸2種、醌類1種、其他類5種(主要代謝差異物見表4)。
2.8 玉露香梨果心差異代謝物KEGG分析
對0 ℃冷藏240 d(Y-S-C)的玉露香梨果心與采后果心(Y-C)相比較呈顯著差異的代謝產物進行KEGG通路富集(圖8-A),差異代謝物主要富集在11條代謝途徑上,纈氨酸、亮氨酸和異亮氨酸生物合成,丙酮酸代謝,果糖和甘露糖代謝途徑較為顯著,其他涉及的代謝途徑還包括單萜生物合成、酪氨酸代謝、其他次級代謝產物的生物合成、氨基酸的生物合成、代謝通路、2-氧代羧酸代謝、ABC轉運、次級代謝產物的生物合成。
不同溫度處理(Y-I-C vs Y-S-C)的果心差異代謝物KEGG注釋富集在25條代謝途徑,富集因子排在前10的途徑見圖8-B。將代謝途徑分為幾類,其中較為集中的途徑有代謝通路;氨基酸代謝(酪氨酸代謝,纈氨酸、亮氨酸和異亮氨酸生物合成,丙氨酸、天冬氨酸和谷氨酸代謝,苯丙氨酸、酪氨酸和色氨酸生物合成,賴氨酸降解);次生代謝產物的生物合成(苯丙類生物合成途徑、異喹啉生物堿生物合成);碳水化合物代謝(TCA循環、糖酵解、丙酮酸代謝、果糖甘露糖代謝、半乳糖代謝);另外還涉及到脂肪酸降解、輔因子和維生素的代謝、植物激素信號轉導、萜類和聚酮的代謝、膜運輸等途徑。
3 討 論
果實褐變除與環境脅迫密切相關外,隨貯藏期的延長果實衰老導致的褐變[23]亦是主要的因素,且受果實總酚類物質種類、分布及多酚氧化酶活性的影響[24-25]。黃怡等[26]對蘋果梨、早酥梨和皇冠梨的研究表明,低溫貯藏期間3種梨果皮總酚和總黃酮含量均呈降低趨勢,且抗氧化能力隨貯藏期的延長而下降。與0 ℃冷藏相比,-1 ℃冰溫貯藏抑制了玉露香梨PPO活性的上升,延緩總酚、總黃酮含量的下降,保持了一定的抗氧化能力,果心褐變較輕。
代謝組學可反映表型的差異。與采收初始(Y-C)時相比較,0 ℃冷藏240 d(Y-S-C)后玉露香梨果心褐變指數升高,差異代謝物阿魏酸、鄰苯二酚及黃酮類物質均呈下調的趨勢。Busatto等[27]利用靶向代謝組學技術研究發現,Granny Smith蘋果果皮中多酚類物質綠原酸、根皮苷、兒茶素和表兒茶素與果皮褐變的發生密切相關。-1 ℃冰溫貯藏(Y-I-C)后果心代謝差異物右旋奎寧酸、熊果苷、阿魏酸、鄰苯二酚均呈現上調的趨勢,一定程度上表明冰溫貯藏減緩了果實多酚類底物的氧化作用,同時黃酮類物質的上調協同了抗氧化作用,減輕了果實褐變。梨果中的有機酸組成根據品種不同主要為蘋果酸、檸檬酸、奎寧酸、莽草酸和草酸等[28-29],且大多數梨品種總酸的含量差異都是由蘋果酸與檸檬酸主導[30-31]。-1 ℃冰溫貯藏促進了檸檬酸、蘋果酸等有機酸物質的積累,呈上調的趨勢,推測與冰溫處理減緩蘋果酸、檸檬酸等有機酸在果實成熟過程中作為糖酵解和三羧酸循環等呼吸作用的底物[32]被消耗的速率有關,且糖酵解、TCA代謝通路在冰溫貯藏對其的影響中富集因子水平也較高。有機酸類物質通過降低反應體系pH值,使其遠離PPO最適pH值,來實現對PPO活性的抑制[33]。此外,羧基與PPO活性中心的銅離子螯合限制了其與底物的結合[6],推測這也是冰溫貯藏減輕果心褐變的原因之一。另外也有研究發現,蘋果貯藏中褐變敏感和不敏感品種中丙酮酸、檸檬酸、延胡索酸、丙氨酸等代謝產物存在著差異[34];褐變菠蘿組織中檸檬酸含量減少,且結合關鍵酶基因表達的分析認為檸檬酸降解與菠蘿果肉的褐變過程密切相關[35]。
-1 ℃冰溫貯藏(Y-I-C)相對0 ℃貯藏(Y-S-C)的果心差異代謝物富集的代謝通路中發現多項代謝差異物參與到氨基酸合成及氨基酸代謝等通路中。氨基酸代謝除在植物初級和次生代謝中發揮重要功能外,在冷脅迫時也參與滲透調節,增強抗低溫脅迫能力[36]。差異代謝物天門冬氨酸、苯丙氨酸也在冰溫貯藏后呈現上調。此外遭遇低溫脅迫時,細胞膜會通過不飽和脂肪酸組分及含量的變化調節改善膜的流動相、穩定性[37]。玉露香梨-1 ℃冰溫貯藏后差異代謝物中脂類物質呈現上調趨勢。郝慧慧[38]研究發現,低溫和近冰溫對靈武長棗貯藏代謝的影響主要體現在脂類及氨基酸代謝。且筆者在本試驗中同時發現作為參與果實逆境脅迫信號應答[39]的脫落酸在冰溫處理下也呈現上調,推測這些代謝差異與果實在低溫下的抗性作用有關。龔意輝等[40]對黃桃果肉褐變的非靶向代謝組學研究表明,PE包裝處理降低黃桃果肉褐變涉及代謝通路主要為其他次生代謝產物的生物合成、氨基酸代謝、輔因子和維生素的代謝通路,其他氨基酸代謝等通路。吳敏等[41]基于代謝組學解析紅地球葡萄貯藏品質的研究認為SO2通過調控葡萄果實中類黃酮生物合成、氨基酸代謝和碳水化合物代謝等主要途徑有效保持了葡萄果實貯藏品質。為此冰溫對氨基酸代謝途徑的影響是果實低溫脅迫下的抗性反應還是冰溫延緩了果實衰老代謝仍有待深入研究。
4 結 論
基于LC-MS/MS非靶向代謝組學分析方法,在玉露香梨采后果心中共鑒定出331種代謝產物,主要包括黃酮、苯丙烷類、萜類、糖及糖醇、生物堿、有機酸、脂質、氨基酸、醌類、單寧、核苷酸等物質。相對于采后果心(Y-C),0 ℃冷藏240 d(Y-S-C)果心共有27種代謝物顯著下調,4種物質上調;有機酸、糖及糖醇等物質隨果實衰老代謝發生降解,多酚類物質作為底物參與果心褐變的發生。與0 ℃冷藏相比,-1 ℃冰溫貯藏延緩了果心PPO酶活性的上升,延緩了總酚、總黃酮的氧化,抑制了果心褐變。相對于0 ℃冷藏240 d(Y-S-C),-1 ℃冷藏240 d(Y-I-C)果心中篩選出50種代謝差異產物,上調的26種物質主要為苯丙烷類、黃酮類、有機酸等類物質,通過KEGG代謝通路富集分析,發現其對代謝通路、氨基酸代謝,次生代謝產物的生物合成等途徑貢獻顯著。-1 ℃冰溫貯藏后鄰苯二酚、熊果苷、檸檬酸等物質的上調增強了果實的抗氧化性,并通過相關途徑協同影響果心氧化代謝。
參考文獻References:
[1] 郭黃萍,郝國偉,張曉偉,楊盛. ‘玉露香梨’的性狀表現與栽培貯藏保鮮技術[J]. 落葉果樹,2011,43(5):41-43.
GUO Huangping,HAO Guowei,ZHANG Xiaowei,YANG Sheng. Character expression and cultivation storage and fresh keeping techniques of ‘Yuluxiang’ pear[J]. Deciduous Fruits,2011,43(5):41-43.
[2] 趙迎麗,張微,楊志國,王亮,陳會燕,李超. 可溶性固形物含量對玉露香梨冷藏品質及果心褐變的影響[J]. 中國果樹,2023(11):27-31.
ZHAO Yingli,ZHANG Wei,YANG Zhiguo,WANG Liang,CHEN Huiyan,LI Chao. Effect of soluble solids content on cold storage quality and core browning of ‘Yuluxiang’ pear[J]. China Fruits,2023(11):27-31.
[3] 賈曉輝,王文輝,姜云斌,杜艷民,王志華,佟偉. 不同貯藏溫度對‘玉露香’梨果實保綠效果和品質維持的影響[J]. 果樹學報,2016,33(S1):166-174.
JIA Xiaohui,WANG Wenhui,JIANG Yunbin,DU Yanmin,WANG Zhihua,TONG Wei. Effects of storage temperature on green keeping and quality of ‘Yuluxiang’ pear[J]. Journal of Fruit Science,2016,33(S1):166-174.
[4] 王春生,趙迎麗,王華瑞,李建華,施俊鳳,張曉宇. 氣調貯藏對玉露香梨品質的影響[J]. 保鮮與加工,2007,7(5):25-28.
WANG Chunsheng,ZHAO Yingli,WANG Huarui,LI Jianhua,SHI Junfeng,ZHANG Xiaoyu. Effect of controlled atmosphere storage on qulity of Yuluxiang pear[J]. Storage and Process,2007,7(5):25-28.
[5] 袁江,張紹鈴,曹玉芬,吳俊,田路明,陶書田,董星光. 梨果實酚類物質與酶促褐變底物的研究[J]. 園藝學報,2011,38(1):7-14.
YUAN Jiang,ZHANG Shaoling,CAO Yufen,WU Jun,TIAN Luming,TAO Shutian,DONG Xingguang. Polyphenolic compound and substances determination of enzymatic browning in pear[J]. Acta Horticulturae Sinica,2011,38(1):7-14.
[6] 白宇皓,李超,楊志國,趙迎麗,張立新. 梨多酚氧化酶特性與酶促褐變抑制研究進展[J]. 食品科技,2022,47(2):75-81.
BAI Yuhao,LI Chao,YANG Zhiguo,ZHAO Yingli,ZHANG Lixin. Advances in polyphenol oxidase properties and enzymatic browning inhibition of pear[J]. Food Science and Technology,2022,47(2):75-81.
[7] 蘇艷麗,楊健,田永真,王龍,王蘇珂,薛華柏,李秀根. 梨果實發育過程中褐變相關生理指標的變化[J]. 果樹學報,2018,35(增刊1):118-124.
SU Yanli,YANG Jian,TIAN Yongzhen,WANG Long,WANG Suke,XUE Huabai,LI Xiugen. Study on the changes of physiological indexes related to browning during fruit development in pears[J]. Journal of Fruit Science,2018,35(Suppl. 1):118-124.
[8] 杜艷民,王文輝,賈曉輝,佟偉,王志華. 不同可溶性固形物含量‘鴨梨’耐貯性差異比較[J]. 果樹學報,2018,35(10):1262-1270.
DU Yanmin,WANG Wenhui,JIA Xiaohui,TONG Wei,WANG Zhihua. The comparison of storage ability of ‘Yali’ pear in different soluble solids contents grades[J]. Journal of Fruit Science,2018,35(10):1262-1270.
[9] 韓云云,宋方圓,韓艷文,李玲,閆師杰. 不同采收貯藏條件下鴨梨果實LOX基因表達及其與果心褐變的關系[J]. 食品科學,2016,37(18):216-222.
HAN Yunyun,SONG Fangyuan,HAN Yanwen,LI Ling,YAN Shijie. LOX gene expression and its relationship with core browning of Yali pear under different harvest and storage conditions[J]. Food Science,2016,37(18):216-222.
[10] 王志華,高劍利,王文輝,賈朝爽,姜云斌. 不同貯藏溫度對‘紅香酥’梨果實品質和相關生理指標的影響[J]. 中國果樹,2020(5):13-19.
WANG Zhihua,GAO Jianli,WANG Wenhui,JIA Chaoshuang,JIANG Yunbin. Effects of different storage temperature on fruit quality and related physiological indexes of ‘Hongxiangsu’ pear[J]. China Fruits,2020(5):13-19.
[11] 劉佰霖,王文輝,馬風麗,王陽,杜艷民,賈曉輝. 自發氣調包裝和乙烯吸收劑對‘玉露香’梨果實品質及耐貯性的影響[J]. 果樹學報,2019,36(7):911-921.
LIU Bailin,WANG Wenhui,MA Fengli,WANG Yang,DU Yanmin,JIA Xiaohui. Effect of modified atmosphere packaging and ethylene absorbents on postharvest fruit quality and storage performance of ‘Yuluxiang’ pear[J]. Journal of Fruit Science,2019,36(7):911-921.
[12] 周慧娟,葉正文,駱軍,蘇明申,盧昆,陳翅宏. 氣調處理對‘早生新水’梨貯藏品質的影響[J]. 中國農學通報,2018,34(28):143-152.
ZHOU Huijuan,YE Zhengwen,LUO Jun,SU Mingshen,LU Kun,CHEN Chihong. Effect of controlled-atmosphere on storage quality of ‘Zaoshengxinshui’ pear[J]. Chinese Agricultural Science Bulletin,2018,34(28):143-152.
[13] 董長林,李江闊,張鵬,張平,農紹莊. 冰溫貯藏對柿果褐變以及相關指標的影響[J]. 果樹學報,2011,28(2):263-267.
DONG Changlin,LI Jiangkuo,ZHANG Peng,ZHANG Ping,NONG Shaozhuang. Effect of freezing point storage on browning and physio-quality in persimmon[J]. Journal of Fruit Science,2011,28(2):263-267.
[14] 李志文,張平,張昆明,任朝輝. 1-MCP結合冰溫貯藏對葡萄果實質地的影響[J]. 農業機械學報,2011,42(7):176-181.
LI Zhiwen,ZHANG Ping,ZHANG Kunming,REN Zhaohui. Effect of 1-methylcyclopropene combined with controlled freezing-point storage on texture of grape fruit[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(7):176-181.
[15] 鄧冰,韓云云,韓艷文,梁鵬,劉暢,閆師杰. 庫爾勒香梨緩慢降溫后適宜溫濕度條件的研究[J]. 包裝工程,2016,37(7):45-50.
DENG Bing,HAN Yunyun,HAN Yanwen,LIANG Peng,LIU Chang,YAN Shijie. Optimal temperature and humidity conditions of Korla fragrant pear under slow cooling[J]. Packaging Engineering,2016,37(7):45-50.
[16] 張微,趙迎麗,王亮,楊志國,陳會燕. 冰溫貯藏對不同產地玉露香梨果實品質及耐貯性的影響[J]. 山西農業科學,2020,48(10):1665-1670.
ZHANG Wei,ZHAO Yingli,WANG Liang,YANG Zhiguo,CHEN Huiyan. Effect of ice-temperature storage on fruit quality and storability of Yuluxiang pears from different places[J]. Journal of Shanxi Agricultural Sciences,2020,48(10):1665-1670.
[17] HANHINEVA K,AHARONI A. Metabolomics in fruit development[M]//JAIN S M,BRAR D S. Molecular Techniques in Crop Improvement. 2nd ed. Dordrecht:Springer Netherlands,2009:675-693.
[18] GONG Y H,SONG J,PALMER L C,VINQVIST-TYMCHUK M,FILLMORE S,TOIVONEN P,ZHANG Z Q. Tracking the development of the superficial scald disorder and effects of treatments with diphenylamine and 1-MCP using an untargeted metabolomic approach in apple fruit[J]. Food Chemistry:Molecular Sciences,2021,2:100022.
[19] 王雅慧,劉曉宏,雍明麗,熊愛生,蘇小俊. 基于代謝組學分析絲瓜果肉褐變過程酚酸類物質變化[J]. 中國農業科學,2021,54(22):4869-4879.
WANG Yahui,LIU Xiaohong,YONG Mingli,XIONG Aisheng,SU Xiaojun. Analysis of changes in phenolic acids of Luffa cylindrica pulp during browning based on metabolomics[J]. Scientia Agricultura Sinica,2021,54(22):4869-4879.
[20] 王森. 超聲波對石榴果實品質的影響及基于代謝組解析褐變機理[D]. 鄭州:河南農業大學,2023.
WANG Sen. Effect of ultrasound on pomegranate fruit quality and analyzing browning mechanism based on metabolome[D]. Zhengzhou:Henan Agricultural University,2023.
[21] 高靜怡,馬浩,劉東賀,方嘯宇,劉曉. 非靶向代謝組學對砂梨水心病不同代謝物質的差異分析[J]. 分子植物育種,2021,19(24):8297-8304.
GAO Jingyi,MA Hao,LIU Donghe,FANG Xiaoyu,LIU Xiao. The difference analysis of non targeted metabonomics on different metabolites in watercore Pyrus pyrifolia[J]. Molecular Plant Breeding,2021,19(24):8297-8304.
[22] FARNETI B,BUSATTO N,KHOMENKO I,CAPPELLIN L,GUTIERREZ S,SPINELLI F,VELASCO R,BIASIOLI F,COSTA G,COSTA F. Untargeted metabolomics investigation of volatile compounds involved in the development of apple superficial scald by PTR-ToF-MS[J]. Metabolomics,2015,11(2):341-349.
[23] 程順昌. 不同采收期南果梨采后褐變發生機理及調控技術研究[D]. 沈陽:沈陽農業大學,2013.
CHENG Shunchang. Study of browning mechanisms,regulation and control technology of different harvest date Nanguo pear[D]. Shenyang:Shenyang Agricultural University,2013.
[24] 鄒麗紅,張玉星. 砂梨果肉褐變與酚類物質及相關酶活性的相關分析[J]. 果樹學報,2012,29(6):1022-1026.
ZOU Lihong,ZHANG Yuxing. Correlation analysis of flesh browning between phenolic compound and relavent enzymatic activity in fruit of Pyrus pyrifolia[J]. Journal of Fruit Science,2012,29(6):1022-1026.
[25] 王海艷,田國奎,王立春,李鳳云,潘陽,龐澤,丁凱鑫,郝智勇. 鮮切馬鈴薯加工及貨架期品質控制的研究進展[J]. 中國瓜菜,2023,36(10):10-15.
WANG Haiyan,TIAN Guokui,WANG Lichun,LI Fengyun,PAN Yang,PANG Ze,DING Kaixin,HAO Zhiyong. Research progress on processing and shelf-life quality control of fresh cut potatoes[J]. China Cucurbits and Vegetables,2023,36(10):10-15.
[26] 黃怡,高春麗,畢陽,李冬美,董玉鵬,張彥東,李永才. 低溫貯藏期間梨果皮酚類物質及抗氧化性變化[J]. 食品與發酵工業,2019,45(19):219-226.
HUANG Yi,GAO Chunli,BI Yang,LI Dongmei,DONG Yupeng,ZHANG Yandong,LI Yongcai. Changes in phenolic compounds and antioxidant activity of pear peel during cold storage[J]. Food and Fermentation Industries,2019,45(19):219-226.
[27] BUSATTO N,FARNETI B,TADIELLO A,VRHOVSEK U,CAPPELLIN L,BIASIOLI F,VELASCO R,COSTA G,COSTA F. Target metabolite and gene transcription profiling during the development of superficial scald in apple (Malus × domestica Borkh.)[J]. BMC Plant Biology,2014,14:193.
[28] WU J Y,FAN J B,LI Q H,JIA L T,XU L L,WU X,WANG Z W,LI H X,QI K J,QIAO X,ZHANG S L,YIN H. Variation of organic acids in mature fruits of 193 pear (Pyrus spp.) cultivars[J]. Journal of Food Composition and Analysis,2022,109:104483.
[29] 鄭璞帆. 梨種質資源評價及果實代謝組學研究[D]. 天津:南開大學,2022.
ZHENG Pufan. Study of evaluation and metabolomics of pear (Pyrus L.) germplasm resources[D]. Tianjin:Nankai University,2022.
[30] 殷晨,田路明,曹玉芬,董星光,張瑩,霍宏亮,齊丹,徐家玉,劉超. 梨果實糖酸研究進展[J]. 果樹學報,2023,40(12):2610-2623.
YIN Chen,TIAN Luming,CAO Yufen,DONG Xingguang,ZHANG Ying,HUO Hongliang,QI Dan,XU Jiayu,LIU Chao. Research progress in sugar and acid in pear fruit[J]. Journal of Fruit Science,2023,40(12):2610-2623.
[31] LI Q H,QIAO X,JIA L T,ZHANG Y X,ZHANG S L. Transcriptome and resequencing analyses provide insight into differences in organic acid accumulation in two pear varieties[J]. International Journal of Molecular Sciences,2021,22(17):9622.
[32] 仇岑,晉朝,齊秋爽,樊秀花,陳存坤,閆師杰. 降溫方法對不同成熟度鴨梨冰溫貯藏中有機酸含量的影響[J]. 食品安全質量檢測學報,2023,14(13):284-293.
QIU Cen,JIN Zhao,QI Qiushuang,FAN Xiuhua,CHEN Cunkun,YAN Shijie. Effects of cooling method on organic acid content of different maturity of Pyrus bretschneideri Rehd. cv. Yali during ice-temperature storage[J]. Journal of Food Safety amp; Quality,2023,14(13):284-293.
[33] 鄭麗靜,劉超超,滿杰,錢井,韋強,趙立群. 鮮榨檸檬汁在即食鮮切生菜上的應用效果[J]. 中國瓜菜,2023,36(11):86-92.
ZHENG Lijing,LIU Chaochao,MAN Jie,QIAN Jing,WEI Qiang,ZHAO Liqun. Application effect of fresh squeezed lemon juice on ready-to-eat fresh-cut lettuce[J]. China Cucurbits and Vegetables,2023,36(11):86-92.
[34] VANDENDRIESSCHE T,SCH?FER H,VERLINDEN B E,HUMPFER E,HERTOG M L A T M,NICOLA? B M. High-throughput NMR based metabolic profiling of Braeburn apple in relation to internal browning[J]. Postharvest Biology and Technology,2013,80:18-24.
[35] 冼潔文. 基于代謝組學的采后菠蘿黑心病發病的機制[D]. 廣州:華南農業大學,2019.
XIAN Jiewen. The mechanism of internal browning in harvested pineapple fruit based on metabolomics[D]. Guangzhou:South China Agricultural University,2019.
[36] KAZEMI-SHAHANDASHTI S S,MAALI-AMIRI R,ZEINALI H,KHAZAEI M,TALEI A,RAMEZANPOUR S S. Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings[J]. Journal of Plant Physiology,2014,171(13):1106-1116.
[37] 王芳,王淇,趙曦陽. 低溫脅迫下植物的表型及生理響應機制研究進展[J]. 分子植物育種,2019,17(15):5144-5153.
WANG Fang,WANG Qi,ZHAO Xiyang. Research progress of phenotype and physiological response mechanism of plants under low temperature stress[J]. Molecular Plant Breeding,2019,17(15):5144-5153.
[38] 郝慧慧. 貯藏溫度對靈武長棗細胞壁代謝及軟化特性的影響[D]. 銀川:寧夏大學,2022.
HAO Huihui. Effect of storage temperature on cell wall metabolism and softening characteristics of Lingwu long jujube[D]. Yinchuan:Ningxia University,2022.
[39] 李皎琪,李美琪,王玉婷,劉秀玲,張新華,李富軍,李曉安. 果蔬逆境脅迫應答中 AP2/ERF 轉錄因子的激素調控研究進展[J/OL].食品科學. [2023-10-11](2024-05-16). https://link.cnki.net/urlid/11.2206.TS.20231010.0834.002.
LI Jiaoqi,LI Meiqi,WANG Yuting,LIU Xiuling,ZHANG Xinhua,LI Fujun,LI Xiaoan. Research process on hormone regulation of AP2/ERF transcription factors in response to stress in fruit and vegetables [J/OL]. Food Science. [2023-10-11](2024-05-16). https://link.cnki.net/urlid/11.2206.TS.20231010.0834.002.
[40] 龔意輝,李麗梅,黃華,李論,田宗瓊,張娟,曾永賢,陳致印. 基于非靶向代謝組學分析黃桃果肉褐變過程中代謝產物的差異[J]. 中國食品學報,2023,23(2):265-275.
GONG Yihui,LI Limei,HUANG Hua,LI Lun,TIAN Zongqiong,ZHANG Juan,ZENG Yongxian,CHEN Zhiyin. Analysis of metabolite differences during the browning process of yellow peach based on untargeted metabolomics[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(2):265-275.
[41] 吳敏,張健,瑪依努爾·扎衣提,翟榮臻,張政,魏佳,吳斌,吳忠紅. 基于代謝組學解析SO2對鮮食葡萄貯藏品質的調控作用[J]. 食品與發酵工業,2023,49(24):88-96.
WU Min,ZHANG Jian,MAYINNER·Zhayiti,ZHAI Rongzhen,ZHANG Zheng,WEI Jia,WU Bin,WU Zhonghong. Analysis of regulation of SO2 on storage quality of fresh grape based on metabolomics[J]. Food and Fermentation Industries,2023,49(24):88-96.
收稿日期:2024-01-08 接受日期:2024-05-16
基金項目:中央引導地方科技發展專項資金項目(YDZX20191400001463);山西省農業科學院農業科技創新研究課題(YCX2020301);山西省農業科學院應用基礎研究計劃(YCX2020YQ10)
作者簡介:趙迎麗,女,研究員,碩士,研究方向為果蔬采后生理及貯藏技術。E-mail:zhaoyingl@hotmail.com