999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

獼猴桃病程相關(guān)蛋白PR-1基因的克隆和功能分析

2024-12-31 00:00:00張敏宋雅林林苗苗王然李玉闊孫艷香方金豹蘇彥蘋孫雷明齊秀娟
果樹學(xué)報(bào) 2024年8期
關(guān)鍵詞:煙草

摘 要:【目的】探究獼猴桃病程相關(guān)蛋白(pathogenesis-related proteins,PRs)PR-1基因在響應(yīng)丁香假單胞桿菌中的功能。【方法】以毛花獼猴桃(Actinidia eriantha)為材料,克隆得到PR-1同源基因AePR-1全長(zhǎng)序列,并對(duì)其序列進(jìn)行生物信息學(xué)分析。采用實(shí)時(shí)熒光定量方法檢測(cè)AePR-1基因在不同組織、花器官以及接種細(xì)菌性潰瘍病菌(Psa)和不同激素(SA、ABA、GA3)處理?xiàng)l件下的表達(dá)情況。利用亞細(xì)胞定位技術(shù)分析AePR-1基因在細(xì)胞中的表達(dá)位置。通過在本氏煙草中過表達(dá)AePR-1基因,驗(yàn)證其在潰瘍病菌響應(yīng)過程中的功能。【結(jié)果】獼猴桃AePR-1基因序列全長(zhǎng)522 bp,編碼173個(gè)氨基酸,序列中含有6個(gè)保守的半胱氨酸結(jié)構(gòu)基序和4個(gè)allergen V5/Tpx-1 related保守結(jié)構(gòu)域。亞細(xì)胞定位發(fā)現(xiàn)AePR-1定位在細(xì)胞膜和細(xì)胞質(zhì)中。AePR-1在獼猴桃根和雌蕊中高表達(dá),且能夠響應(yīng)潰瘍病菌及激素處理。過表達(dá)AePR-1的煙草在接種潰瘍病菌后,葉片病斑數(shù)明顯少于對(duì)照組。【結(jié)論】AePR-1基因在潰瘍病菌和激素誘導(dǎo)下顯著表達(dá)且過表達(dá)能夠增強(qiáng)煙草對(duì)潰瘍病的抗性,說明獼猴桃PR-1基因在響應(yīng)生物和非生物脅迫中具有重要作用。

關(guān)鍵詞:獼猴桃;PR-1基因;細(xì)菌性潰瘍病菌(Psa);抗病

中圖分類號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)08-1524-10

Cloning and function analysis of PR-1 gene in Actinidia

ZHANG Min1, 2, SONG Yalin1, LIN Miaomiao1, 2, WANG Ran1, LI Yukuo1, 2, SUN Yanxiang3, FANG Jinbao1, 2, SUN Yanping3, SUN Leiming1, 2*, QI Xiujuan1, 2*

(1National Key Laboratory for Germplasm Innovation amp; Utilization of Horticultural Crops/Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 2Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, Henan, China; 3Langfang Normal University, Langfang 065000, Hebei, China)

Abstract: 【Objective】 China is the origin of the kiwifruit (Actinidia spp.), with rich germplasm resources and wide geographical distribution. It is one of the most recently domesticated fruit plants and has become an important horticultural crop. There are 54 species and 21 varieties of the A. Lindl. in the world. Kiwifruit bacterial canker is a devastating disease in kiwifruit industry globally and caused by pathogen Pseudomonas syringae pv. actinidiae (Psa). Psa is highly virulent, and once systemic invade plant may quickly lead plant to death. It has been documented that the Pathogenesis-related 1 protein (PR-1) could resist the spread of viruses, limit the invasion of pathogens and protect plants from adversity stress. In many plant species such as Arabidopsis and tobacco, the overexpression of the PR-1 gene could enhance plant resistance to P. syringae. However, the PR-1 gene in kiwifruit and its role in responses to abiotic stress remain largely unknown. The objective of this study was to explore the function of kiwifruit Pathogenesis-related 1 gene (PR-1) in response to biological stress. This analysis could contribute to in-depth understanding the function of the PR-1 gene in kiwifruit disease resistance. 【Methods】 Annual grafted treess of kiwifruit species A. eriantha were used as experimental materials. The full-length sequence of the PR-1 homologous gene AePR-1 of A. eriantha was cloned and analyzed by multiple bioinformatic tools. The DNAMAN software was used to compare and analyze the sequence of the AePR-1 gene. The conserved domain of AePR-1 protein sequence was analyzed by NCBI website. The Expasy ProtParam tool was used to predict the molecular weight, theoretical pI, instability index and grand average of hydropathicity (GRAVY) of AePR-1 protein. The Cell-PLoc 2.0 software was used to predict the subcellular localization of PR-1 protein. The phylogenetic relationship between the AePR-1 protein and PR-1 of other plants was analyzed by the MEGA 11.013 software using neighbor-joining method. The qRT-PCR was performed to analyze the expression level of the AePR-1 in different tissues and flower organ. The expression of the AePR-1 gene in response to P. syringae pv. Actinidiae (Psa) bacterial solution and Jasmonic acid (JA), Salicylic acid (SA), Abscisic acid (ABA), Gibberellin A3 (GA3) treatments was detected by real-time fluorescence quantitative PCR method. The samples were taken at 0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 72 h and 96 h after treatment and immediately frozen in liquid nitrogen and stored at -80 ℃ for RNA isolation. The subcellular localization technology was used to analyze the expression position of the AePR-1 gene in cells. The homologous recombination was used to construct the AePR-1 overexpressed vector and heterologous expression was carried out in the tobacco to validate the function of the gene PR-1 under Psa infection. All the experiments and data in this study involved at least three repeats. The Excel, SPSS and Origin2023 software were used to statistics and analysis of test measurement data. LSD test (p<0.05) was used to assess significant differences in means. 【Results】 The full length of the cloned AePR-1 gene sequence was 522 bp, encoded 173 amino acids and contained CAP_PR-1 conserved domain. The relative molecular weight (MW) of protein was 19.28 ku and the isoelectric points (PI) was 9.28. The protein instability index was 41.54 and the protein belonged to unstable protein and the grand average of hydropathicity (GRAVY) was -0.261. The subcellular localization of PR-1 showed that the AePR-1 gene was mainly localized in the cytoplasm and cell membrane. The phylogenetic tree results showed that the protein AePR-1 was highly homologous to the AthPR-1 from Arabidopsis and CsaPR-1 from Cucumis. The qRT-PCR results showed that AePR-1 gene was highly expressed in the roots and pistils. And after inoculation with Psa bacterial solution, the expression level of the AePR-1 gene decreased at the early stage, increased rapidly after 6 hours, and reached its peak at 24 hours. With the prolongation of the treatment time of different hormones, the expression of the AePR-1 gene generally showed two peaks. The AePR-1 expressed the highest on the second day after overexpression of tobacco. Therefore, Psa was used to infect injected tobacco on the second day of tobacco transient expression. The results showed that on the 14th day after infection, the leaves of the empty control group showed large areas of yellow spots, while a small number of yellow spots appeared on the surface of the leaves overexpressing the AePR-1 gene. 【Conclusion】 This study explored the anti-disease effect of kiwifruit AePR-1 gene in kiwifruit bacterial canker. The results showed that the AePR-1 gene of kiwifruit was expressed in large quantities under the induction of Psa bacteria and exogenous hormones, participated in the immune response of kiwifruit and enhanced the disease resistance of kiwifruit. This study shows that the AePR-1 gene plays an important role in the disease resistance of kiwifruit and can be valuable for resistance breeding of kiwifruit.

Key words: Actinidia; PR-1 gene; Pseudomonas syringae pv. actinidiae (Psa); Disease-resistant

植物會(huì)產(chǎn)生一類病程相關(guān)蛋白(pathogenesis-related proteins,PRs)來抵御病原微生物的侵染或非生物因子的刺激[1]。自從在煙草花葉病毒(TMV)侵染煙草葉片試驗(yàn)中首次檢測(cè)到該蛋白至今[2],PR蛋白的研究得到了廣泛關(guān)注。超敏反應(yīng)(HR)、系統(tǒng)獲得性反應(yīng)(SAR)、信號(hào)通路、生物及非生物脅迫都能引起植物體內(nèi)PR蛋白的響應(yīng)和積累[3-5]。PR蛋白相對(duì)分子質(zhì)量較小,可分為酸性蛋白和堿性蛋白,穩(wěn)定性較強(qiáng),能有效地在細(xì)胞內(nèi)和細(xì)胞間積累[6],在植物適應(yīng)不良環(huán)境方面具有重要作用。

PR蛋白可劃分為17個(gè)家族,大多數(shù)可參與防御信號(hào)傳導(dǎo),從而提高植物對(duì)病原菌的抗性[7]。如PR-3、PR-4、PR-8和PR-11等蛋白具有幾丁質(zhì)酶活性[6];PR-5蛋白具有抵御真菌侵染、激活防御反應(yīng)的作用[8];PR-6具有蛋白酶抑制劑活性,能夠抵抗線蟲和昆蟲的入侵[9];PR-10具有核糖核酸酶活性[10];PR-15和PR-16具有細(xì)胞重塑、類萌發(fā)素等特性[11]。PR-1具有甾醇結(jié)合活性和防御信號(hào)肽,可參與植物超敏反應(yīng)和系統(tǒng)獲得性反應(yīng),在植物抗病過程中發(fā)揮重要作用[12-13]。歐洲花椒SaPR1-like基因在生物脅迫下顯著表達(dá),增強(qiáng)了植株的抗逆性[14];水稻PR-1基因家族成員PR-1-3和PR-1-13在接種水稻紋枯病菌(Thanatephorus cucumeris)[15]和白葉枯病菌(Xanthomonas oryzae)后[16]表達(dá)量均顯著提高;辣椒CABPR1基因在煙草中過表達(dá)后,能夠增強(qiáng)轉(zhuǎn)基因煙草對(duì)重金屬脅迫的耐受性,以及對(duì)煙草疫霉菌(Phytophthora nicotianae)、青枯菌(Ralstonia solanacearum)和丁香假單胞桿菌(Pseudomonas syringae pv. tabaci)的抗性[17]。擬南芥PR-1基因的積累增強(qiáng)了其對(duì)丁香假單胞桿菌(P. syringae pv. tomato DC3000)的抗性;將葡萄VvPR1b1基因過表達(dá)于煙草中,能增強(qiáng)其對(duì)煙草野火病病原細(xì)菌(P. syringae pv. tabaci)的抗性[18-19]。從上述可見,不同物種的PR-1蛋白受誘導(dǎo)條件不同,其作用機(jī)制尚不一致,但其在防御反應(yīng)中都具有相似的功能。

丁香假單胞桿菌(P. syringae pv. actinidiae,Psa)是引起獼猴桃(Actinidia Lindl.)細(xì)菌性潰瘍病的致病菌[20-21],該病害具有傳染性強(qiáng)、蔓延快、致病性強(qiáng)、根除難度大等特點(diǎn),目前尚無有效的根治方法[22]。從1984年首次在日本發(fā)現(xiàn)至今,細(xì)菌性潰瘍病已成為制約我國乃至世界獼猴桃產(chǎn)業(yè)發(fā)展的重要病害[23-24]。研究表明,茉莉酸、水楊酸和脫落酸等植物激素能誘導(dǎo)PR-1基因表達(dá)而對(duì)病害具有防御作用[25]。迄今為止,PR-1蛋白在防御反應(yīng)中的功能在番茄[26]、葡萄[27]、柑橘[28]、核桃[29]、小麥[30]、玉米[31]等多種植物上已有相關(guān)研究,但在獼猴桃中未見報(bào)道。筆者在前期系統(tǒng)評(píng)價(jià)鑒定獼猴桃不同品種(系)潰瘍病抗性的基礎(chǔ)上[32],以篩選的抗病種質(zhì)為試材,分析了PR-1基因的結(jié)構(gòu)、組織表達(dá)及響應(yīng)潰瘍病和外源激素的表達(dá)情況,并進(jìn)一步明確其在植物病原響應(yīng)過程中的功能,以期為尋找獼猴桃細(xì)菌性潰瘍病抗性基因及解析抗病機(jī)制提供理論基礎(chǔ)。

1 材料和方法

1.1 材料

毛花獼猴桃(A. eriantha)品種華特嫁接苗,砧木為對(duì)萼獼猴桃(A. valvata)品種中獼抗砧1號(hào),保存于國家園藝種質(zhì)資源庫獼猴桃分庫(鄭州);本氏煙草(N. benthamiana)由中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所栽培生理實(shí)驗(yàn)室保存;Psa病菌由浙江省農(nóng)業(yè)科學(xué)院園藝研究所提供。獼猴桃苗木嫁接后在營(yíng)養(yǎng)缽中培養(yǎng)3個(gè)月,再移至人工氣候箱中培養(yǎng),條件設(shè)置為溫度25 ℃、相對(duì)濕度80%、12 h光照/12 h黑暗。Psa菌液采用金氏培養(yǎng)基培養(yǎng),在20 ℃、200 r·min-1搖床振蕩24 h,濃度稀釋至1×108 cfu·mL-1后進(jìn)行侵染。使用5 mmol·L-1水楊酸(SA)、250 mg·L-1赤霉素(GA3)、50 μmol·L-1脫落酸(ABA)對(duì)嫁接苗進(jìn)行葉面噴施處理,并置于人工氣候箱中培養(yǎng)至96 h。試驗(yàn)過程中采集的葉片樣本經(jīng)液氮處理后均置于-80 ℃冰箱保存?zhèn)溆谩?/p>

1.2 RNA提取、反轉(zhuǎn)錄

利用多糖多酚RNA提取試劑盒(天根生化科技公司)提取樣品總RNA,于-80 ℃冰箱保存?zhèn)溆谩J褂肨OYOBO ReverTra Ace qPCR RT Kit(FSQ-101)將RNA反轉(zhuǎn)錄合成cDNA,反應(yīng)體系為4 μL 5×RT Buffer、1 μL Enzyme Mix、1 μL Primer Mix、4 μL RNA、10 μL ddH2O。先將RNA和ddH2O加入PCR管中,采用PCR儀65 ℃變性5 min后置于冰上,再加入其他組分,反應(yīng)程序:37 ℃、15 min,98 ℃、5 min。反轉(zhuǎn)錄后的cDNA保存于-20 ℃冰箱備用。

1.3 PR-1基因克隆及系統(tǒng)發(fā)育分析

在前期組學(xué)研究的基礎(chǔ)上[33],通過在獼猴桃基因組數(shù)據(jù)庫[34]中進(jìn)行目的序列比對(duì),提取目的基因AePR-1的CDS序列,使用Primer Premier 6.0軟件設(shè)計(jì)引物(上游引物:5'-ATGGGGTGGTTGTGTA-3',下游引物:5'-CTAAATATTTTCTACATAGGTC-3')擴(kuò)增全長(zhǎng)序列;使用2×TransStart? Fast Pfu Master Mix(北京全式金生物技術(shù)有限公司)進(jìn)行PCR擴(kuò)增,PCR產(chǎn)物回收后連接T載體(pClone007 Blunt Simple Vector Kit,北京擎科生物科技有限公司),并轉(zhuǎn)化至大腸桿菌感受態(tài)細(xì)胞,挑取單克隆菌落檢測(cè)后送測(cè)序。引物合成和測(cè)序在上海生工生物工程有限公司進(jìn)行。使用Expasy ProtParam工具對(duì)AePR-1序列進(jìn)行相對(duì)分子質(zhì)量、等電點(diǎn)及穩(wěn)定性等理化特性分析;使用DNAMAN軟件對(duì)AePR-1基因序列進(jìn)行比對(duì)分析;在NCBI網(wǎng)站分析AePR-1蛋白序列的保守結(jié)構(gòu)域;用獼猴桃PR-1蛋白序列在phytozome數(shù)據(jù)庫中Blast檢索其他同源序列,并使用MEGA-X軟件的鄰接法(Neighbor-Joining)構(gòu)建系統(tǒng)發(fā)育樹,進(jìn)行系統(tǒng)發(fā)育分析。

1.4 PR-1基因的表達(dá)分析

采用實(shí)時(shí)熒光定量技術(shù),分析AePR-1基因在不同組織(根、莖、葉、花、果)和花器官(雌蕊、雄蕊、子房、花瓣、萼片、花托),以及病原菌Psa和激素(SA、GA3、ABA)處理后0、6、12、24、36、48、72、96 h的表達(dá)情況。熒光定量引物為AePR-1F:5'-AAGACTACCTCAACGCCCACAAC-3',AePR-1R:5'-TTCTTCTCGTCCACCCACATTTT-3';熒光定量試劑為NovoStart SYBR qPCR SuperMix Plus;反應(yīng)體系為10 μL 2×NovoStart SYBR qPCR SuperMix、2 μL cDNA、1 μL PR1 Primer Forward、1 μL PR1 Primer Reverse、6 μL RNase Free Water;反應(yīng)程序?yàn)?5 ℃預(yù)變性5 min,95 ℃變性20 s,60℃退火20 s,72 ℃延伸20 s,變性至延伸步驟為40個(gè)循環(huán)。采用2?ΔΔCT法計(jì)算每個(gè)樣品相對(duì)獼猴桃內(nèi)參基因β-actin的表達(dá)量[35]。所有反應(yīng)均包含3個(gè)獨(dú)立的生物學(xué)重復(fù)和技術(shù)重復(fù)。

1.5 亞細(xì)胞定位

使用一步定向克隆試劑盒(上海近岸科技有限公司),將目的片段克隆到pCAM35s-GFP載體位點(diǎn)中(上游引物:5'-GGGGACGAGCTCGGTACCATGGGGTGGTTGTGTAGGATG-3',下游引物:5'-CATGGTGTCGACTCTAGAAATATTTTCTACATAGGTCTTAAGCTTTAATACATAGG-3'),形成融合表達(dá)載體后轉(zhuǎn)化大腸桿菌感受態(tài)細(xì)胞,單克隆菌落PCR陽性鑒定后送上海生工生物工程有限公司測(cè)序。將測(cè)序正確的陽性質(zhì)粒轉(zhuǎn)化農(nóng)桿菌GV3101。以空載pCAM35s-GFP為對(duì)照,采用注射方法侵染煙草下表皮[36],置于人工氣候箱中培養(yǎng)(條件設(shè)置同1.1)。培養(yǎng)2~3 d后,使用激光共聚顯微鏡對(duì)侵染區(qū)域進(jìn)行亞細(xì)胞定位觀察。

1.6 過表達(dá)載體構(gòu)建及煙草瞬時(shí)轉(zhuǎn)化

采用同源重組的方法將獼猴桃PR-1基因插入到表達(dá)載體PBI121中(PR-1-121-F:5'-AACACG-GGGGACTCTAGAATGGGGTGGTTGTGTA-3',PR-1-121-R:5'-CTGACCACCCGGGGATCCCTAAAT-ATTTTCTACATAGGTC-3'),轉(zhuǎn)化農(nóng)桿菌GV3101后,以空載體PBI121作對(duì)照,采用煙草下表皮注射的方法進(jìn)行瞬時(shí)表達(dá)[36],將處理和對(duì)照均放置人工培養(yǎng)箱中培養(yǎng)(條件設(shè)置同1.1)。在接種1、2和3 d時(shí)分別檢測(cè)PR-1的表達(dá)量,篩選Psa菌液侵染瞬時(shí)表達(dá)煙草的最佳時(shí)間。然后將Psa菌液注射到瞬時(shí)表達(dá)的陽性煙草葉片中,處理后放于上述條件的人工氣候箱中繼續(xù)培養(yǎng),連續(xù)觀察葉片的表型變化[37]。

1.7 數(shù)據(jù)分析

采用Excel和Origin 2023軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析及相關(guān)圖表繪制,利用Dunn-Sidak多重比較方法進(jìn)行差異顯著性檢驗(yàn),顯著水平設(shè)定為0.05。

2 結(jié)果與分析

2.1 PR-1基因的克隆及序列分析

在華特獼猴桃中克隆獲得1條PR-1基因,命名為AePR-1。克隆得到cDNA全長(zhǎng)為522 bp,共編碼173個(gè)氨基酸。通過在線網(wǎng)站Expasy對(duì)其理化特性分析,表明AePR-1蛋白相對(duì)分子質(zhì)量為19.28 ku、等電點(diǎn)為9.28、不穩(wěn)定系數(shù)為41.54。將AePR-1的序列與中華獼猴桃(A. chinensis Planch. var. chinensis)AcPR-1序列進(jìn)行同源比對(duì),顯示基因CDS序列中共有12個(gè)堿基位點(diǎn)不同、蛋白序列中有7個(gè)氨基酸不同,但二者皆編碼了173個(gè)氨基酸。通過對(duì)AePR-1與AcPR-1、AthPR-1、NtaPR-1同源蛋白序列分析,發(fā)現(xiàn)這些序列都具有6個(gè)保守的半胱氨酸結(jié)構(gòu)基序(實(shí)線框表示)和4個(gè)allergen V5/Tpx-1 related保守的結(jié)構(gòu)域(虛線框表示)(圖1)。

構(gòu)建了獼猴桃AePR-1與其他植物PR-1蛋白的系統(tǒng)發(fā)育樹,發(fā)現(xiàn)發(fā)育樹分為包含了大桉EgrPR-1、大豆GmaPR-1等分支和可可TcaPR-1、葡萄VviPR-1等分支的兩個(gè)明顯大分支(圖2)。毛花獼猴桃AePR-1與中華獼猴桃AcPR-1及黃瓜CsaPR-1具有很高的同源性。

2.2 PR-1基因的亞細(xì)胞定位分析

為揭示AePR-1蛋白的定位情況,構(gòu)建了pCAM35s-PR-1-GFP融合表達(dá)載體并轉(zhuǎn)化煙草表皮細(xì)胞,并以pCAM35s-GFP空載體為對(duì)照,培養(yǎng)48 h后在激光共聚焦顯微鏡下觀察。如圖3所示,對(duì)照組的空載載體在細(xì)胞膜、細(xì)胞質(zhì)和細(xì)胞核中均能發(fā)出綠色熒光,而試驗(yàn)組的煙草葉片熒光信號(hào)主要集中在細(xì)胞膜上和細(xì)胞質(zhì)中,表明PR-1主要在細(xì)胞膜和細(xì)胞質(zhì)中表達(dá),是功能基因。

2.3 PR-1基因的表達(dá)分析

為了解AePR-1基因的時(shí)空表達(dá)特征,首先對(duì)AePR-1基因在獼猴桃不同組織和花器官中的表達(dá)量進(jìn)行了分析,發(fā)現(xiàn)該基因在根和雌蕊中高表達(dá),而在葉、花瓣、雄蕊和子房中低表達(dá)(圖4-A~B)。

在接種Psa菌液后,AePR-1基因相對(duì)表達(dá)量呈現(xiàn)出先降低后迅速升高的趨勢(shì),在接種24 H時(shí)達(dá)到最大值,后又逐漸下降(圖5-A)。

在不同激素處理過程中,隨著處理時(shí)間的延長(zhǎng),AePR-1基因相對(duì)表達(dá)量均呈雙峰曲線。在SA和ABA處理下,AePR-1基因表達(dá)量在24 h時(shí)達(dá)到第一次峰值(圖5-B~C);GA3處理可誘導(dǎo)AePR-1基因迅速表達(dá),接種12 h時(shí)達(dá)到最大值(圖5-D)。3種激素處理下首次出現(xiàn)峰值的時(shí)間存在差異,但在48 h時(shí)均再次達(dá)到峰值,表明AePR-1基因?qū)Σ煌に仨憫?yīng)模式存在差異。

2.4 PR-1基因增強(qiáng)了煙草對(duì)Psa的抗性

以pBI121空載體為對(duì)照,構(gòu)建過表達(dá)載體pBI121-AePR-1瞬時(shí)表達(dá)本氏煙草后發(fā)現(xiàn),AePR-1表達(dá)量在2 d最高(圖6-A)。因此,在煙草瞬時(shí)表達(dá)后的2 d使用Psa菌液侵染,將接種后的煙草放入人工氣候箱中培養(yǎng),觀察煙草的發(fā)病情況。結(jié)果表明,在侵染后第14天,在空載對(duì)照組的葉片表面上出現(xiàn)了大量的黃色病斑,而過表達(dá)AePR1基因的葉片表面出現(xiàn)少量黃色斑點(diǎn)(圖6-B)。以上結(jié)果表明,AePR-1基因能增強(qiáng)本氏煙草對(duì)Psa的抗性。

3 討 論

植物受到生物或非生物脅迫時(shí),會(huì)激活其免疫防御反應(yīng),而PR-1基因是SAR反應(yīng)的標(biāo)志基因,在抗病反應(yīng)中具有積極作用[38]。牡丹受葉斑病菌(Cylindrocladium canadense)侵染后,PsPR-1基因被顯著誘導(dǎo)參與抗病反應(yīng),且在24 h達(dá)到最高峰[39]。這與本研究結(jié)果相似,獼猴桃在接種Psa病菌后,PR-1表達(dá)量顯著升高,在24 h達(dá)峰值,表明其參與了抗病防御反應(yīng)。

筆者以華特獼猴桃為材料克隆得到了AePR-1基因,通過生物信息學(xué)分析發(fā)現(xiàn),該基因的蛋白序列與其他物種的PR-1具有高度的同源性,其理化特性與葡萄[25]、向日葵[40]、核桃[29]等相似且包含了相同的保守結(jié)構(gòu)域。具有該結(jié)構(gòu)域的蛋白積極參與了先天性免疫反應(yīng)和適應(yīng)性免疫反應(yīng),從而提高植株的抗逆性[41]。這表明不同植物中的PR-1基因在防御反應(yīng)中可能存在相似功能。

進(jìn)一步對(duì)PR-1基因在不同組織和花器官中的表達(dá)量檢測(cè),發(fā)現(xiàn)獼猴桃在根中高表達(dá),而大豆則表現(xiàn)為在葉片中高表達(dá)[42],這可能是由于不同物種中PR-1基因表達(dá)模式存在差異,獼猴桃PR-1基因的組織特異性表達(dá)差異可能與其在植物生長(zhǎng)發(fā)育及脅迫反應(yīng)中的不同作用相關(guān)。

植物激素能誘導(dǎo)PR-1基因表達(dá)量的升高,在防御反應(yīng)中發(fā)揮至關(guān)重要的作用[25,43]。在葡萄中,JA、SA和ABA均能誘導(dǎo)葉片VvPR1基因的顯著表達(dá)[25]。水稻中,OsPR1a基因受JA、SA和ET的誘導(dǎo)而顯著表達(dá)[44];噴施外源SA可以顯著降低褐斑病(P. oryzicola)的發(fā)病率,同時(shí)PR-1和NPR1的相對(duì)表達(dá)量均顯著升高[45]。筆者采用不同激素誘導(dǎo)處理,發(fā)現(xiàn)對(duì)獼猴桃PR-1基因表達(dá)趨勢(shì)的整體影響相同,但具體表達(dá)量與峰值出現(xiàn)時(shí)間存在差異。AePR-1基因?qū)Σ煌に氐捻憫?yīng)差異可能與其啟動(dòng)子中對(duì)不同激素的響應(yīng)元件的有無及數(shù)量有關(guān)。其中在GA3處理?xiàng)l件下,AePR-1基因響應(yīng)表現(xiàn)最早且表達(dá)量最高,其次依次為ABA和SA。本研究結(jié)果與前人研究結(jié)果相似,在外源激素誘導(dǎo)下,PR-1基因表達(dá)量升高。還有研究發(fā)現(xiàn),干旱、低溫、鹽等脅迫及H2O2、H2S等因素也能顯著誘導(dǎo)PR-1基因的表達(dá)[46]。

本研究結(jié)果表明,獼猴桃PR-1基因在響應(yīng)生物侵染過程中發(fā)揮重要作用,并揭示了過表達(dá)AePR-1基因能夠增強(qiáng)煙草對(duì)Psa病菌的抗性。今后有必要進(jìn)一步開展以激素誘導(dǎo)為前提提高獼猴桃植物抗細(xì)菌性潰瘍病的作用機(jī)制研究,以期為科學(xué)防控該病害提供理論和實(shí)踐基礎(chǔ)。

4 結(jié) 論

筆者探討了AePR-1基因在獼猴桃細(xì)菌性潰瘍病和外源激素侵染中發(fā)揮的作用。結(jié)果表明,獼猴桃PR-1基因在Psa病菌和外源激素誘導(dǎo)下均可大量表達(dá),參與了免疫應(yīng)答反應(yīng),從而增強(qiáng)了獼猴桃的抗病性。筆者研究證實(shí)了PR-1基因在獼猴桃抗病過程中具有重要作用。

參考文獻(xiàn)References:

[1] VAN LOON L C,PIERPOINT W S,BOLLER T,CONEJERO V. Recommendations for Naming plant pathogenesis-related proteins[J]. Plant Molecular Biology Reporter,1994,12(3):245-264.

[2] VAN LOON L C,VAN KAMMEN A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’ II. Changes in protein constitution after infection with tobacco mosaic virus[J]. Virology,1970,40(2):199-211.

[3] LIU J J,EKRAMODDOULLAH A K M. The family 10 of plant pathogenesis-related proteins:Their structure,regulation,and function in response to biotic and abiotic stresses[J]. Physiological and Molecular Plant Pathology,2006,68(1/2/3):3-13.

[4] VAN LOON L C,VAN STRIEN E A. The families of pathogenesis-related proteins,their activities,and comparative analysis of PR-1 type proteins[J]. Physiological and Molecular Plant Pathology,1999,55(2):85-97.

[5] BALINT-KURTI P. The plant hypersensitive response:Concepts,control and consequences[J]. Molecular Plant Pathology,2019,20(8):1163-1178.

[6] 焦文曉,王曉梅,范新光,姜微波. 病程相關(guān)蛋白在采后果蔬誘導(dǎo)抗病性中的研究進(jìn)展[J]. 保鮮與加工,2020,20(1):206-211.

JIAO Wenxiao,WANG Xiaomei,F(xiàn)AN Xinguang,JIANG Weibo. Advances of research on pathogenesis-related protein in induction of disease resistance of postharvest fruits and vegetables[J]. Storage and Process,2020,20(1):206-211.

[7] VAN LOON L C,REP M,PIETERSE C M J. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology,2006,44:135-162.

[8] EL-KEREAMY A,EL-SHARKAWY I,RAMAMOORTHY R,TAHERI A,ERRAMPALLI D,KUMAR P,JAYASANKAR S. Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection[J]. PLoS One,2011,6(3):e17973.

[9] SELITRENNIKOFF C P. Antifungal proteins[J]. Applied and Environmental Microbiology,2001,67(7):2883-2894.

[10] 趙琦,崔夢(mèng)杰,韓鎖義,郭騰達(dá),杜培,劉華,徐靜,黃冰艷,董文召,張新友. 植物病程相關(guān)蛋白PR10及其在花生中的研究進(jìn)展[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2024,42(1):1-10.

ZHAO Qi,CUI Mengjie,HAN Suoyi,GUO Tengda,DU Pei,LIU Hua,XU Jing,HUANG Bingyan,DONG Wenzhao,ZHANG Xinyou. Plant pathogenesis-related protein PR10 and their research progress in peanut[J]. Journal of Sichuan Agricultural University,2024,42(1):1-10.

[11] PARK C J,AN J M,SHIN Y C,KIM K J,LEE B J,PAEK K H. Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection[J]. Planta,2004,219(5):797-806.

[12] 李爽,熊櫻,MüLLERXING R,邢倩. 轉(zhuǎn)錄因子WRKY6和PR1在擬南芥脅迫記憶中的表達(dá)模式[J]. 植物研究,2019,39(5):752-759.

LI Shuang,XIONG Ying,MüLLERXING R,XING Qian. Distinct expression patterns of WRKY6 and PR1 in Arabidopsis stress memory assays[J]. Bulletin of Botanical Research,2019,39(5):752-759.

[13] BREEN S,WILLIAMS S J,OUTRAM M,KOBE B,SOLOMON P S. Emerging insights into the functions of pathogenesis-related protein 1[J]. Trends in Plant Science,2017,22(10):871-879.

[14] 劉亞輝,李佳興,王升,王鐵霖,袁杰,郭蘭萍. 歐洲花楸病程相關(guān)蛋白基因SaPR1-like的克隆及序列分析[J]. 中國實(shí)驗(yàn)方劑學(xué)雜志,2019,25(21):118-123.

LIU Yahui,LI Jiaxing,WANG Sheng,WANG Tielin,YUAN Jie,GUO Lanping. Cloning and sequence analysis of pathogenesis related protein 1-like gene from Sorbus aucuparia[J]. Chinese Journal of Experimental Traditional Medical Formulae,2019,25(21):118-123.

[15] LIU Z Y,LI X J,SUN F,ZHOU T,ZHOU Y J. Overexpression of OsCIPK30 enhances plant tolerance to Rice stripe virus[J]. Frontiers in Microbiology,2017,8:2322.

[16] 程雨果,魏炳崢,李春霞,陶均. 水稻PR1基因響應(yīng)生物脅迫的表達(dá)模式[J/OL]. 分子植物育種,2023:1-24. (2023-06-20). https://kns.cnki.net/kcms/detail/46.1068.s.20230619.1458.002.html.

CHENG Yuguo,WEI Bingzheng,LI Chunxia,TAO Jun. Expression patterns of rice PR1 family genes in response to biotic stresses[J/OL]. Molecular Plant Breeding,2023:1-24. (2023-06-20). https://kns.cnki.net/kcms/detail/46.1068.s.20230619.1458.002.html.

[17] SAROWAR S,KIM Y J,KIM E N,KIM K D,HWANG B K,ISLAM R,SHIN J S. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses[J]. Plant Cell Reports,2005,24(4):216-224.

[18] LI Z T,DHEKNEY S A,GRAY D J. PR-1 gene family of grapevine:A uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco[J]. Plant Cell Reports,2011,30(1):1-11.

[19] SEO J S,DILOKNAWARIT P,PARK B S,CHUA N H. elf18-induced long noncoding RNA 1 evicts fibrillarin from mediator subunit to enhance pathogenesis-related gene 1 (Pr1) expression[J]. New Phytologist,2019,221(4):2067-2079.

[20] DONATI I,CELLINI A,SANGIORGIO D,VANNESTE J L,SCORTICHINI M,BALESTRA G M,SPINELLI F. Pseudomonas syringae pv. actinidiae:Ecology,infection dynamics and disease epidemiology[J]. Microbial Ecology,2020,80(1):81-102.

[21] 裴艷剛,馬利,歲立云,崔永亮,劉曉敏,龔國淑. 不同獼猴桃品種對(duì)潰瘍病菌的抗性評(píng)價(jià)及其利用[J]. 果樹學(xué)報(bào),2021,38(7):1153-1162.

PEI Yangang,MA Li,SUI Liyun,CUI Yongliang,LIU Xiaomin,GONG Guoshu. Resistance evaluation and utilization of different kiwifruit cultivars to Pseudomonas syringae pv. actinidiae[J]. Journal of Fruit Science,2021,38(7):1153-1162.

[22] 鐘彩虹,李黎,潘慧,鄧?yán)伲惷榔G. 獼猴桃細(xì)菌性潰瘍病的發(fā)生規(guī)律及綜合防治技術(shù)[J]. 中國果樹,2020(1):9-13.

ZHONG Caihong,LI Li,PAN Hui,DENG Lei,CHEN Meiyan. Occurrence rule and comprehensive control of kiwifruit bacterial canker disease[J]. China Fruits,2020(1):9-13.

[23] VANNESTE J L. The scientific,economic,and social impacts of the new zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)[J]. Annual Review of Phytopathology,2017,55:377-399.

[24] SAWADA H,F(xiàn)UJIKAWA T. Genetic diversity of Pseudomonas syringae pv. actinidiae,pathogen of kiwifruit bacterial canker[J]. Plant Pathology,2019,68(7):1235-1248.

[25] 侯麗霞,高超,車永梅,趙方貴,劉新. 葡萄病程相關(guān)蛋白1基因的克隆和表達(dá)分析[J]. 植物生理學(xué)報(bào),2012,48(1):57-62.

HOU Lixia,GAO Chao,CHE Yongmei,ZHAO Fanggui,LIU Xin. Gene cloning and expression analysis of pathogenesis-related protein 1 in Vitis vinifera L[J]. Plant Physiology Journal,2012,48(1):57-62.

[26] KARABULUT D,CALIS O. The role of PR1 gene in resistance mechanism to bacterial canker and wilting disease in promising tomato mutant plants[J]. Journal of Tekirdag Agriculture Faculty,2022,19(1):120-131.

[27] LI P,TAN X B,LIU R T,RAHMAN F U,JIANG J F,SUN L,F(xiàn)AN X C,LIU J H,LIU C H,ZHANG Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape (Vitis vinifera L. × Vitis davidii Foex.) crossing[J]. Horticulture Research,2023,10(5):uhad063.

[28] 郝晨星. 響應(yīng)柑橘潰瘍病菌侵染的枸櫞C-05抗性基因PR4A的鑒定[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2019.

HAO Chenxing. Identification of a defence gene PR4A from citron C-05 in response to Xanthomonas citri subsp. citri infection[D]. Changsha:Hunan Agricultural University,2019.

[29] 李生萍. 核桃PR1與PR4基因的克隆及表達(dá)分析[D]. 楊凌:西北農(nóng)林科技大學(xué),2017.

LI Shengping. Cloning and expression analysis of PR1 and PR4 genes in walnut[D]. Yangling:Northwest A amp; F University,2017.

[30] BREEN S,WILLIAMS S J,WINTERBERG B,KOBE B,SOLOMON P S. Wheat PR-1 proteins are targeted by necrotrophic pathogen effector proteins[J]. The Plant Journal,2016,88(1):13-25.

[31] 石鳳梅. 病程相關(guān)蛋白基因ZmPR-1和ZmPR-4的克隆及功能研究[D]. 哈爾濱:東北林業(yè)大學(xué),2019.

SHI Fengmei. Cloning and functional study of pathogenesis-related protein genes ZmPR-1 and ZmPR-4[D]. Harbin:Northeast Forestry University,2019.

[32] 宋雅林,林苗苗,鐘云鵬,陳錦永,齊秀娟,孫雷明,方金豹. 獼猴桃品種(系)潰瘍病抗性鑒定及不同評(píng)價(jià)指標(biāo)的相關(guān)性分析[J]. 果樹學(xué)報(bào),2020,37(6):900-908.

SONG Yalin,LIN Miaomiao,ZHONG Yunpeng,CHEN Jinyong,QI Xiujuan,SUN Leiming,F(xiàn)ANG Jinbao. Evaluation of resistance of kiwifruit varieties (line) against bacterial canker disease and correlation analysis among evaluation indexes[J]. Journal of Fruit Science,2020,37(6):900-908.

[33] SONG Y L,SUN L M,LIN M M,CHEN J Y,QI X J,HU C G,F(xiàn)ANG J B. Comparative transcriptome analysis of resistant and susceptible kiwifruits in response to Pseudomonas syringae pv. actinidiae during early infection[J]. PLoS One,2019,14(2):e0211913.

[34] YUE J Y,LIU J C,TANG W,WU Y Q,TANG X F,LI W,YANG Y,WANG L H,HUANG S X,F(xiàn)ANG C B,ZHAO K,F(xiàn)EI Z J,LIU Y S,ZHENG Y. Kiwifruit Genome Database (KGD):A comprehensive resource for kiwifruit genomics[J]. Horticulture Research,2020,7:117.

[35] AMPOMAH-DWAMENA C,MCGHIE T,WIBISONO R,MONTEFIORI M,HELLENS R P,ALLAN A C. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit[J]. Journal of Experimental Botany,2009,60(13):3765-3779.

[36] 歐陽夢(mèng)真,朱磊,孫治強(qiáng),李勝利,吳幗秀,李陽,何富豪,李嚴(yán)曼. 西瓜ClWRKY54基因的克隆、亞細(xì)胞定位及表達(dá)分析[J]. 中國瓜菜,2019,32(12):8-14.

OUYANG Mengzhen,ZHU Lei,SUN Zhiqiang,LI Shengli,WU Guoxiu,LI Yang,HE Fuhao,LI Yanman. Cloning,subcellular localization and expression analysis of ClWRKY54 in Citrullus lanatus[J]. China Cucurbits and Vegetables,2019,32(12):8-14.

[37] 宋雅林. 獼猴桃應(yīng)答潰瘍病菌侵染的轉(zhuǎn)錄組研究及抗性相關(guān)基因挖掘[D]. 武漢:華中農(nóng)業(yè)大學(xué),2019.

SONG Yalin. Transcriptome study on kiwifruit response to Pseudomonas syringae pv. actinidiae infection and mining of resistance related genes[D]. Wuhan:Huazhong Agricultural University,2019.

[38] KINKEMA M,F(xiàn)AN W,DONG X. Nuclear localization of NPR1 is required for activation of PR gene expression[J]. The Plant Cell,2000,12(12):2339-2350.

[39] 楊德翠. Cylindrocladium canadense侵染對(duì)牡丹(Paeonia suffruticosa Andr.)光合特性的影響以及牡丹病程相關(guān)蛋白1基因的克隆和遺傳轉(zhuǎn)化[D]. 太谷:山西農(nóng)業(yè)大學(xué),2013.

YANG Decui. Effects on the photosynthetic characteristics of tree peony (Paeonia suffruticosa Andr.) infected by Cylindrocladium canadense and gene cloning and genetic transformation of pathogenesis-related Protein 1 of tree peony[D]. Taigu:Shanxi Agricultural University,2013.

[40] 馬立功,張勻華,孟慶林,石鳳梅,劉佳,李易初,王志英. 向日葵病程相關(guān)蛋白HaPR1基因的克隆與功能[J]. 作物學(xué)報(bào),2015,41(12):1819-1827.

MA Ligong,ZHANG Yunhua,MENG Qinglin,SHI Fengmei,LIU Jia,LI Yichu,WANG Zhiying. Cloning and function analysis of pathogenesis related protein gene HaPR1 from sunflower(Helianthus annuus)[J]. Acta Agronomica Sinica,2015,41(12):1819-1827.

[41] GIBBS G M,ROELANTS K,O’BRYAN M K. The CAP superfamily:Cysteine-rich secretory proteins,antigen 5,and pathogenesis-related 1 proteins:Roles in reproduction,cancer,and immune defense[J]. Endocrine Reviews,2008,29(7):865-897.

[42] CUI H M,QU S,LAMBORO A,JIAO Y L,WANG P W. Bioinformatics analysis of disease resistance gene PR1 and its genetic transformation in soybeans and cultivation of multi-resistant materials[J]. Phyton,2022,91(7):1445-1464.

[43] PIETERSE C M J,LEON-REYES A,VAN DER ENT S,VAN WEES S C M. Networking by small-molecule hormones in plant immunity[J]. Nature Chemical Biology,2009,5(5):308-316.

[44] AGRAWAL G K,JWA N S,RAKWAL R. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut,phytohormones,and protein phosphatase inhibitors[J]. Biochemical and Biophysical Research Communications,2000,274(1):157-165.

[45] 尉春雪,蘇浩天,張曉宇,何文菡,鄭大檉,尹淑霞. 外源水楊酸對(duì)草地早熟禾抗褐斑病的誘導(dǎo)與抗病基因PR1和NPR1的表達(dá)的影響[J]. 草業(yè)科學(xué),2019,36(5):1249-1254.

WEI Chunxue,SU Haotian,ZHANG Xiaoyu,HE Wenhan,ZHENG Dacheng,YIN Shuxia. Effects of exogenous salicylic acid on the resistance of Kentucky bluegrass to brown patch and expression of PR1 and NPR1 resistance genes[J]. Pratacultural Science,2019,36(5):1249-1254.

[46] 李卓靜. H2S通過CsMYB30激活黃瓜病程相關(guān)蛋白表達(dá)[D]. 太原:山西大學(xué),2021.

LI Zhuojing. H2S activates the expression of cucumber pathogenesis related protein through CsMYB30[D]. Taiyuan:Shanxi University,2021.

收稿日期:2024-04-18 接受日期:2024-05-31

基金項(xiàng)目:河南省重大科技專項(xiàng)(221100110400);國家重點(diǎn)研發(fā)計(jì)劃(2022YFD1600700);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-26);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP-2024-ZFRI-03);河南省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(HARS-22-09-S);國家園藝種質(zhì)資源庫鄭州獼猴桃分庫(NHGRC2024-NH00-4);河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20326335D)

作者簡(jiǎn)介:張敏,女,在讀博士研究生,研究方向?yàn)楣麡浞肿由飳W(xué)。E-mail:zhangmin1862@163.com

*通信作者 Author for correspondence. E-mail:sunleiming@caas.cn;E-mail:qixiujuan@caas.cn

猜你喜歡
煙草
煙草具有輻射性?
CORESTA 2019年SSPT聯(lián)席會(huì)議關(guān)注新煙草、吸煙行為研究和雪茄煙
煙草控制評(píng)估方法概述
煙草依賴的診斷標(biāo)準(zhǔn)
我國煙草品牌微博營(yíng)銷的反思
新聞傳播(2016年3期)2016-07-12 12:55:34
煙草中茄酮的富集和應(yīng)用
SIMOTION運(yùn)動(dòng)控制系統(tǒng)在煙草切絲機(jī)中的應(yīng)用
煙草鏡頭與歷史真實(shí)
聲屏世界(2014年6期)2014-02-28 15:18:09
百年煙草傳奇的云南敘事
煙草品種的SCAR標(biāo)記鑒別
主站蜘蛛池模板: 国产成人调教在线视频| 亚洲精品成人7777在线观看| 有专无码视频| AV不卡国产在线观看| 欧美无专区| 久久亚洲高清国产| 一区二区三区高清视频国产女人| 中文字幕在线一区二区在线| 国产打屁股免费区网站| 国产激情无码一区二区APP| 伊人成人在线视频| 亚洲天堂视频网| 青青青伊人色综合久久| 四虎影视国产精品| av无码一区二区三区在线| 永久免费精品视频| 丁香五月激情图片| 国产亚洲一区二区三区在线| 精品無碼一區在線觀看 | 国产精品自在在线午夜| 国内99精品激情视频精品| 真人高潮娇喘嗯啊在线观看| 国产v精品成人免费视频71pao| 无码福利日韩神码福利片| 香蕉伊思人视频| 99热国产这里只有精品9九 | 国产91特黄特色A级毛片| 国产办公室秘书无码精品| 亚洲欧美日韩另类| 亚洲天堂成人在线观看| 免费高清a毛片| 亚洲综合精品香蕉久久网| 免费高清a毛片| 一级爱做片免费观看久久| 福利片91| 久热精品免费| 亚洲精品中文字幕无乱码| 国产永久在线视频| 久久精品91麻豆| 成人夜夜嗨| 精品一区二区三区四区五区| 久久久精品无码一二三区| 久久毛片网| 91视频国产高清| 三上悠亚精品二区在线观看| 亚洲高清中文字幕| 精品无码国产自产野外拍在线| 亚洲狼网站狼狼鲁亚洲下载| 久久久久青草线综合超碰| 在线不卡免费视频| 无码福利日韩神码福利片| 午夜少妇精品视频小电影| 婷婷午夜天| 97综合久久| 精品少妇人妻一区二区| 午夜精品久久久久久久99热下载| 少妇人妻无码首页| 亚洲综合激情另类专区| 日韩毛片在线播放| 狠狠色丁香婷婷| 免费jizz在线播放| 欧美中文字幕在线播放| 一区二区三区精品视频在线观看| 亚洲成综合人影院在院播放| 国产精品不卡片视频免费观看| 国产精品永久不卡免费视频| 欧美五月婷婷| 亚洲最新在线| 伦伦影院精品一区| 黄色三级网站免费| 色首页AV在线| 国产00高中生在线播放| A级毛片无码久久精品免费| 亚洲天堂自拍| 久久国产拍爱| 亚洲经典在线中文字幕| 国国产a国产片免费麻豆| 亚洲第一成网站| 67194在线午夜亚洲| 在线观看热码亚洲av每日更新| 试看120秒男女啪啪免费| h网址在线观看|