999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Ca+GA3處理對減輕蘆柑裂果的生理與分子機制研究

2024-12-31 00:00:00吳維林周秋蓉黃嘉康任華晴陳伊冉張加成杜茜張宇平王平
果樹學報 2024年8期

摘" " 要:【目的】探究減輕蘆柑裂果的生理與分子機制。【方法】以10年生早熟蘆柑(易裂品種)為試材,果面噴施0.3 g·L-1螯合鈣和10 mg·L-1 GA3為處理,以清水為對照(CK)。測定裂果率和果實外觀品質,同時測定果皮ROS含量和抗氧化能力、細胞壁代謝酶活性和結構成分含量,以及抗氧化酶和細胞壁代謝酶相關基因表達差異。【結果】Ca+GA3處理有效降低了裂果率,增大了蘆柑果形指數、單果質量和果頂果皮厚度;提高了蘆柑果皮中抗氧化酶SOD、CAT活性,降低了H2O2、[O][2] 產生速率和MDA含量以及POD、PPO活性。同時,Ca+GA3處理提高了蘆柑果皮果膠、纖維素含量,降低木質素含量以及PME、PL、PG、CX和PAL、4CL、C4H活性;提高了果皮的延展性和韌性,減少了裂果的發生。Ca+GA3處理顯著提高了抗氧化酶相關基因CrSOD、CrCAT在蘆柑果皮中的相對表達量,降低了CrPOD、CrPPO以及細胞壁代謝相關基因CrPME、CrPL、CrPG、CrCX、CrPAL、Cr4CL、CrC4H的相對表達量。【結論】在生理與分子水平上明確了Ca+GA3處理可以通過調控果皮活性氧代謝與細胞壁代謝來降低裂果率。研究結果對生產上預防和減輕蘆柑裂果具有一定理論意義和應用價值。

關鍵詞:蘆柑;裂果;Ca+GA3處理;活性氧代謝;細胞壁代謝

中圖分類號:S666.1 文獻標志碼:A 文章編號:1009-9980(2024)08-1563-14

Physiological and molecular mechanism of Ca+GA3 treatment alleviating fruit cracking incidence in ponkan

WU Weilin1, ZHOU Qiurong1#, HUANG Jiakang1, REN Huaqing1, CHEN Yiran1, ZHANG Jiacheng1, DU Xi1, ZHANG Yuping2, WANG Ping1*

(1College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China; 2Tianma Citrus Farm, Yongchun County, Fujian Province, Yongchun 362600, Fujian, China)

Abstract: 【Objective】 Fruit cracking is a physiological disease, which seriously affects the appearance and quality of fruit. Ponkan fruit cracking rate can be as high as 70% in serious cases, which has become a major problem in the development of the ponkan production. Fruit cracking is regulated by multiple cell physiological and biochemical metabolisms during peel development. Therefore, the physiological and molecular mechanisms of ponkan fruit cracking was investigated in order to provide theoretical basis for the prevention and alleviation of the fruit cracking in production. 【Methods】 In this study, 10-year-old early-maturing ponkan fruit (cracking-susceptible cultivar) in Tianma Citrus Farm in Yongchun County, Fujian, China, were used as the experimental material. Eighteen trees with relatively consistent nutrition level and growth state under conventional cultivation management were selected for the experiment. At the expansion period of ponkan fruit in June and July, the fruit sprayed with 0.3 g·L-1 chelated calcium and 10 mg·L-1 GA3 (Ca+GA3) were used as the treatment group, and the fruit sprayed with water as the control (CK). Ponkan fruit started to crack on August 15, 2022, and the fruit were collected at 15 d intervals (105, 120, 135, 150 and 165 d after full bloom). The fruit cracking rate and appearance quality were investigated, including transverse diameter, vertical diameter, fruit shape index, single fruit weight and peel thickness. In addition, H2O2 and MDA contents, and [O][2] production rate as well as antioxidant enzyme activities (SOD, CAT, POD, and PPO) in ponkan peel were determined. Furthermore, the cell wall metabolic enzyme activities (PME, PL, PG, CX, PAL, 4CL, and C4H) and the structural components (protopectin, soluble pectin, cellulose, and lignin) were measured. And the expression of the related genes of antioxidant enzymes and cell wall metabolic enzymes in the peel were analyzed. 【Results】 Ca+GA3 treatment significantly reduced the cracking rate of ponkan fruit. The transverse diameter and vertical diameter of the fruit increased, and fruit shape index, single fruit weight and top peel thickness in Ca+GA3 treatment were greater than those of CK. Abnormal metabolism of ROS is one of the most important causes of fruit cracking. During the period of 105-165 days after full bloom, the contents of H2O2, MDA and the rate of [O][2] production in ponkan peel showed a general trend of increasing and then decreasing and reached a peak at 135 d after full bloom. Ca+GA3 treatment reduced the degree of lipid peroxidation in cell membrane of the peel. The activities of antioxidant enzymes SOD and CAT in ponkan peel peaked at 135 d after full bloom, which was significantly higher, while POD and PPO activities significantly lower in Ca+GA3 treatment than in CK. The results indicated that Ca+GA3 treatment increased SOD and CAT activities, and decreased POD and PPO activities in ponkan peel. The higher activities of peel cell wall hydrolases, the faster the cell wall polysaccharide degradation, and the higher fruit cracking incidence. The Ca+GA3 treatment resulted in a consistently higher protopectin and lower soluble pectin contents in ponkan peel than those of CK. In addition, PME, PL and PG in ponkan peel were significantly reduced after Ca+GA3 treatment. The results indicated that Ca+GA3 treatment reduced the rate of degradation of protopectin into soluble pectin. The content of cellulose in ponkan peel decreased slowly during 105-165 days after full bloom. Ca+GA3 treatment effectively increased the content of cellulose in ponkan peel, while decreased CX activity. Lignin content in ponkan peel treated with Ca+GA3 was lower than that of CK during the period of 105-165 d after full bloom, and the activities of PAL, 4CL, and C4H, key enzymes in lignin synthesis, decreased in the peel throughout the whole period of growth and development of ponkan fruit. These results indicate that Ca+GA3 treatment can effectively reduce the activities of key enzymes in lignin synthesis in the peel. Ca+GA3 treatment significantly increased the relative expression of antioxidant enzyme genes CrSOD and CrCAT, and decreased the relative expressions of CrPOD and CrPPO, as well as cell wall metabolism related genes CrPME, CrPL, CrPG, CrCX, CrPAL, Cr4CL, and CrC4H in ponkan peel. Ca+GA3 treatment improved the ductility and toughness of the peel and reduced the occurrence of the fruit cracking by influencing the ROS content, antioxidant capacities, cell wall metabolic enzyme activities and structural components in the peel. 【Conclusion】 In summary, Ca+GA3 treatment increased SOD and CAT activities, decreased [O][2] production rate and H2O2 and MDA contents, as well as POD and PPO activities in ponkan peel. Ca+GA3 treatment reduced PME, PL, PG, PAL, 4CL and C4H activities and lignin content, increased the protopectin and cellulose contents in ponkan peel. The expression levels of CrSOD, CrCAT, CrPOD, CrPPO, CrPME, CrPL, CrPG, CrCX, CrPAL, Cr4CL and CrC4H in the peel of ponkan fruit treated with Ca+GA3 were consistent with the activities of related enzymes and the accumulation of the metabolites. Ca+GA3 treatment is effective to reduce fruit cracking rate by affecting ROS metabolism and cell wall metabolism in fruit peel at both molecular and physiological levels.

Key words: Ponkan; Fruit cracking; Ca+GA3 treatment; ROS metabolism; Cell wall metabolism

蘆柑(Citrus reticulata Blanco ‘Ponkan’)屬于蕓香科(Rutaceae)柑橘屬(Citrus)植物,果實色澤橘黃,果肉多汁,是福建省優良果樹品種。蘆柑裂果是果實發育過程中常見的一種生理病害,常在果實膨大期出現。裂果后會導致果實水分的損失,病菌侵入發生霉變,加快病蟲害的傳播,影響果實外觀等[1]。蘆柑裂果現象嚴重時高達70%,已成為蘆柑產業發展中的一大難題。

Ca作為一種重要的常量元素,在植物生長發育中起著多種作用,能夠維持并提高生物膜的穩定性和完整性[2],促進果膠酸鈣的形成,提高細胞耐壓力、延展性,降低裂果的發生率。Nie等[3]在對杏(Armeniaca vulgaris Lam.)的研究中發現,Ca元素含量與裂果率呈負相關。在園藝植物實際生產中,葡萄(Vitis vinifera L.)[4]、石榴(Punica granatum Linn.)[5]等果實都可能因缺Ca而造成裂果,因此噴施Ca肥是生產上減少裂果的重要措施。在對臍橙[C. sinensis (L.) Osbeck.]等的研究中發現鈣處理能夠緩解原果膠和纖維素降解,增加果實硬度和細胞壁厚度,降低裂果率[6]。近年來,有報道指出外源赤霉素(gibberellin,GA3)對裂果有調控作用。GA3能改變果實表皮的厚度和蠟質含量[7]。噴施GA3能夠維持穩定果皮細胞層次,增強細胞之間的連接性,減少裂果的發生[8]。在對柑橘的研究中,GA3在一定程度上能緩解胞間裂隙的發展,從而防控裂果的發生[9]。生產上應用外源GA3處理能夠降低臍橙[10]、石榴[11]的裂果率。

活性氧(reactive oxygen species,ROS)代謝平衡與果實裂果密切相關。ROS包括過氧化氫(H2O2)、超氧陰離子自由基([O][2] )等,ROS清除系統中有抗氧化酶和抗氧化物質[12]。超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、過氧化物酶(POD)、多酚氧化酶(PPO)等都是植物應對外界脅迫的關鍵抗氧化酶類[13-14]。ROS的清除可協調細胞膜系統狀態穩定,維持果皮細胞的完整性。Yang等[15]在番茄(Solanum lycopersicum L.)中發現,易裂品種果皮各部位SOD、CAT活性均顯著或極顯著低于不易裂品種,而POD活性則顯著高于不易裂品種。在對枇杷[Eriobotrya japonica (Thunb.) Lindl.]的研究中發現,裂果中SOD、CAT活性低于正常果,而POD、PPO活性高于正常果[16]。李建國等[17]研究發現,易裂品種荔枝(Litchi chinensis Sonn.)果皮細胞壁中的POD、PPO活性顯著高于抗裂品種。蜜廣橘(C. reticulata Blanco.)正常果的抗氧化酶相關基因CsSOD、CsCAT表達量高于裂果品種,而CsPOD低于裂果品種[18]。易裂番荔枝在貯藏過程中PPO基因表達量明顯高于不裂果品種[19]。

果皮抗裂性與其細胞壁韌性及延伸性有關。植物細胞壁主要是由多糖、纖維素、半纖維素、果膠以及木質素等構成的復雜動態結構[20]。在初生壁中纖維素微纖維鑲嵌在半纖維素果膠中,影響著細胞壁強度與完整性。果膠可以促進細胞之間的黏附和溝通,維持細胞壁的水分和彈性[21]。木質素主要位于纖維素纖維之間,通過形成交織網來硬化細胞壁,纖維素微纖維的定向排列和木質素含量決定著次生壁的強度和硬度[22]。細胞壁結構成分含量變化決定著果皮的機械強度。果實裂果一般伴隨著細胞壁、果膠和纖維素等多糖類物質的降解[23-24]。果膠甲酯酶(PME)、多聚半乳糖醛酸酶(PG)、果膠裂解酶(PL)為果膠類降解酶[25-26],纖維素酶(CX)則參與纖維素的降解[27]。苯丙氨酸解氨酶(PAL)、4-香豆酸輔酶A連接酶(4CL)和肉桂酸-4-羥基化酶(C4H)是參與木質素合成的重要酶[28]。在番荔枝[29](Annona squamosa L.)、蜜廣橘[30]、番茄[31]中發現,PME、PG和CX活性高,原果膠、纖維素含量降低,可溶性果膠含量提高,果皮開裂。抑制草莓(Fragaria×ananassa Duch.)果實中PL活性可維持細胞壁中果膠含量,增加果實硬度[32]。在葡萄生長期噴施鈣能降低果皮中PME、PG的表達量,降低裂果率[33]。易裂番茄中SIPL的表達量顯著高于耐裂品種[34]。抑制紅江橙[C. sinensis (L.) Osbeck.]果實細胞壁代謝酶基因中PG、PME和CX的表達,能減少果實開裂[35]。Liu等[36]在研究辣椒(Capsicum annuum Linn.)裂果與木質素的關系時發現嚴重裂果的木質素含量顯著高于不裂果果實。柚果實中木質素合成相關酶PAL、C4H、4CL活性及基因表達量升高,木質素含量增加[28]。

筆者在本研究中以易裂早熟蘆柑為試驗材料,研究果面噴施Ca+GA3對蘆柑裂果率、外觀形態、活性氧代謝、細胞壁代謝相關酶活性和相關代謝物質含量,以及相關基因表達水平的影響。探討Ca+GA3處理對減輕果實開裂的相關生理和分子機制,為生產上預防蘆柑裂果提供理論依據。

1 材料和方法

1.1 試驗材料與處理

以永春縣天馬蘆柑果園10年生早熟蘆柑(易裂品種)為試驗材料,選擇營養條件和樹體長勢相對一致的果樹18株,統一管理。

根據2021年預試驗得到預防蘆柑裂果最佳Ca+GA3質量濃度。2022年正式試驗以噴施0.3 g·L-1螯合鈣(美國豐利惠)和10 mg·L-1 GA3(北京索萊寶)為處理組(Ca+GA3),并以噴施清水為對照組(CK),于果實膨大期開始對樹體噴施,共噴施2次(2022年6月15日、7月15日),以果實、葉片滴水為度。處理組和對照組各9株樹。于8月15日蘆柑開始裂果后每隔15 d采樣1次(盛花期后105、120、135、150和165 d)。取樣部位為果樹外圍東、南、西、北及內膛中部5個方位大小一致的果實,每次每株按裂果率采摘對應比例數量的正常果和裂果共40個,每3株為1個生物學重復,共120個果。試驗共設3個生物學重復。裂果取裂開部位周邊的果皮,用手術刀沿果頂到果蒂方向,取兩邊寬各0.5 cm果皮,長度2 cm;正常果取相同部位同等大小的果皮,混樣后用錫箔紙分裝。液氮處理0.5 h,置于-80 ℃超低溫冰箱保存,用于后續生理與分子試驗。另取部分果皮烘干保存,用于后續纖維素、木質素含量測定。

1.2 試驗方法

1.2.1 蘆柑裂果率、形態指標測定 統計每株總果數和每株裂果數,計算裂果率。3株為1個生物學重復,共設3個生物學重復。

分別在采摘的處理組和對照組果實中隨機挑選10個果皮無損傷的正常果,用電子游標卡尺測定橫縱徑、果頂處果皮厚度,用百分之一天平測定單果質量,計算果形指數(縱徑/橫徑)。

1.2.2 蘆柑果皮過氧化氫(H2O2)、超氧陰離子([O][2] )、丙二醛(MDA)含量及抗氧化酶活性的測定 蘆柑果皮過氧化氫(H2O2)、超氧陰離子([O][2] )和丙二醛(MDA)含量及多酚氧化酶(PPO)活性分別參考檢測試劑盒(北京索萊寶生物公司)說明測定。

超氧化物歧化酶(SOD)活性參照Wang等[37]的氮藍四唑光化還原法測定;過氧化氫酶(CAT)活性參照Wang等[37]的紫外吸收法測定;過氧化物酶(POD)活性參照Jiang等[38]的愈創木酚法測定。

1.2.3 蘆柑果皮細胞壁代謝酶和結構成分的測定 蘆柑果皮果膠甲酯酶(PME)、多聚半乳糖醛酸酶(PG)、果膠裂解酶(PL)、纖維素酶(CX)、苯丙氨酸解氨酶(PAL)、4-香豆酸輔酶A連接酶 (4CL)和肉桂酸-4-羥基化酶(C4H)活性分別參考檢測試劑盒(北京索萊寶生物公司)說明測定。

原果膠與可溶性果膠的提取和含量參考曹建康等[39]的方法測定。

纖維素含量測定:取果皮干樣0.05 g加入30 mL 60% H2SO4 30 min后定容至50 mL,搖勻,過濾,取2.5 mL濾液至25 mL容量瓶中,用蒸餾水定容。然后從中取2 mL依次加入5 mL 2%蒽酮、H2SO4,震蕩,沸水浴10 min,取出冰浴1 min后在620 nm處測OD值。

木質素含量采用乙酰溴法[40]測定。

1.2.4 蘆柑果皮RNA提取及相關基因表達分析 參照天根公司多糖多酚植物總RNA提取試劑盒(無DNA殘留型)說明書提取盛花期后135 d裂果最嚴重時期的CK和Ca+GA3處理的蘆柑果皮總RNA;采用Vazyme公司Hiscript II Q RT SuperMix for qPCR試劑盒合成cDNA。

基因表達分析采用實時熒光定量PCR(qRT-PCR)方法,在Roche實時熒光定量PCR儀(LightCycler 96)上完成。利用NCBI設計引物,以柑橘Actin為內參基因,由福州易禾基因科技有限公司合成引物,引物信息詳見表1。基因擴增體系為:10 μL 2 × ChamQ Universal SYBR qPCR Master Mix,上下游引物各0.4 μL,1 μL cDNA、8.2 μL ddH2O。基因擴增體系總體積為20 μL。反應程序為①預變性95 ℃ 30 s;②循環反應95 ℃ 10 s,60 ℃ 30 s(45個循環);③溶解曲線:95 ℃ 30 s,60 ℃ 60 s,95 ℃ 15 s。每個樣品3次重復,采用2–ΔΔCT法計算基因的相對表達量并制圖。

1.3 數據分析

使用Microsoft Excel 2021進行統計處理及作圖,采用IBM SPSS Statistics 25.0進行差異顯著性分析。

2 結果與分析

2.1 Ca+GA3處理對蘆柑果實裂果率的影響

圖1顯示,蘆柑盛花后135 d是裂果發生的高峰期。從盛花后105 d開始,Ca+GA3處理明顯降低了裂果率,與CK比較達到極顯著差異水平。由此可見,在蘆柑生長過程中噴施外源Ca+GA3可顯著降低果實的裂果率,有效減少蘆柑裂果的發生。

2.2 Ca+GA3處理對蘆柑果實外觀品質的影響

隨著蘆柑果實的生長發育,果實橫徑、縱徑均逐漸增加,經Ca+GA3處理后果實橫、縱徑均大于CK。從蘆柑盛花后135 d開始,Ca+GA3處理的果形指數大于CK。果形指數小,皮層組織生長受到遏制,易發生裂果。單果質量隨著蘆柑果實的生長發育而持續上升,在果實不同發育階段呈對數型增長,Ca+GA3處理的單果質量大于CK。說明Ca+GA3處理能提高蘆柑的單果質量。蘆柑果實的果頂果皮厚度呈先上升后下降再上升的趨勢,從蘆柑盛花后120 d達到峰值,在盛花后第135天果頂果皮厚度達到谷值。此外,Ca+GA3處理可顯著增加蘆柑的果頂果皮厚度(表2)。

2.3 Ca+GA3處理對蘆柑果皮活性氧代謝的影響

在盛花后105~165 d期間,蘆柑果皮H2O2含量呈先上升后下降的趨勢,且Ca+GA3處理后果皮H2O2含量顯著低于對照。蘆柑果皮H2O2含量在盛花后135 d達到峰值,此時Ca+GA3比對照減少了29.59%。Ca+GA3處理明顯減少了果皮H2O2含量,并有效抑制后期H2O2的積累,降低蘆柑的裂果率。蘆柑果皮[O][2] 產生速率總體呈先下降后上升再下降的趨勢,蘆柑盛花后135 d果皮[O][2] 產生速率達到峰值。Ca+GA3處理的蘆柑果皮顯著抑制了[O][2] 的積累。蘆柑果皮的MDA含量呈先上升后下降的趨勢,Ca+GA3處理的果皮MDA含量一直顯著低于CK(圖2)。Ca+GA3處理降低了蘆柑果皮細胞膜脂過氧化程度。

如圖3所示,蘆柑果皮的SOD活性在盛花后105~165 d期間呈先上升后下降的趨勢,在135 d達到峰值,之后緩慢下降。Ca+GA3處理的果皮SOD活性始終高于CK。從蘆柑盛花后105 d開始,Ca+GA3處理的果皮CAT活性均顯著高于CK。果皮CAT活性也呈先上升后下降的趨勢,在盛花后135 d達到峰值。Ca+GA3處理可以顯著提高果皮CAT活性。果皮POD活性呈先上升后下降的趨勢,在盛花后135 d達到峰值,Ca+GA3處理的果皮POD活性均顯著低于CK;果皮PPO活性也呈現先上升后下降的趨勢,Ca+GA3處理的果皮PPO活性始終顯著低于CK,說明Ca+GA3處理降低了蘆柑果皮POD和PPO活性。

2.4 Ca+GA3處理對蘆柑果皮細胞壁結構成分和相關酶活性的影響

在盛花后105~165 d期間,隨著蘆柑果實的生長發育,果皮原果膠含量呈先上升后下降的趨勢,在蘆柑盛花后第120天達到峰值。Ca+GA3處理后果皮的原果膠含量始終高于CK。蘆柑果皮的可溶性果膠含量也為先上升后下降的趨勢,在蘆柑盛花后的第150天達到峰值,此時已在裂果后期。經Ca+GA3處理后的可溶性果膠含量始終低于CK。Ca+GA3處理延緩了原果膠降解成可溶性果膠的速度。蘆柑果皮PME活性呈先上升后下降的趨勢。Ca+GA3處理后的果皮PME活性始終低于CK。且處理后PME活性上升幅度明顯小于CK。Ca+GA3處理降低了果皮PME活性。在蘆柑生長發育期果皮中PL活性均維持較低水平。隨著果實生長發育,果皮中PL活性均逐漸升高,但Ca+GA3處理的果皮PL活性始終低于CK。蘆柑果皮PG活性均呈現先上升后下降的趨勢,Ca+GA3處理始終低于CK,在盛花后135 d達到峰值,此時Ca+GA3處理的果皮PG活性與CK差異最大(圖4)。

由圖5所示,蘆柑果皮中纖維素含量在盛花后105~165 d期間呈緩慢下降的趨勢,Ca+GA3處理的果皮纖維素含量始終高于CK。Ca+GA3處理可以有效地增加蘆柑果皮的纖維素含量。隨著果實的生長發育,蘆柑果皮中CX活性逐漸上升。在整個生長發育期,Ca+GA3處理的果皮CX活性明顯降低,并達到極顯著差異。說明Ca+GA3處理可以有效地降低蘆柑果皮的CX活性。

隨著果實的生長發育,蘆柑果皮的木質素含量呈下降的趨勢,在盛花后105~165 d期間Ca+GA3處理的果皮木質素含量均低于CK。作為木質素合成中的關鍵酶,蘆柑果皮PAL、4CL和C4H活性在整個生長發育期間均呈下降趨勢。說明Ca+GA3處理果皮能夠有效降低木質素合成關鍵酶的活性(圖6)。

2.5 Ca+GA3處理對蘆柑果皮抗氧化酶和細胞壁代謝酶相關基因表達的影響

如圖7所示,Ca+GA3處理后蘆柑果皮抗氧化酶相關基因CrSOD、CrCAT表達量顯著上調,而CrPOD、CrPPO顯著下調。在細胞壁代謝酶相關基因中,果膠降解酶基因CrPME、CrPL、CrPG和纖維素酶基因CrCX以及木質素合成酶基因CrPAL、Cr4CL、CrC4H在Ca+GA3處理后表達量明顯下調,呈極顯著差異。這些結果表明Ca+GA3處理后蘆柑果皮抗氧化酶、細胞壁代謝酶相關基因的表達量發生改變。

3 討 論

裂果是果實發育過程中的一種生理性病害,受果皮發育過程中細胞多種生理生化代謝的調控。Ca能提高細胞耐壓力、延展性,降低裂果的發生率[2]。GA3能維持穩定的果皮細胞層次,增強細胞之間的連接性[8]。因此外源Ca和GA3協同作用對減緩蘆柑裂果效果更佳。當前,蘆柑裂果相關的研究多集中在果形指數、果實大小[41-42]以及一些生理代謝酶活性[16,29]方面,但總體研究還不夠深入和完整。因此,筆者在本試驗中系統地研究了Ca+GA3處理對蘆柑果實活性氧代謝和細胞壁代謝的影響,以揭示其緩解蘆柑裂果的生理和分子機制。

果實外觀品質和果皮組織結構與果實抗裂能力密切相關。與易裂番茄相比,不易裂品種番茄的角質層更厚[15]。開裂檸檬[C. ×limon (L.) Osbeck.]的果皮厚度較薄[43],紅江橙[C. sinensis (L.) Osbeck.]的裂果果形指數小,果皮通常較薄、彈性差且硬度低[42]。Ca作為細胞壁的重要組分,能增加細胞壁強度,改變果皮的組織結構,增強果皮伸長性和破裂應力[44]。有報道指出外源鈣和EBR處理下番茄果實的單果質量、橫徑和縱徑均顯著高于對照[45]。在對棗(Ziziphus jujuba Mill.)[46]和櫻桃[Cerasus pseudocerasus (Lindl.) G. Don.][7]的研究中發現,GA3處理增加了果皮角質層的厚度,從而降低了裂果率。筆者在本研究中發現,Ca+GA3處理增加了蘆柑果皮厚度和果形指數,顯著降低了蘆柑裂果率。

果皮活性氧代謝異常是果實開裂的重要原因。前人研究報道,易裂果番茄果皮的H2O2、[O][2] 產生速率和MDA含量以及膜脂過氧化程度均高于耐裂果番茄[47]。在對枇杷的研究中發現,裂果果皮中的POD活性高于正常果,而SOD、CAT活性則相反[16]。易裂俊棗果皮POD活性高于不易裂棗[48]。崔守堯等[49]研究發現,CaCl2處理可明顯降低易裂果番茄品種的裂果率,降低果皮中H2O2和MDA含量。另有研究指出,Ca處理后降低了蜜廣橘果皮POD活性和基因表達量,提高了SOD、CAT活性和相關基因表達水平[18]。GA3處理延緩了冬棗果皮H2O2、MDA和[O][2] 積累,提高了CAT活性,延緩了組織受活性氧的傷害時間[50]。值得注意的是,POD在氧化還原反應過程中具有多種功能。一方面,它在NAD(P)H的幫助下,催化H2O2與[O][2] 生成羥基自由基(·OH),而·OH是一種高活性分子,已被證實在非酶促反應中促進細胞壁多糖的裂解[51-53]。另一方面,POD又與H2O2反應,將酚類物質轉化為苯氧自由基(Phe·)。Phe·隨后受化學氧化和交叉耦合影響,生成木質素,并在細胞壁結構組分(結構蛋白、半纖維素和果膠)之間形成酚醛交聯,導致細胞壁硬化并降低其延展性[54-56]。在逆境脅迫下,植物細胞膜質過氧化,生物膜系統完整性受損,細胞質中的PPO與液泡中酚類物質接觸會引發褐變,產生醌類有害物質,從而損傷細胞[57],這與裂果部位常常出現棕褐色顏色變化密切相關。GA3處理后降低了棗果果皮PPO活性,有效抑制棗果果皮酶促褐變和減輕細胞損傷[58]。易裂的番荔枝中PPO基因表達量明顯增高[19]。筆者在本研究中發現Ca+GA3處理能降低果皮H2O2含量和[O][2] 產生速率,提升SOD、CAT活性,降低了POD、PPO活性,從而限制了羥基自由基和苯氧自由基生成以及細胞氧化褐變損傷,減緩了對蘆柑果皮韌性和硬度的影響。

果皮細胞壁代謝改變與果實開裂緊密相關。果膠和纖維素等細胞壁多糖的降解影響果皮的韌性、黏附性和硬度,造成果皮和果肉的開裂[59]。而細胞壁多糖的降解又與細胞壁代謝酶活性相關。棗的裂果率與原果膠和纖維素含量呈顯著負相關[44]。果皮細胞壁水解酶活性越高,細胞壁多糖降解越快,果實更容易開裂。Ca2+能促進果膠酸鈣的形成,而果膠酸鈣有利于維持細胞壁結構的完整及穩定,提高果皮的機械強度,減少裂果的發生[60-61]。在對葡萄[4]、蘋果(Malus pumila Mill.)[62]的研究中發現,鈣處理降低了PG、CX活性,使果皮原果膠和纖維素降解減緩。GA3可以通過調節果膠的甲酯化,改變Ca2+橋形成相互交聯的多聚體影響細胞壁結構,從而影響PME、PG等活性[63]。噴施GA3可以降低柑橘果皮PME和PG活性[64]。在對葡萄的研究中發現,鈣處理后裂果率降低,PME、PG、PL、CX活性和相關基因表達量會下調[65]。交聯的酚類化合物和木質素沉積會導致細胞壁變硬,降低細胞壁的延展性,制約果皮的生長。果實進入膨大期,內部果肉生長速度遠大于細胞壁的延展速度,造成果皮開裂。研究砂梨(Pyrus pyrifolia Nakai.)果皮性狀形成機制時發現木質素的增加能引起果皮的異常加厚,促進果皮的木質化,降低果皮的韌性[66]。嚴重裂果的辣椒木質素含量和木質素合成酶基因PAL、4CL的表達量均顯著高于不裂果果實[36]。在本研究中,筆者發現Ca+GA3處理降低了蘆柑果皮PME、PL、PG、CX活性,減緩了果膠和纖維素的降解。同時,降低了蘆柑果皮中PAL、4CL、C4H活性,從而抑制了木質素合成,提高了果皮的韌性和延展性,降低了蘆柑裂果率。

4 結 論

Ca+GA3處理降低蘆柑果皮中H2O2含量、[O][2] 產生速率和MDA含量,提高抗氧化酶SOD、CAT活性,降低POD、PPO活性,增強活性氧的清除能力。同時,Ca+GA3處理降低果皮果膠降解酶PME、PL、PG和纖維素酶CX,以及木質素合成酶PAL、4CL、C4H等細胞壁代謝酶的活性,防止細胞壁中果膠、纖維素的降解,以及木質素的過多積累,從而提高了果皮的韌性和延展性,顯著降低了裂果率。qRT-PCR分析證實,Ca+GA3處理下蘆柑果皮抗氧化酶和細胞壁代謝酶相關基因的差異表達與相關酶活性以及代謝產物積累相一致。在生理和分子水平上,系統地揭示了Ca+GA3處理下蘆柑果實生長發育過程中果皮活性氧代謝、細胞壁代謝與裂果的關系,為進一步深入解析蘆柑裂果機制奠定了理論基礎,并明確了蘆柑果面噴施Ca+GA3是預防和減輕裂果發生的有效生產措施。

參考文獻 References:

[1] GONG Y,YANG Y T,LI L,ZENG X,BIE Y H,MAO H Q,WANG L X Y,XIONG B. Study on the effect difference of two kinds of control techniques on cracking fruit of Qingcui plum[J]. IOP Conference Series:Earth and Environmental Science,2021,792(1):012042.

[2] ZHU M T,YU J,WANG R,ZENG Y X,KANG L F,CHEN Z Y. Nano-calcium alleviates the cracking of nectarine fruit and improves fruit quality[J]. Plant Physiology and Biochemistry,2023,196:370-380.

[3] NIE G W,LI K,TIAN Y Q,DAI G L,YANG X H,SONG Y H,LI J J,ZHANG X P,Lü J G. Correlation analysis between cracking and mineral element content of apricot fruit[J]. Agricultural Science amp; Technology,2017,18(10):1852-1855.

[4] SHI H,ZHOU X Y,QIN M L,WANG W L,HE X E,ZHOU W H. Effect of CaCl2 sprays in different fruit development stages on grape berry cracking[J]. Frontiers in Plant Science,2022,13:870959.

[5] DROGOUDI P,PANTELIDIS G E. Comparative effects of gibberellin A3,glycine betaine,and Si,Ca,and K fertilizers on physiological disorders and yield of pomegranate cv. Wonderful[J]. Journal of the Science of Food and Agriculture,2022,102(1):259-267.

[6] PHAM T T M,SINGH Z,BEHBOUDIAN M H. Different surfactants improve calcium uptake into leaf and fruit of ‘Washington navel’ sweet orange and reduce albedo breakdown[J]. Journal of Plant Nutrition,2012,35(6):889-904.

[7] CORREIA S,SANTOS M,GLI?SKA S,GAPI?SKA M,MATOS M,CARNIDE V,SCHOUTEN R,SILVA A P,GON?ALVES B. Effects of exogenous compound sprays on cherry cracking:Skin properties and gene expression[J]. Journal of the Science of Food and Agriculture,2020,100(7):2911-2921.

[8] YILMAZ C,?ZGüVEN A I. The effects of some plant nutrients,gibberellic acid and pinolene treatments on the yield,fruit quality and cracking in pomegranate[J]. Acta Horticulturae Sinica,2009,818:205-212.

[9] 李永杰,金國強,淳長品,朱瀟婷,邱曉瑩. 柑橘果皮的發育特征及GA3的防裂效果[J]. 果樹學報,2021,38(7):1092-1101.

LI Yongjie,JIN Guoqiang,CHUN Changpin,ZHU Xiaoting,QIU Xiaoying. Developmental characteristics of citrus peel and the effect of gibberellic acid on fruit cracking[J]. Journal of Fruit Science,2021,38(7):1092-1101.

[10] 葉正文,葉蘭香,張學英. ‘朋娜’等臍橙的裂果規律及赤霉素防裂效果[J]. 上海農業學報,2002,18(4):52-57.

YE Zhengwen,YE Lanxiang,ZHANG Xueying. The fruit cracking rules of navel orange varieties such as ‘Pengna’ and the effect of gibberellin (GA) preventing fruits from cracking[J]. Acta Agriculturae Shanghai,2002,18(4):52-57.

[11] ZAHEDI S M,HOSSEINI M S,MEYBODI N D H,ABADíA J,GERM M,GHOLAMI R,ABDELRAHMAN M. Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments,yield parameters and biochemical traits as biomarkers[J]. Agricultural Water Management,2022,261:107357.

[12] ZHANG C,ZHAO Y J,JIANG F L,WU Z,CUI S Y,LV H M,YU L. Differences of reactive oxygen species metabolism in top,middle and bottom part of epicarp and mesocarp influence tomato fruit cracking[J]. The Journal of Horticultural Science and Biotechnology,2020,95(6):746-756.

[13] JIANG Y L,YIN H,WANG D F,ZHONG Y,DENG Y. Exploring the mechanism of Akebia trifoliata fruit cracking based on cell-wall metabolism[J]. Food Research International,2022,157:111219.

[14] XUE L Z,SUN M T,WU Z,YU L,YU Q H,TANG Y P,JIANG F L. LncRNA regulates tomato fruit cracking by coordinating gene expression via a hormone-redox-cell wall network[J]. BMC Plant Biology,2020,20(1):162.

[15] YANG Z E,WU Z,ZHANG C,HU E M,ZHOU R,JIANG F L. The composition of pericarp,cell aging,and changes in water absorption in two tomato genotypes:Mechanism,factors,and potential role in fruit cracking[J]. Acta Physiologiae Plantarum,2016,38(9):215.

[16] 王引,倪海枝,顏幫國,陳方永. 白沙枇杷裂果的鈣素調控生理研究[J]. 果樹學報,2022,39(5):826-835.

WANG Yin,NI Haizhi,YAN Bangguo,CHEN Fangyong. Influence of calcium on fruit cracking and its physiological mechanism in white flesh loquats[J]. Journal of Fruit Science,2022,39(5):826-835.

[17] 李建國,黃旭明,黃輝白. 裂果易發性不同的荔枝品種果皮中細胞壁代謝酶活性的比較[J]. 植物生理與分子生物學學報,2003,29(2):141-146.

LI Jianguo,HUANG Xuming,HUANG Huibai. Comparison of the activities of enzymes related to cell-wall metabolism in pericarp between litchi cultivars susceptible and resistant to fruit cracking[J]. Journal of Plant Physiology and Molecular Biology,2003,29(2):141-146.

[18] 張蓓,劉林婷,劉若南,高志鍵,葛聰,周秋蓉,李江波,李延,王平. 鈣與IAA對易裂果蜜廣橘果皮活性氧代謝和相關抗氧化基因表達的影響[J]. 果樹學報,2021,38(12):2034-2044.

ZHANG Bei,LIU Linting,LIU Ruonan,GAO Zhijian,GE Cong,ZHOU Qiurong,LI Jiangbo,LI Yan,WANG Ping. Effects of calcium and IAA treatments on active oxygen metabolism and related antioxidant gene expressions in the peel of cracking sensitive fruit of Miguang tangerine[J]. Journal of Fruit Science,2021,38(12):2034-2044.

[19] 陳晶晶,段雅婕,莫億偉,胡玉林,胡會剛,謝江輝. 裂果性不同的番荔枝品種果皮中細胞壁代謝相關基因的表達分析[J]. 果樹學報,2015,32(5):769-776.

CHEN Jingjing,DUAN Yajie,MO Yiwei,HU Yulin,HU Huigang,XIE Jianghui. Expression analysis of cell wall metabolism gene in pericarp of custard apple cultivars with different fruit cracking characters[J]. Journal of Fruit Science,2015,32(5):769-776.

[20] RONGPIPI S,YE D,GOMEZ E D,GOMEZ E W. Progress and opportunities in the characterization of cellulose-an important regulator of cell wall growth and mechanics[J]. Frontiers in Plant Science,2019,9:1894.

[21] PEDROSA L F,RAZ A,FABI J P. The complex biological effects of pectin:Galectin-3 targeting as potential human health improvement?[J]. Biomolecules,2022,12(2):289.

[22] KINNAERT C,DAUGAARD M,NAMI F,CLAUSEN M H. Chemical synthesis of oligosaccharides related to the cell walls of plants and algae[J]. Chemical Reviews,2017,117(17):11337-11405.

[23] ROSE J K,COSGROVE D J,ALBERSHEIM P,DARVILL A G,BENNETT A B. Detection of expansin proteins and activity during tomato fruit ontogeny[J]. Plant Physiology,2000,123(4):1583-1592.

[24] GIOVANNONI J. Molecular biology of fruit maturation and ripening[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:725-749.

[25] WANG D D,YEATS T H,ULUISIK S,ROSE J K C,SEYMOUR G B. Fruit softening:Revisiting the role of pectin[J]. Trends in Plant Science,2018,23(4):302-310.

[26] WANG X,LIN L J,TANG Y,XIA H,ZHANG X C,YUE M L,QIU X,XU K,WANG Z H. Transcriptomic insights into citrus segment membrane’s cell wall components relating to fruit sensory texture[J]. BMC Genomics,2018,19(1):280.

[27] SHEN Y H,LU B G,FENG L,YANG F Y,GENG J J,MING R,CHEN X J. Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq[J]. BMC Genomics,2017,18(1):671.

[28] 劉鹿寧,趙秋月,葛聰,田志嬌,周曉俐,阮翥龍,莊木來,李延,王平. 木質素生物合成途徑相關基因調控琯溪蜜柚汁胞粒化的研究[J]. 果樹學報,2023,40(3):432-441.

LIU Luning,ZHAO Qiuyue,GE Cong,TIAN Zhijiao,ZHOU Xiaoli,RUAN Zhulong,ZHUANG Mulai,LI Yan,WANG Ping. The genes related to lignin biosynthesis pathway regulate juice sac granulation in Guanxi pomelo[J]. Journal of Fruit Science,2023,40(3):432-441.

[29] 李偉明,陳晶晶,段雅婕,胡會剛,龐振才,胡玉林. 番荔枝果實后熟過程多糖代謝與果實軟化和采后裂果的關系[J]. 植物生理學報,2018,54(11):1727-1736.

LI Weiming,CHEN Jingjing,DUAN Yajie,HU Huigang,PANG Zhencai,HU Yulin. Effects of anti-ethylene treatments on polysaccharide metabolism,fruit softening and their relationship with postharvest cracking of atemoya fruit[J]. Plant Physiology Journal,2018,54(11):1727-1736.

[30] 吳維林,張蓓,田志嬌,杜茜,黃嘉康,李江波,李延,王平. Ca+IAA對易裂果蜜廣橘果皮細胞壁成分及水解酶活性的影響[J/OL]. 分子植物育種,2023:1-14(2023-07-21). https://kns.cnki.net/kcms/detail/46.1068.S.20230721.1453.004.html.

WU Weilin,ZHANG Bei,TIAN Zhijiao,DU Xi,HUANG Jia-kang,LI Jiangbo,LI Yan,WANG Ping. Effects of Ca +IAA treatment on cell wall components and hydrolase activities in the peel of cracking sensitive fruit of miguang tangerine[J/OL]. Molecular Plant Breeding,2023:1-14(2023-07-21). https://kns.cnki.net/kcms/detail/46.1068.S.20230721.1453.004.html.

[31] 蘇敬,乜蘭春,齊迎斌,王苗苗. 番茄葉面噴施硅和鈣對果實硬度及相關生理代謝的影響[J]. 園藝學報,2016,43(4):789-795.

SU Jing,NIE Lanchun,QI Yingbin,WANG Miaomiao. Effect of foliar application of silicon and calcium on the firmness and related physiological metabolism of tomato fruits[J]. Acta Horticulturae Sinica,2016,43(4):789-795.

[32] 周鶴瑩,張瑋,張卿,沈元月,秦嶺,邢宇. 森林草莓‘Ruegen’果膠裂解酶基因的克隆及熒光定量表達分析[J]. 園藝學報,2015,42(3):455-461.

ZHOU Heying,ZHANG Wei,ZHANG Qing,SHEN Yuanyue,QIN Ling,XING Yu. The cloning and quantitative expression analysis of pectate lyase gene in Fragaria vesca[J]. Acta Horticulturae Sinica,2015,42(3):455-461.

[33] MARTINS V,GARCIA A,ALHINHO A T,COSTA P,LANCEROS-MéNDEZ S,COSTA M M R,GERóS H. Vineyard calcium sprays induce changes in grape berry skin,firmness,cell wall composition and expression of cell wall-related genes[J]. Plant Physiology and Biochemistry,2020,150:49-55.

[34] 仲釗江,吳震,周蓉,朱為民,楊學東,于筱薇,徐艷,高揚楊,蔣芳玲. 番茄果膠裂解酶基因SlPL參與調控裂果機制研究[J]. 園藝學報,2024,51(2):295-308.

ZHONG Zhaojiang,WU Zhen,ZHOU Rong,ZHU Weimin,YANG Xuedong,YU Xiaowei,XU Yan,GAO Yangyang,JIANG Fangling. Study on the regulatory mechanism of SlPL gene affecting tomato fruit cracking[J]. Acta Horticulturae Sinica,2024,51(2):295-308.

[35] 懷斌. 鈣影響‘紅江橙’果皮陷痕發生及機理的研究[D]. 廣州:華南農業大學,2016.

HUAI Bin. The effect of calcium on fruit creasing of ‘Hongjiang’ orange[D]. Guangzhou:South China Agricultural University,2016.

[36] LIU Y L,CHEN S Y,LIU G T,JIA X Y,HAQ S U,DENG Z J,LUO D X,LI R,GONG Z H. Morphological,physiochemical,and transcriptome analysis and CaEXP4 identification during pepper (Capsicum annuum L.) fruit cracking[J]. Scientia Horticulturae,2022,297:110982.

[37] WANG Y S,TIAN S P,XU Y,QIN G Z,YAO H J. Changes in the activities of pro- and anti-oxidant enzymes in peach fruit inoculated with Cryptococcus laurentii or Penicillium expansum at 0 or 20 ℃[J]. Postharvest Biology and Technology,2004,34(1):21-28.

[38] JIANG A L,TIAN S P,XU Y. Effects of controlled atmospheres with high-O2 or high-CO2 concentrations on postharvest physiology and storability of ‘Napoleon’ sweet cherry[J]. Journal of Integrative Plant Biology,2002,44(8):925-930.

[39] 曹建康,姜微波,趙玉梅. 果蔬采后生理生化實驗指導[M]. 北京:中國輕工業出版社,2007.

CAO Jiankang,JIANG Weibo,ZHAO Yumei. Experiment guidance of fostharvest physiology and biochemistry of fruits and vegetables[M]. Beijing:China Light Industry Press,2007.

[40] FUKUSHIMA R S,KERLEY M S. Use of lignin extracted from different plant sources as standards in the spectrophotometric acetyl bromide lignin method[J]. Journal of Agricultural and Food Chemistry,2011,59(8):3505-3509.

[41] RICHARDSON A C,MARSH K B,MACRAE E A. Temperature effects on satsuma mandarin fruit development[J]. Journal of Horticultural Science,1997,72(6):919-929.

[42] 高飛飛,黃輝白,許建楷. 紅江橙裂果原因的探討[J]. 華南農業大學學報,1994,15(1):34-39.

GAO Feifei,HUANG Huibai,XU Jiankai. Exploration of the causes of fruit cracking in ‘Hongjiang’ orange[J]. Journal of South China Agricultural University,1994,15(1):34-39.

[43] KAUR R,KAUR N,SINGH H. Pericarp and pedicel anatomy in relation to fruit cracking in lemon (Citrus limon L. Burm.)[J]. Scientia Horticulturae,2019,246:462-468.

[44] 郭紅彥,白晉華,段風琴,郗鑫,李濤,郭晉平. 鈣處理對‘壺瓶棗’裂果細胞壁降解酶活性及組織結構的影響[J]. 園藝學報,2019,46(8):1486-1494.

GUO Hongyan,BAI Jinhua,DUAN Fengqin,XI Xin,LI Tao,GUO Jinping. Effect of CaCl2 treatment on cell wall degrading enzymes activities and microstructure of fruit cracking of Ziziphus jujuba ‘Huping Zao’[J]. Acta Horticulturae Sinica,2019,46(8):1486-1494.

[45] 姚棋,韓天云,梁祎,石玉,侯雷平,張毅. 外源鈣和EBR處理對番茄果實品質特性的影響[J]. 中國瓜菜,2021,34(10):74-79.

YAO Qi,HAN Tianyun,LIANG Yi,SHI Yu,HOU Leiping,ZHANG Yi. Effects of exogenous calcium and EBR on fruit quality characteristics of tomato[J]. China Cucurbits and Vegetables,2021,34(10):74-79.

[46] OZTURK B,BEKTAS E,AGLAR E,KARAKAYA O,GUN S F. Cracking and quality attributes of jujube fruits as affected by covering and pre-harvest Parka and GA3 treatments[J]. Scientia Horticulturae,2018,240:65-71.

[47] 張川,王亞晨,崔守堯,楊澤恩,吳震,蔣芳玲. 耐裂果與易裂果番茄果實發育過程中果實組織衰老與裂果的關系[J]. 南京農業大學學報,2016,39(4):534-542.

ZHANG Chuan,WANG Yachen,CUI Shouyao,YANG Zeen,WU Zhen,JIANG Fangling. The relationship between fruit tissue senescence and fruit cracking in cracking-resistant and susceptible tomato during fruit ripening[J]. Journal of Nanjing Agricultural University,2016,39(4):534-542.

[48] 曹一博,李長江,孫帆,張凌云. 抗裂與易裂棗內源激素含量和細胞壁代謝相關酶活性比較[J]. 園藝學報,2014,41(1):139-148.

CAO Yibo,LI Changjiang,SUN Fan,ZHANG Lingyun. Comparison of the endogenous hormones content and the activities of enzymes related to cell-wall metabolism between jujube cultivars susceptible and resistant to fruit cracking[J]. Acta Horticulturae Sinica,2014,41(1):139-148.

[49] 崔守堯,吳震,呂海萌,薛靈姿,蔣芳玲. 外源CaCl2緩解番茄裂果的生理機制[J]. 南京農業大學學報,2019,42(1):59-65.

CUI Shouyao,WU Zhen,Lü Haimeng,XUE Lingzi,JIANG Fangling. The physiological mechanism of exogenous CaCl2 relieving tomato fruit cracking[J]. Journal of Nanjing Agricultural University,2019,42(1):59-65.

[50] 李紅衛,韓濤,李麗萍,馮雙慶,趙玉梅. ABA、GA3處理對冬棗采后果肉活性氧代謝的影響[J]. 園藝學報,2005,32(5):793-797.

LI Hongwei,HAN Tao,LI Liping,FENG Shuangqing,ZHAO Yumei. Effect of ABA and GA3 treatments on the metabolism of active oxygen species in cold stored ‘Brumal jujube’ flesh[J]. Acta Horticulturae Sinica,2005,32(5):793-797.

[51] FRY S C. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals[J]. The Biochemical Journal,1998,332(Pt 2):507-515.

[52] CHEN S X,SCHOPFER P. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase[J]. European Journal of Biochemistry,1999,260(3):726-735.

[53] LISZKAY A,KENK B,SCHOPFER P. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth[J]. Planta,2003,217(4):658-667.

[54] VANHOLME R,DEMEDTS B,MORREEL K,RALPH J,BOERJAN W. Lignin biosynthesis and structure[J]. Plant Physiology,2010,153(3):895-905.

[55] CAMPA A. Biological roles of plant peroxidases:Known and potential function[M]//EVERSE J,GRISHAM M B. Peroxidases in Chemistry and Biology. New York:CRC Press,1991:25-50.

[56] JIANG F L,LOPEZ A,JEON S,DE FREITAS S T,YU Q H,WU Z,LABAVITCH J M,TIAN S K,POWELL A L T,MITCHAM E. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking[J]. Horticulture Research,2019,6:17.

[57] BOONSIRI K,KETSA S,VAN DOORN W G. Seed browning of hot peppers during low temperature storage[J]. Postharvest Biology and Technology,2007,45(3):358-365.

[58] 薛夢林,張平,張繼澍,王莉. ‘脆棗’采后赤霉素處理對其生理生化的影響[J]. 園藝學報,2003,30(2):147-151.

XUE Menglin,ZHANG Ping,ZHANG Jishu,WANG Li. Effect of postharvest treatment with GA3 on physiological and biochemical changes of ‘Cui jujube’ fruit during cold storage[J]. Acta Horticulturae Sinica,2003,30(2):147-151.

[59] ABELES F B,TAKEDA F. Cellulase activity and ethylene in ripening strawberry and apple fruits[J]. Scientia Horticulturae,1990,42(4):269-275.

[60] SILVEIRA A C,AGUAYO E,CHISARI M,ARTéS F. Calcium salts and heat treatment for quality retention of fresh-cut ‘Galia’ melon[J]. Postharvest Biology and Technology,2011,62(1):77-84.

[61] WHITE P J,BROADLEY M R. Calcium in plants[J]. Annals of Botany,2003,92(4):487-511.

[62] BLANCO A,FERNáNDEZ V,VAL J. Improving the performance of calcium-containing spray formulations to limit the incidence of bitter pit in apple (Malus × domestica Borkh.)[J]. Scientia Horticulturae,2010,127(1):23-28.

[63] 陳光輝,高艷,陳秀娟,謝麗瓊. 植物激素在植物細胞壁擴展中的作用[J]. 生命的化學,2012,32(5):464-470.

CHEN Guanghui,GAO Yan,CHEN Xiujuan,XIE Liqiong. The role of phytohormones in plant cell wall expansion[J]. Chemistry of Life,2012,32(5):464-470.

[64] EL-HAMMADY A,ABDEL-HAMID N,SALEH M,SALAH A. Effect of gibberellic acid and calcium chloride treatments on delaying maturity,quality and storability of ‘Balady’ mandarin fruits[J]. Arab Universities Journal of Agricultural Sciences,2000,8:755-766.

[65] 余俊. 葡萄裂果及其外源鈣調控機理研究[D]. 長沙:湖南農業大學,2020.

YU Jun. Research on the mechanism of fruit cracking and its regulation by exogenous calcium in Vitis vinifera[D]. Changsha:Hunan Agricultural University,2020.

[66] 施澤彬. 砂梨果皮性狀形成機制研究[D]. 南京:南京農業大學,2011.

SHI Zebin. The mechanisms of fruit appearance characters formation in sand pear (Pyrus pyrifolia Nakai.)[D]. Nanjing:Nanjing Agricultural University,2011.

收稿日期:2024-04-07 接受日期:2024-05-21

基金項目:國家現代農業(柑橘)產業技術體系專項(CARS-26)

作者簡介:吳維林,女,在讀碩士研究生,研究方向為果樹遺傳育種。E-mail:811254880@qq.com。#為共同第一作者。周秋蓉,女,碩士,研究方向為果樹遺傳育種。E-mail:1815569838@qq.com

*通信作者 Author for correspondence. E-mail:745433249@qq.com

主站蜘蛛池模板: 天堂岛国av无码免费无禁网站| 久久semm亚洲国产| 最新加勒比隔壁人妻| 99久久精品视香蕉蕉| 国产免费福利网站| 日韩av在线直播| 国产午夜精品鲁丝片| 成人福利一区二区视频在线| AV不卡国产在线观看| 伊人久久婷婷| 国产日韩欧美在线播放| 中文字幕丝袜一区二区| 最新日韩AV网址在线观看| 亚洲三级影院| 99这里只有精品在线| 久久国产热| 亚洲中文在线视频| 欧美性精品| 国产激情第一页| 区国产精品搜索视频| av免费在线观看美女叉开腿| 尤物在线观看乱码| jizz国产视频| 国产视频一二三区| 99久久精品免费看国产免费软件| 老汉色老汉首页a亚洲| 亚洲人成亚洲精品| 亚洲日韩Av中文字幕无码| 久久久噜噜噜| 毛片在线看网站| av在线手机播放| 五月激情婷婷综合| 亚洲国产AV无码综合原创| 国产成人精品男人的天堂下载 | 四虎免费视频网站| 成人午夜视频在线| 高清色本在线www| 老熟妇喷水一区二区三区| 日本午夜在线视频| 青青青国产视频| 农村乱人伦一区二区| 人妻丰满熟妇αv无码| 国产jizzjizz视频| 在线看片免费人成视久网下载| 久久精品亚洲热综合一区二区| 欧美区一区| 国产在线观看精品| 国产主播在线一区| 国产高清在线精品一区二区三区| 亚洲免费黄色网| 99久久国产自偷自偷免费一区| 看国产一级毛片| 久996视频精品免费观看| 中文毛片无遮挡播放免费| 亚洲国产日韩一区| 免费A级毛片无码免费视频| 日韩精品无码免费一区二区三区| 伊人久热这里只有精品视频99| 色欲色欲久久综合网| A级全黄试看30分钟小视频| 综合五月天网| 国产美女91视频| 国产视频 第一页| 国产又爽又黄无遮挡免费观看| 无码丝袜人妻| 日韩AV手机在线观看蜜芽| 国产人妖视频一区在线观看| 99视频全部免费| 亚洲最大福利视频网| 在线观看亚洲天堂| 久久久波多野结衣av一区二区| 国产精品自在拍首页视频8| 欧美成一级| 国产91丝袜在线播放动漫 | 亚洲欧美在线精品一区二区| 国产麻豆aⅴ精品无码| 国产精品不卡永久免费| 久久免费看片| 第一区免费在线观看| 国产极品粉嫩小泬免费看| 成人福利在线视频免费观看| 玩两个丰满老熟女久久网|