









摘" " 要:【目的】探究湖北省溫州蜜柑果實的化渣性差異及其主要影響因素,為溫州蜜柑高品質栽培提供理論基礎。【方法】通過感官評價、質構儀檢測對溫州蜜柑化渣性進行綜合評價,并通過相關性分析及多元線性回歸分析初步解析溫州蜜柑果實化渣性的主要影響因素。【結果】果實橫徑、縱徑、單果質量與剪切力、木質素含量呈顯著正相關;化渣度得分與可滴定酸(TA)含量、剪切力、穿刺力呈顯著負相關,而剪切力與穿刺力呈顯著正相關;木質素含量與果皮厚度和剪切力呈顯著正相關,與固酸比(SAR)呈顯著負相關;果膠含量與橫徑、TA、纖維素含量呈顯著正相關。利用多元線性回歸分析構建了包括可溶性固形物(TSS)含量、穿刺力、木質素含量和果膠含量4個指標且具有統計學意義的感官綜合評價的預測模型:Y(化渣度得分)=5.875+0.108×X(TSS)-0.007×X(穿刺力)-0.007×X(木質素含量)+0.044×X(果膠含量)。模型綜合口感預測得分與綜合口感實際得分基本一致。【結論】基于回歸分析建立的綜合得分預測模型可實現溫州蜜柑果實感官品質的綜合評價,質構特征指標和理化成分指標作為客觀方法可以較好地彌補感官分析的主觀性缺陷,可應用于湖北省溫州蜜柑的化渣性評價。
關鍵詞:溫州蜜柑;品質分析;化渣性;相關性分析;多元線性回歸
中圖分類號:S666.1 文獻標志碼:A 文章編號:1009-9980(2024)08-1577-15
Analysis and evaluation of fruit mastication of mandarins in Hubei Province
WANG Ce1, HUANG Rui2, SHI Zhipeng2, JIANG Yingchun1, HE Ligang1, WANG Zhijing1, ZHANG Yu1, SONG Xin1, WU Liming1*, SONG Fang1*
(1Institute of Fruit and Tea, Hubei Academy of Agricultural Science/Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Wuhan 430064, Hubei, China; 2Zhijiang Agricultural Technology Extension Center, Zhijiang 443200, Hubei, China)
Abstract: 【Objective】 Mastication quality is one of the important qualities of citrus fruits, which significantly affects the consumer’s taste experience. However, previous researches of citrus fruit qualities mainly focus on the sugar and acid. The researches of citrus fruit mastication are still very limited. Thus, the objective of this study is to explore the differences in mastication quality among mandarins in Hubei Province and its main influencing factors. 【Methods】 Samples of early-maturing and mid-early maturing mandarins were selected from different orchards in Hubei Province. Fully ripe fruits were collected at the appropriate harvest time, and 45 healthy fruit of medium size from different parts of the tree were selected for the experiment. The fruit samples were transported to the laboratory on the day of harvest for the determination of physiological and biochemical indicators. The samples were separated into peel and pulp, with a portion of the pulp frozen in liquid nitrogen and stored at -80 ℃ for the determination of cellulose and pectin. The remaining pulp samples were dried in an oven at 120 ℃ to a constant weight, ground, and then sieved through a 60-mesh screen. The sieved samples were placed in sealed bags and stored at room temperature in a desiccator for later determination of lignin content. A comprehensive evaluation of the mastication quality of mandarins was conducted through sensory assessment and texture analysis instruments. Furthermore, the main factors influencing the mastication quality of mandarin fruits were preliminarily analyzed through correlation analysis, multiple linear regression analysis, and principal component analysis. 【Results】 The individual fruit weight of early-maturing mandarins from different production areas varied significantly, ranging from 54.00 to 129.33 g, with peel thickness ranging from 2.15 to 4.32 mm. The transverse diameter ranged from 5.03 to 7.03 cm, and the longitudinal diameter from 3.73 to 5.82 cm. The internal quality differences were pronounced, with soluble solids content ranging between 8.63% and 13.7%, averaging 10.56%; titratable acidity between 0.33% and 0.84%; vitamin C content between 15.92% and 39.81 mg·100 g-1, and the sugar to acid ratio between 10.33 and 31.31, with an average value of 16.40. The individual fruit mass of mid-early maturing mandarins from different production areas ranged from 68.17 to 169.67 g, with peel thickness ranging from 0.83 to 4.14 mm. The transverse diameter ranged from 5.56 to 8.1 cm, and the longitudinal diameter from 4.18 to 6.64 cm. The content of soluble solids in the fruits of mid-early maturing mandarins ranged from 8.47% to 14.3%, with an average of 11.53%; titratable acidity ranged from 0.3% to 1.09%, vitamin C content from 17.5 to 46.23 mg·100 g-1, and the sugar to acid ratio from 10.33 to 31.31, with an average value of 18.30. There were significant differences in the quality of mandarins from different production areas in Hubei, with the mid-early maturing mandarins generally exhibiting better quality than the early-maturing mandarins. The mid-early maturing varieties in 2022 exhibited characteristics of high sugar and high acidity. The mastication score of early-maturing mandarins ranged from 4.6 to 8.55, with an average score of 6.38. Puncture force ranged from 97.09 to 302.5 g; shear force from 896.43 to 2 683.33 g; lignin content from 37.05 to 209.18 mg·g-1; cellulose content from 10.1 to 20.15 mg·g-1; and pectin content from 7.54 to 24.79 mg·g-1. Specifically, sample No. 9 had the lowest mastication score at 4.6 but the highest puncture and shear forces, as well as the highest lignin content. The mastication score of mid-early maturing mandarins ranged from 3.38 to 8.24, with an average of 6.01. Puncture force ranged between 78.45 and 239.38 g; shear force between 848.58 and 3 926.24 g; lignin content from 66.48 to 208.9 mg·g-1; cellulose content from 10.1 to 20.15 mg·g-1; and pectin content from 7.54 to 24.79 mg·g-1. Specifically, sample No. 55 had the highest in mastication score at 8.24; sample No. 29 had the lowest score at 3.38, but the highest puncture and shear forces. Correlation analysis indicated that the transverse diameter, longitudinal diameter, and individual fruit weight were significantly positively correlated with each other and negatively correlated with total soluble solids and vitamin C content, but positively correlated with shear force and lignin content. The mastication score was significantly negatively correlated with titratable acidity, shear force, and puncture force, while shear force was significantly positively correlated with puncture force. Lignin content was significantly positively correlated with peel thickness and shear force, and negatively correlated with sugar to acid ratio. Pectin content showed a significant positive correlation with transverse diameter, titratable acidity, and cellulose content. A predictive model for the sensory comprehensive evaluation was constructed using multiple linear regression analysis with variables including total soluble solids, puncture force, lignin content, and pectin content. The regressed function was Y (mastication score) = 5.875+0.108X (TSS content)-0.007X (puncture force) -0.007X (lignin content) + 0.044X (pectin content). The comprehensive taste prediction score based on this model was essentially consistent with the actual comprehensive taste score. 【Conclusion】 The comprehensive score prediction model established based on regression analysis facilitates the comprehensive evaluation of the sensory quality of mandarin fruits. The indices of texture characteristics and physicochemical components, serving as objective methods, can effectively compensate for the subjective shortcomings in sensory analysis and can be applied to the quality evaluation of mandarins in Hubei Province.
Key words: Mandarin; Quality analysis; Mastication; Correlation analysis; Multiple linear regression analysis
柑橘是全球種植面積及總產量居第一位的果樹作物,而中國是世界第一大柑橘種植國,全球140多個國家與地區均有栽培[1]。中國作為柑橘的重要原產地之一,具有4000多年的栽培歷史。中國的柑橘產量和消費量均居世界第一。目前,柑橘產業覆蓋中國19個省(自治區、直轄市),在鄉村振興中發揮著重要作用。湖北省是柑橘生產大省,種植歷史可以追溯到2000多年前,柑橘產業是湖北省農業支柱產業之一[2]。2023柑橘種植面積達24.31萬hm2,產量達570.9萬t,位居中國第三,柑橘產量占湖北水果總產量的70%[3]。種植品種以溫州蜜柑、臍橙為主,并適度發展了椪柑、雜柑、柚等品系,基本實現一年四季均有鮮果供應[4]。
中國柑橘以鮮食為主,化渣性是影響柑橘果實品質的重要因子[5]。溫州蜜柑是中國主栽的寬皮橘類之一,種植面積廣,在湖北省已經形成了相當規模的長江沿線優質寬皮柑橘產業區[4]。近年來,隨著溫州蜜柑栽種年限的增加,以及栽培上使用化肥不當,保花保果處理不當,病蟲害防治不及時,管理不完善等一系列原因,在長期的生產栽種過程中,逐漸表現出產量下降和品質變劣,產生了諸如不化渣或者化渣性差、果實變酸、甜度下降、籽粒增多等一些不利于商品流通的性狀變化,失去了該品種原有的優良特性,降低了其經濟價值[6-8]。因此,對溫州蜜柑的果實化渣性進行研究已經是湖北省柑橘產業發展必須要解決的問題。
柑橘果實主要食用囊瓣,囊瓣包含汁胞和囊衣,果實的化渣性好壞主要與囊衣質地有關[9-10]。質構儀可對樣品的物性概念做出數據化的表達,越來越頻繁地應用到食品的物性研究及檢測當中,豐富了食品質地品質評價的內容[11-12]。通過質構儀測定的囊瓣剪切力和囊衣厚度能夠客觀反映果實的化渣程度,利用這兩個指標可對果實化渣性進行量化[13-14],從而減少人為的主觀性判斷誤差。已有研究表明柑橘果實的化渣性與果實囊衣的纖維素、果膠和木質素含量有著非常密切的關系。化渣性好的果實入口即化,化渣性差的果實入口粗糙,嚼不爛[15-16]。Dong等[17]的研究表明,柑橘果實食用時粗硬多渣可能是柑橘果肉中原果膠及纖維素含量較高引起的。曾秀麗等[18]對臍橙膳食纖維含量變化的研究表明,纖維素和木質素含量低可使臍橙果實的脆性增加和化渣性變好。雷瑩[19]的研究結果表明,化渣性較好的奉節72-1臍橙果實中原果膠、纖維素和半纖維素含量在成熟期均低于奉節晚橙,水溶性果膠含量則相反。Lei等[20-21]認為南豐蜜橘的化渣性與木質素含量有關,木質素含量越高,果實化渣性越差。紅肉臍橙的化渣性與果實膳纖維含量密切相關,提高水溶性膳食纖維含量,果實化渣性變好,在留樹貯藏期間,纖維素酶活性與纖維素、木質素的含量呈顯著負相關[22]。魏張奎[23]研究發現夏橙的果實化渣性與纖維素、半纖維素、木質素的含量有關,這些物質含量高,導致果實化渣性變差。唐紅英[15]和辜青青等[24]對南豐蜜橘囊衣細胞壁成分以及相關酶活性進行了測定,認為南豐蜜橘果實化渣性與囊衣纖維素、木質素的含量密切相關。
筆者在本研究中以56份溫州蜜柑材料為研究對象,通過品質分析、感官分析、質構特征和理化成分分析等方法綜合評價果實品質,并對各項指標進行相關性分析,篩選出與化渣性相關的指標,建立基于理化成分和質構特征的感官綜合評價預測模型,以期通過數據檢測對溫州蜜柑果肉的化渣性狀進行準確評價和判定,量化感官品質指標,并尋找能夠直接評價溫州蜜柑化渣性的數據化指標,為完善溫州蜜柑化渣性鑒定評價方法和后續優質溫州蜜柑新品種的選育提供科學依據。
1 材料和方法
1.1 試驗材料
選取湖北省內不同果園的特早熟溫州蜜柑和早中熟溫州蜜柑進行采樣,樣品共56份,對應編號見表1。在適合的采收期采集完熟的果實,選擇樹體不同部位大小適中、無明顯損傷的果實各45個,采收當天運至實驗室,用于生理生化指標的測定。
特早熟溫州蜜柑品種:日南1號(Citrus unshiu Marc. ‘Rinan No. 1’)、大分4號(C. unshiu Marc. ‘Dafen No. 4’)、由良(C. unshiu Marc. ‘Yura’)、肥之署(C. unshiu Marc. ‘Hinoakibono’)。
早中熟溫州蜜柑品種:興津(C. unshiu Marc. ‘Okitus wase’)、尾張(C. unshiu Marc. ‘Owari’)、龜井(C. unshiu Marc. ‘Kamei’)、龜井2501(C. unshiu Marc. ‘Kamei 2501’)、鄂柑2號(C. unshiu Marc. ‘Egan No. 2’)、國慶1號(C. unshiu Marc. ‘Guoqing No. 1’)、宮川(C. unshiu Marc. ‘Miyagawa Wase’)。
1.2 試驗方法
樣品制備:將樣品果皮果肉分離,部分果肉用液氮冷凍后貯于-80 ℃用于纖維素含量和果膠含量的測定;剩余的果肉樣品在120 ℃烘箱內干燥至恒重,磨碎后過60目(0.25 mm)篩,將過篩后的樣品置于自封袋內,放入干燥器中常溫保存,留作木質素含量的測定。
1.2.1 測定指標 外在品質指標:橫徑、縱徑、單果質量和果皮厚度。
內在品質指標:可溶性固形物(TSS)、可滴定酸(TA)和維生素C含量。
化渣性相關指標:化渣度得分、剪切力和穿刺力。
細胞壁代謝相關指標:木質素、纖維素和果膠含量。
1.2.2 指標測定方法 (1)橫徑、縱徑、單果質量、果皮厚度測定:果皮厚度、橫徑和縱徑用游標卡尺測量,平行測定3次,求平均值,以減小誤差;單果質量用千分之一天平稱質量,平行試驗3次,求平均值,以減小誤差。
(2)可溶性固形物含量:用手持糖酸儀測定。在果實的不同方位取3~5瓣,剝去果皮,將果肉研磨成果汁,用手持糖酸儀測定,每次測定前需調零,測定前潤洗3次,測3次數值,求取平均值,以減小誤差。
可滴定酸含量:用酸堿中和滴定法測定[25]。平行測定3次,求平均值,以減小誤差。
維生素C含量:用2,6-二氯靛酚滴定法測定[26],平行測定3次,求平均值,以減小誤差。
(3)化渣度得分:利用賦值法和專家打分法[27]根據果肉的口感質地,將化渣程度量化為4個級別。化渣程度量化為極化渣(>8~10分)、化渣(>6~8分)、較化渣(>4~6分)、不化渣(0~4分)。
剪切力:使用單柱質構分析儀(TA.XT.plusC,Stable Micro Systems)測定[1],探頭選擇為HDP/BS,測前速度與測中速度為2 mm·s-1,測后速度為12 mm·s-1。目標模式為位移,位移即剪切深度為30 mm,出發模式為自動力,觸發力為5.0 g。
穿刺力:使用單柱質構分析儀(TA.XT.plusC,Stable Micro Systems)測定,探頭選擇為P/2的2 mm DIA CYLINDER STAINLESS,接觸面積為3.14 mm2,測前速度與測中速度為2.00 mm·s-1,測后速度為12.00 mm·s-1。目標模式為位移,位移即穿刺深度為10 mm,觸發模式為自動力,觸發力為5.0 g。
(4)木質素含量測定:參照對應檢測試劑盒說明書(索萊寶Solarbio生物科技有限公司)進行試驗,使用全波長酶標儀(K6600,北京奧凱)在280 nm波長處檢測吸光度值,通過標準曲線計算最終濃度。
纖維素含量和果膠含量的測定:參照對應檢測試劑盒說明書(江蘇酶標生物科技有限公司)進行試驗,使用全波長酶標儀(K6600,北京奧凱)在450 nm波長處檢測吸光度值,通過標準曲線計算最終濃度。
1.3 統計分析
顯著性分析、相關性分析、多元線性回歸分析利用SPSS 17.0軟件進行,相關性分析默認使用Pearson相關系數。
2 結果與分析
2.1 不同產區溫州蜜柑果實品質分析
對特早熟溫州蜜柑果實主要品質指標進行測定,由表2可知,不同產區特早熟溫州蜜柑的單果質量相差較大,為54.00~129.33 g,3號樣品的單果質量最小。果皮厚度的范圍為2.15~4.32 mm,23號樣品的果皮最厚,3號樣品果皮最薄。橫徑范圍為5.03~7.03 cm,縱徑范圍為3.73~5.82 cm,其中,14號樣品橫徑最大,17號樣品縱徑為最大,3號樣品橫徑和縱徑均為最小。
內在品質差異明顯,果實TSS含量在8.63%~13.70%之間,平均值10.56%;果實TA含量在0.33%~0.84%之間,維生素C含量在15.92~39.81 mg·100 g-1之間,固酸比(SAR)在10.33~31.31之間,平均值16.40。2022年的TSS含量和TA含量整體高于2021年。其中13、15和20號樣品表現出高糖高酸的特性。
對早中熟溫州蜜柑果實的主要品質指標進行測定,由表3可知,不同產區早中溫州蜜柑的單果質量相差較大,為68.17~169.67 g,38號樣品的單果質量最小,43號樣品的單果質量最大。果皮厚度的范圍為0.83~4.14 mm,48號樣品的果皮最厚,33號樣品果皮最薄。橫徑范圍為5.56~8.10 cm,縱徑范圍為4.18~6.64 cm,其中,38號樣品橫徑和縱徑均最小,42號樣品橫徑和縱徑均為最大。
內在品質差異明顯,果實TSS含量在8.47%~14.30%之間,平均值為11.53;果實TA含量在0.30%~1.09%之間,維生素C含量在17.5~46.23 mg·100 g-1,SAR在10.33~31.31之間,平均值18.30。對于早中熟柑橘品種來說,平均TSS含量超過11.00%,SAR超過12,果實品質整體表現較優,風味酸甜,對于特早熟柑橘品種來說亦是如此。其中,2022年的早中熟品種大部分表現出高糖高酸的特性,比如46號、47號、48號、49號、50號、51號、52號、53號、55號和56號樣品。
2.2 化渣性評價及相關生理指標檢測
對特早熟溫州蜜柑果實化渣性評價及相關指標進行測定,由表4可知,特早熟溫州蜜柑的化渣度得分為4.60~8.55,平均得分為6.38;穿刺力在97.09~302.50 g之間,剪切力在896.43~2 683.33 g之間,木質素含量在37.05~209.18 mg·g-1之間,纖維素含量在10.10~20.15 mg·g-1之間,果膠含量在7.54~24.79 mg·g-1之間,不同地區栽培化渣性差異較大。其中,13號樣品的化渣度得分最高(8.55),同時剪切力最小;9號樣品的化渣度得分最低(4.6),穿刺力和剪切力均為最大,木質素含量也最高。
由表5可知,早中熟溫州蜜柑的化渣度得分為3.38~8.24,平均值為6.01,穿刺力在78.45~239.38 g之間,剪切力在848.58~3 926.24 g之間,木質素含量為66.48~208.9 mg·g-1,纖維素含量在10.10~20.15 mg·g-1之間,果膠含量在7.54~24.79 mg·g-1之間,不同地區栽培化渣性差異較大。其中,55號樣品的化渣度得分最高(8.24);29號的化渣度得分最低(3.38),穿刺力和剪切力均為最大。
2.3 相關生理指標相關性分析
對特早熟溫州蜜柑的所有指標進行相關性分析(表6)可知:橫徑、縱徑、單果質量、果皮厚度之間均呈顯著正相關,橫徑與單果質量相關性高達0.945,縱徑與單果質量相關系數高達0.809,達到極顯著水平,且與木質素含量呈顯著正相關,同時橫徑、縱徑、單果質量均與TSS含量、維生素C含量、SAR呈顯著負相關,說明對特早熟溫州蜜柑來說,在一定范圍內果實越大果皮越厚,其TSS、維生素C含量和SAR越低,同時木質素含量變高;化渣度得分與TA、TSS和果膠含量呈顯著正相關,但與剪切力、穿刺力、木質素含量均呈顯著負相關,其中穿刺力與化渣度得分的相關系數為-0.529,而剪切力與穿刺力呈顯著正相關,其相關系數為0.583,達到極顯著水平,說明果實的TSS、TA和果膠含量越高,化渣度得分越高,化渣性就越好,而剪切力和穿刺力越大,即剪切和穿刺果肉囊衣所需要的力越大,木質素含量越高,化渣度得分越低,化渣性就越差;木質素含量與剪切力呈顯著正相關,相關系數為0.484,達到極顯著水平,在某種程度上可以說明木質素含量越高,則剪切果肉所用的力越大,導致果肉化渣度得分越低,即化渣度越差。
對早中熟溫州蜜柑的所有指標進行相關性分析(表7)發現:橫徑、縱徑、單果質量之間均呈顯著正相關,橫徑與縱徑相關系數高達0.835,橫徑、縱徑與單果質量相關系數分別為0.648、0.634,達到極顯著水平,均與TSS含量呈顯著負相關,說明對早中熟溫州蜜柑來說,在一定范圍內果實越大果皮越厚,其TSS含量越低;化渣度得分與TA、TSS含量呈顯著正相關,但與剪切力、穿刺力和纖維素含量均呈顯著負相關,其中穿刺力、剪切力與化渣度得分的相關系數分別為-0.480、-0.504,而剪切力與穿刺力呈顯著正相關,相關系數為0.446,達到極顯著水平,說明果實的TSS、TA含量越高,化渣度得分越高,化渣性就越好,而剪切力和穿刺力越大,纖維素含量越高,化渣度得分越低,化渣性就越差;木質素含量與剪切力呈顯著正相關,相關系數為0.409,達到極顯著水平,與特早熟溫州蜜柑的結果基本一致;纖維素含量與穿刺力、剪切力呈顯著正相關,與穿刺力的相關系數為0.419,達到極顯著水平,與剪切力的相關系數為0.232,在0.05水平上相關性顯著,且與TSS、TA含量和化渣度得分呈顯著負相關,說明早中熟溫州蜜柑的TSS和TA含量越高,化渣度得分就會越高,即化渣性越好,纖維素含量越高,剪切和穿刺果肉所用的力就越大,化渣度得分就會越低,即化渣性越差。
2.4 多元線性回歸分析
對56個樣品的13個指標進行相關性分析,發現與化渣性得分有顯著相關性的品質指標有:TSS、TA含量,同時選取化渣性相關指標(穿刺力、剪切力)以及細胞壁代謝的指標(纖維素含量、木質素含量和果膠含量),將這些指標進行多元線性回歸分析。
調整后R2=0.408,表明所有自變量解釋化渣度得分的40.8%變異。F=8.277,p=0.000<0.001,說明至少有一個自變量可以解釋因變量的變異,R2=56.708/105.749=0.464,與R2結果同出一源,說明回歸模型有統計學意義。方差膨脹因子VIF<10,容差均在0.1~1.0之間,說明自變量多重共線性不嚴重,適合作多元線性回歸分析(表8)。
由多元線性回歸系數表(表8)中看出:剪切力(B=0.00,Beta=-0.142,P=0.276)、TA(B=1.724,Beta=0.218,P=0.099)、纖維素含量(B=0.023,Beta=0.051,P=0.631)不會對化渣度得分產生影響;穿刺力(B=-0.007,Beta=-0.324,P=0.004)、木質素含量(B=-0.007,Beta=-0.275,P=0.031)對化渣度得分有負向影響,TSS含量(B=0.108,Beta=0.128,P=0.026)、果膠含量(B=0.044,Beta=0.157,P=0.046)對化渣度得分有正向影響。
殘差直方圖滿足正態分布,且均數為2.68×10-15,接近于0,標準偏差為0.979接近于1,說明達到線性回歸的正態性條件,回歸標準殘差P_P圖(圖1)也說明滿足正態性條件。將7個品質及質構特征指標作為自變量進行回歸分析,構建了包括TSS含量、穿刺力、木質素含量和果膠含量4個指標且具有統計學意義的感官綜合評價的預測模型:Y(化渣度得分)=5.875+0.108×X(TSS含量)-0.007×X(穿刺力)-0.007×X(木質素含量)+0.044×X(果膠含量)。模型綜合口感預測得分與綜合口感實際得分基本一致。因此,基于回歸分析建立的綜合得分預測模型可實現溫州蜜柑果實感官品質的綜合評價,質構特征指標和理化成分指標作為客觀方法可以較好地彌補感官分析的主觀性缺陷,可應用于湖北省溫州蜜柑的品質評價。
3 討 論
柑橘化渣性差表現為果肉入口咀嚼時感覺粗糙,甚至有時嚼不爛無法吞咽。而這一性狀作為衡量果實感官品質的一個重要因素影響消費者的口感,對消費者繼續購買行為的發生具有重要影響。研究發現,TSS含量的增加有利于提高溫州蜜柑果實的化渣性。這一結論與王鯤嬌等[28]報道的推薦施肥后溫州蜜柑和南豐蜜橘果實中TSS含量顯著增加、有效提升了果實的化渣性的結果相符合。吳迪等[29]對南豐蜜橘進行轉錄組分析,也發現在化渣性比較好的南豐蜜廣中糖和酸代謝相關基因的相對表達量顯著增高,有機酸的積累較多。魏清江等[13]對不同結果習性南豐蜜橘果實的品質進行比較,發現不同結果習性的果實品質有差異,化渣性品質好的果實,其常規品質往往也較好。
溫州蜜柑的化渣度得分與穿刺力和剪切力呈顯著負相關,即剪切和穿刺果肉所用的力越小,果肉化渣度得分越高,溫州蜜柑果實的化渣性就越好。Yan等[30]對南豐蜜橘質構特性研究發現,南豐蜜橘果實化渣性與囊衣硬度呈顯著負相關(r 2=-0.998*),南豐蜜廣果實化渣性與囊衣硬度也呈顯著負相關(r 2 =-0.997*),南豐蜜橘果實化渣性與囊衣質地密切相關,囊衣硬度越低,果實化渣性越好。汪妙秋[31]和魏清江等[13]的研究結果表明南豐蜜橘果實化渣性與剪切力、硬度、咀嚼度均呈極顯著正相關。表現為剪切力、硬度和咀嚼度越低,化渣性越好。柑橘果實囊衣化渣性與囊衣厚度關系較大,囊衣厚度增加是細胞數目和細胞壁果膠類物質增多的共同結果;果膠與囊衣發育程度、細胞壁厚度形成密切相關,可能是反映柑橘果實化渣性的潛在生化標志物[10]。
前期的研究表明柑橘果實的化渣性與囊衣中果膠含量的積累相關[10]。柑橘果肉中纖維素及原果膠含量增加是果實化渣性能下降的原因,從而導致果渣變得粗糙和殘渣增多[17]。曾秀麗等[18]研究發現纖維素和木質素含量低可使臍橙果實的脆性增加,同時使化渣性變好。清見比不知火化渣性差是因其具有更高的果膠和木質素含量[32]。化渣性差的南豐蜜橘囊衣細胞壁中的原果膠、水溶性果膠、纖維素、半纖維素和木質素含量在果實發育的各個階段均顯著高于化渣性好的南豐蜜廣[30]。筆者在本研究中發現,溫州蜜柑的化渣度得分與木質素含量、纖維素含量呈顯著負相關,與果膠含量呈正相關。
筆者在本研究中通過感官評價、質構儀對溫州蜜柑化渣性進行綜合評價,并通過相關性分析及多元線性回歸分析初步解析了溫州蜜柑果實化渣性的主要影響因素。基于回歸分析建立的綜合得分預測模型可實現溫州蜜柑果實感官品質的綜合評價,質構特征指標和理化成分指標作為客觀方法可以較好地彌補感官分析的主觀性缺陷,可應用于湖北省溫州蜜柑的化渣性評價。
4 結 論
評價柑橘果實化渣性的方法大致有兩種:感官品嘗評價的方法、質構儀測試法。筆者在本研究中將兩種評價方法進行結合,以化渣度得分為因變量,將7個品質及質構特征指標作為自變量進行回歸分析,構建了包括TSS含量、穿刺力、木質素含量和果膠含量4個指標且具有統計學意義的感官綜合評價的預測模型:Y(化渣度得分)=5.875+0.108×X(TSS含量)-0.007×X(穿刺力)-0.007×X(木質素含量)+0.044×X(果膠含量)。根據感官品質分析、質構特征和細胞壁成分指標建立溫州蜜柑果實客觀、科學的化渣性評價方法具有可行性,可為優良品質資源篩選、創新以及品種選育提供數據化判斷依據。
參考文獻References:
[1] WU G A,PROCHNIK S,JENKINS J,SALSE J,HELLSTEN U,MURAT F,PERRIER X,RUIZ M,SCALABRIN S,TEROL J,TAKITA M A,LABADIE K,POULAIN J,COULOUX A,JABBARI K,CATTONARO F,DEL FABBRO C,PINOSIO S,ZUCCOLO A,CHAPMAN J,GRIMWOOD J,TADEO F R,ESTORNELL L H,MU?OZ-SANZ J V,IBANEZ V,HERRERO-ORTEGA A,ALEZA P,PéREZ-PéREZ J,RAMóN D,BRUNEL D,LURO F,CHEN C X,FARMERIE W G,DESANY B,KODIRA C,MOHIUDDIN M,HARKINS T,FREDRIKSON K,BURNS P,LOMSADZE A,BORODOVSKY M,REFORGIATO G,FREITAS-ASTúA J,QUETIER F,NAVARRO L,ROOSE M,WINCKER P,SCHMUTZ J,MORGANTE M,MACHADO M A,TALON M,JAILLON O,OLLITRAULT P,GMITTER F,ROKHSAR D. Sequencing of diverse mandarin,pummelo and orange genomes reveals complex history of admixture during citrus domestication[J]. Nature Biotechnology,2014,32(7):656-662.
[2] 喬進超,李旭瑋,施蕊. 中國柑橘三大產區產業探究:以廣西、湖南、湖北為例[J]. 云南科技管理,2021,34(1):45-49.
QIAO Jinchao,LI Xuwei,SHI Rui. Research on the three major citrus producing areas in China:Taking Guangxi, Hunan and Hubei as examples[J]. Yunnan Science and Technology Management,2021,34(1):45-49.
[3] 劉澍森. 湖北日報報道:我省柑橘產量位居全國第三:2023年達570.9萬噸[N/OL]. 湖北日報,2024-04-19. http://nyt.hubei.gov.cn/bmdt/yw/mtksn/202404/t20240418_5162357.shtml.
LIU Shusen. Hubei Daily:The output of citrus in our province ranks third in China, reaching 5.709 million tons in 2023[N/OL]. Hubei Daily,2024-04-19. http://nyt.hubei.gov.cn/bmdt/yw/mtksn/202404/t20240418_5162357.shtml.
[4] 陸平波,廖勝才,熊仁財,金天云,趙昆松. 湖北省柑橘產業高效節水灌溉現狀及發展對策[J]. 中國農技推廣,2022,38(12):58-60.
LU Pingbo,LIAO Shengcai,XIONG Rencai,JIN Tianyun,ZHAO Kunsong. Current situation and development countermeasures of high-efficiency water-saving irrigation for citrus industry in Hubei Province[J]. China Agricultural Technology Extension,2022,38(12):58-60.
[5] 張麗芳. 南豐蜜橘果膠代謝與化渣性關系研究[D]. 南昌:江西農業大學,2014.
ZHANG Lifang. Correlation analysis on pectic metabolism and mastication of Nanfeng tangerine fruit[D]. Nanchang:Jiangxi Agricultural University,2014.
[6] 鮑江峰,夏仁學,彭抒昂,陳傳友,朱洪敏. 湖北省柑橘產業的現狀與發展對策[J]. 中國農學通報,2005,21(1):208-212.
BAO Jiangfeng,XIA Renxue,PENG Shu’ang,CHEN Chuan-you,ZHU Hongmin. Study on the present situation and development strategy of citrus industry of Hubei Province[J]. Chinese Agricultural Science Bulletin,2005,21(1):208-212.
[7] 祁春節,鄧秀新. 當前我國柑桔產業發展面臨的重大問題和對策措施[J]. 中國果業信息,2016,33(12):9-11.
QI Chunjie,DENG Xiuxin. Major problems and countermeasures in the development of citrus industry in China[J]. China Fruit News,2016,33(12):9-11.
[8] 伊華林,劉慧宇. 我國柑橘品種分布特點及適地適栽品種選擇探討[J]. 中國果樹,2022(1):1-7.
YI Hualin,LIU Huiyu. Distribution characteristics of citrus varieties and selection of varieties suitable for planting in China[J]. China Fruits,2022(1):1-7.
[9] 李菲菲,廉雪菲,尹韜,常媛媛,金燕,馬小川,陳岳文,葉麗,李云松,盧曉鵬. 柑橘果實囊衣發育與化渣性的形成[J]. 中國農業科學,2023,56(2):333-344.
LI Feifei,LIAN Xuefei,YIN Tao,CHANG Yuanyuan,JIN Yan,MA Xiaochuan,CHEN Yuewen,YE Li,LI Yunsong,LU Xiaopeng. The relationship between mastication and development of segment membranes in citrus fruits[J]. Scientia Agricultura Sinica,2023,56(2):333-344.
[10] LIAN X F,LI F F,CHANG Y Y,ZHOU T,CHEN Y W,YIN T,LI Y S,YE L,JIN Y,LU X P. Physiological and ultrastructural alterations linked to intrinsic mastication inferiority of segment membranes in Satsuma mandarin (Citrus unshiu Marc.) fruits[J]. Plants,2021,11(1):39.
[11] 王彬彬,李娜,賈漫麗,陳秀靈,范偉,夏愛華,高玉軍,李季生. 質構儀檢測桑葚質地品質的方法研究[J]. 果樹學報,2021,38(11):2014-2020.
WANG Binbin,LI Na,JIA Manli,CHEN Xiuling,FAN Wei,XIA Aihua,GAO Yujun,LI Jisheng. Measuring texture quality of mulberry fruit using a texture analyser[J]. Journal of Fruit Science,2021,38(11):2014-2020.
[12] 羅斌,趙有斌,尹學清,趙東林,杜志龍,何江濤. 質構儀在果蔬品質評定中應用的研究進展[J]. 食品研究與開發,2019,40(5):209-213.
LUO Bin,ZHAO Youbin,YIN Xueqing,ZHAO Donglin,DU Zhilong,HE Jiangtao. Application progress of texture analyzer in the research of fruit and vegetable quality evaluation[J]. Food Research and Development,2019,40(5):209-213.
[13] 魏清江,汪妙秋,曾知富,楊成泉,彭抒昂,劉永忠. 南豐蜜橘化渣性評價及不同結果習性果實的品質比較[J]. 中國農業科學,2014,47(6):1162-1170.
WEI Qingjiang,WANG Miaoqiu,ZENG Zhifu,YANG Chengquan,PENG Shu’ang,LIU Yongzhong. Evaluation of the mastication and comparison of fruit quality with different bearing habits in Nanfeng Tangerine (Citrus reticulata Blanco cv. Kinokuni)[J]. Scientia Agricultura Sinica,2014,47(6):1162-1170.
[14] 崔永寧,陳潔珍,史發超,姜永華,嚴倩,歐良喜,劉海倫,蔡長河. 基于TPA法的荔枝資源果肉質地品質分析[J]. 果樹學報,2022,39(12):2241-2252.
CUI Yongning,CHEN Jiezhen,SHI Fachao,JIANG Yonghua,YAN Qian,OU Liangxi,LIU Hailun,CAI Changhe. Analysis of texture quality of the fruits in litchi based on the texture profile analysis (TPA)[J]. Journal of Fruit Science,2022,39(12):2241-2252.
[15] 唐紅英. 南豐蜜橘纖維素、半纖維素代謝與化渣性關系研究[D]. 南昌:江西農業大學,2015.
TANG Hongying. Study on the relationship between cellulose,hemicellulose metabolism and mastication of Nanfeng tangerine[D]. Nanchang:Jiangxi Agricultural University,2015.
[16] 古湘. 南豐蜜橘木質素代謝與化渣的關系研究[D]. 南昌:江西農業大學,2016.
GU Xiang. Study on the relationship between lignin metabolism and mastication of Nanfeng tangerine[D]. Nanchang:Jiangxi Agricultural University,2016.
[17] DONG T,XIA R X,XIAO Z Y,WANG P,SONG W H. Effect of pre-harvest application of calcium and boron on dietary fibre,hydrolases and ultrastructure in ‘Cara Cara’ navel orange (Citrus sinensis L. Osbeck) fruit[J]. Scientia Horticulturae,2009,121(3):272-277.
[18] 曾秀麗,張光倫,李春燕,汪志輝,羅楠,胡強. 臍橙果實膳食纖維的動態變化研究[J]. 四川農業大學學報,2006,24(1):69-72.
ZENG Xiuli,ZHANG Guanglun,LI Chunyan,WANG Zhihui,LUO Nan,HU Qiang. The studying on the dietary fiber of navel orange [Citrus sinesis (L.) Osb.] fruit[J]. Journal of Sichuan Agricultural University,2006,24(1):69-72.
[19] 雷瑩. 柑橘果實化渣性研究[D]. 武漢:華中農業大學,2010.
LEI Ying. Mastication of Citrus fruit[D]. Wuhan:Huazhong Agricultural University,2010.
[20] LEI Y,LIU Y Z,GU Q Q,YANG X Y,DENG X X,CHEN J Y. Comparison of cell wall metabolism in the pulp of three cultivars of ‘Nanfeng’ tangerine differing in mastication trait[J]. Journal of the Science of Food and Agriculture,2012,92(3):496-502.
[21] LEI Y,LIU Y Z,ZENG W F,DENG X X. Physicochemical and molecular analysis of cell wall metabolism between two navel oranges (Citrus sinensis) with different mastication traits[J]. Journal of the Science of Food and Agriculture,2010,90(9):1479-1484.
[22] 董濤. 甜橙果實膳食纖維代謝機理研究[D]. 武漢:華中農業大學,2009.
DONG Tao. Metabolism mechanism of dietary fibre of sweet orang (Citrus sinensis Osbeck)[D]. Wuhan:Huazhong Agricultural University,2009.
[23] 魏張奎. 基于質構特性的夏橙化渣性研究[D]. 武漢:華中農業大學,2013.
WEI Zhangkui. Research on mastication of late orange base on textural properties[D]. Wuhan:Huazhong Agricultural University,2013.
[24] 辜青青,唐紅英,魏清江,古湘,馮芳芳,羅正榮. 南豐蜜橘果實纖維素代謝與化渣的關系研究[J]. 園藝學報,2016,43(5):867-875.
GU Qingqing,TANG Hongying,WEI Qingjiang,GU Xiang,FENG Fangfang,LUO Zhengrong. Studies on the relationship between cellulose metabolism and fruit mastication trait of Nanfeng tangerine[J]. Acta Horticulturae Sinica,2016,43(5):867-875.
[25] 孫權,何政辰,葉俊麗,魏冉冉,尹映紫,柴利軍,謝宗周,徐強,徐娟,郭文武,程運江,鄧秀新. 與呼吸躍變型果實共貯藏改善柑橘果實色澤和品質[J]. 園藝學報,2024,51(3):601-615.
SUN Quan,HE Zhengchen,YE Junli,WEI Ranran,YIN Yingzi,CHAI Lijun,XIE Zongzhou,XU Qiang,XU Juan,GUO Wenwu,CHENG Yunjiang,DENG Xiuxin. Storage with climacteric fruits improves color and quality of citrus fruit[J]. Acta Horticulturae Sinica,2024,51(3):601-615.
[26] 薛源,吳劍南. 獼猴桃果肉維生素C含量測定方法比較[J]. 種業導刊,2024(2):47-48.
XUE Yuan,WU Jiannan. Comparison of methods for determination of vitamin C content in kiwi fruit pulp[J]. Journal of Seed Industry Guide,2024(2):47-48.
[27] 金志農,李端妹,金瑩,熊妮. 地方科研機構績效考核指標及其權重計算:基于專家分析法和層次分析法的對比研究[J]. 科技管理研究,2009,29(12):103-106.
JIN Zhinong,LI Duanmei,JIN Ying,XIONG Ni. Performance appraisal index and weight calculation of local scientific research institutions:A comparative study based on expert analysis and analytic hierarchy process[J]. Science and Technology Management Research,2009,29(12):103-106.
[28] 王鯤嬌,韓旭,張志成,朱宗瑛,譚啟玲,胡承孝. 推薦施肥對‘溫州蜜柑’和‘南豐蜜橘’品質與化渣性的影響[J]. 果樹學報,2018,35(10):1190-1196.
WANG Kunjiao,HAN Xu,ZHANG Zhicheng,ZHU Zongying,TAN Qiling,HU Chengxiao. Effects of recommended fertilization on fruit quality and pulp texture in mandarin orange ‘Satsuma mandarin’ and ‘Nanfeng tangerine’[J]. Journal of Fruit Science,2018,35(10):1190-1196.
[29] 吳迪,田志嬌,周秋蓉,陳秋佑,高志鍵,葛聰,李江波,李延,王平. 纖維素和果膠代謝相關基因調控南豐蜜橘化渣性[J/OL]. 分子植物育種,2023:1-12. (2023-03-22). https://kns.cnki.net/kcms/detail/46.1068.s.20230321.0955.002.html.
WU Di,TIAN Zhijiao,ZHOU Qiurong,CHEN Qiuyou,GAO Zhijian,GE Cong,LI Jiangbo,LI Yan,WANG Ping. Cellulose and pectin metabolism-related genes regulate the masticaton of Citrus reticulita Blanco cv. Nanfeng tangerine[J/OL]. Molecular Plant Breeding,2023:1-12. (2023-03-22). https://kns.cnki.net/kcms/detail/46.1068.s.20230321.0955.002.html.
[30] YAN Min,LUO Lijuan,HAN Zhongxing,YUAN Ye,LI Jiangbo,DU Wei,LIU Yongzhong. Comparative study on fruit texture,cell wall structural componentsand nutrient content between ‘Nanfengmiju’ and ‘Nanfengmiguang’[J]. Hans Journal of Agricultural Sciences,2019,9(8):689-696.
[31] 汪妙秋. 南豐蜜橘生長與結實方式對果實品質的影響[D]. 武漢:華中農業大學,2013.
WANG Miaoqiu. Impact of tree growth and fruit bearing on fruit qualities of nanfengmiju[D]. Wuhan:Huazhong Agricultural University,2013.
[32] WANG X,LIN L J,TANG Y,XIA H,ZHANG X C,YUE M L,QIU X,XU K,WANG Z H. Transcriptomic insights into citrus segment membrane’s cell wall components relating to fruit sensory texture[J]. BMC Genomics,2018,19(1):280.
收稿日期:2024-03-27 接受日期:2024-05-21
基金項目:國家重點研發計劃項目(2023YFD2300605);湖北省重點研發計劃(2021BBA237);湖北省重點研發計劃(2022BBA0029);湖北省農業科學院青年拔尖人才項目
作者簡介:王策,女,助理研究員,碩士,研究方向為柑橘栽培。E-mail:wangce@hbaas.com
*通信作者Author for correspondence. E-mail:songfang@hbaas.com;E-mail:wuliming2005@126.com