









摘" " 要:【目的】對果實表皮的蠟質(zhì)和角質(zhì)層組分進行定性和定量測定,探究果實表皮蠟質(zhì)和角質(zhì)對果實采后貯藏的影響,以提高果實貯藏品質(zhì)。【方法】比較SH6和M26作中間砧的富士蘋果在常溫貯藏期間的失重率和呼吸強度,通過掃描電子顯微鏡觀察表皮蠟質(zhì)形態(tài)和結(jié)構(gòu)的差異,并采用氣相色譜/質(zhì)譜聯(lián)用儀測定蠟質(zhì)和角質(zhì)的單體含量。【結(jié)果】常溫貯藏期間,SH6果實的失重率和呼吸強度顯著低于M26果實,表皮蠟質(zhì)層厚度、蠟質(zhì)和角質(zhì)總量顯著高于M26果實。兩種砧木果實的果皮中鑒定出28種角質(zhì)共有成分,34種蠟質(zhì)共有成分,其中角質(zhì)共有成分包括14種脂肪酸、7種羥基脂肪酸、2種二羧酸和5種醇。此外,SH6果實還有5種特有角質(zhì)成分,包括花生四烯酸、順式-8,11,14-二十烷三烯酸、18-羥基-9,12-十八碳二烯酸、22-羥基二十二烷酸和二十四烷醇。M26果實也有4種特有角質(zhì)成分,包括十八烷酸、(3β)-3-三羥基-齊墩果-12-烯-28-酸、10,13-二十碳二烯酸和7,10,13-二十碳三烯酸。兩種砧木果實的果皮中蠟質(zhì)共有成分包括5種烷烴、6種醇、4種脂肪酸、12種酯類、2種醛類和4種其他物質(zhì)。SH6果實還有3種特有蠟質(zhì)成分,包括熊果醛、二十烷酸丁酯和熊果酸甲酯。M26果實也有3種特有蠟質(zhì)成分,包括二十烷酸、棕櫚酸-3-甲基丁酯和山崳酸乙酯。相關(guān)性分析表明,果實貯藏期間的失重率和呼吸強度與蠟質(zhì)層厚度呈顯著負相關(guān)(r=-0.85,r=-0.77),失重率與羥基脂肪酸和酯類含量呈顯著正相關(guān)(r=0.81,r=0.87),呼吸強度與羥基脂肪酸和二羧酸含量呈正相關(guān)(r=0.59,r=0.50)。【結(jié)論】與M26作中間砧相比,SH6作中間砧的富士蘋果果實具有較厚的表皮蠟質(zhì)層和更豐富的角質(zhì)和蠟質(zhì)含量,使其在貯藏期間具有更低的失重率和呼吸速率。
關(guān)鍵詞:蘋果果實;中間砧;貯藏性;角質(zhì);蠟質(zhì)
中圖分類號:S661.1 文獻標志碼:A 文章編號:1009-9980(2024)08-1604-13
Effects of different intermediate rootstocks on epidermal wax and cuticle of Fuji apple fruits during storage
LI Fanghong1, YANG Ruirui1, BAI Lu1, WANG Xuexue1, LI Xin2, WANG Yanxiu2, BI Yang1*
(1College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China)
Abstract: 【Objective】 Apple skin wrinkling, caused by water loss during storage, is a critical factor that impacts the quality and taste of the fruit. The cuticle and wax layer of apple fruits play an important role in inhibiting water transpiration and respiration. Therefore, the qualitative and quantitative determination of wax and cuticle fractions in apple fruits during storage can help enhance fruit storage practices in the future. Although studies have been conducted on the effects of various rootstocks on apple fruit quality, antioxidant activity and disease resistance, the impact of different rootstocks on fruit wax and cuticle during apple storage has not been reported. SH6 and M26 are two types of dwarf interstocks commonly utilized in the cultivation of Fuji apples in Northwest China. The former was selected by Shanxi Pomology Institute, and the latter was chosen by East Malling Experimental Station in Britain. In this study, Fuji apple trees on SH6 and M26 intermediate rootstocks were used as test materials. Comparison of differences in weight loss, respiration intensity, and epidermal wax morphology and structure during storage of Fuji apples with SH6 and M26 as intermediate rootstocks was carried out. 【Methods】 In this study, the weight loss of fruits growing on two types of rootstocks during storage was measured using the gravimetric method. The changes in respiration rate of fruits growing on two types of rootstocks during ambient storage were measured using a fruit and vegetable measuring instrument. Morphology of the epidermal wax layer was observed under a scanning electron microscopy. The waxy layer and cuticle of the fruit epidermis were extracted using organic solvents like chloroform and methanol. The total amount of cutin and wax, as well as the content of various monomer components, were analyzed using GC-MS. In order to compare the storage characteristics of fruits, the differences in horny and wax morphology and composition between the two rootstocks were examined. 【Results】 The results showed that the weight loss and respiration rate of SH6 fruits were significantly lower than those of M26 fruits. There were significant differences in surface wax morphology and thickness between SH6 and M26. The wax on the surface of SH6 fruits was relatively smooth with a few wide gaps and depressions. The surface of M26 fruits was densely covered with waxy roughness and depressions. With the prolongation of storage time, the wax on the surface of SH6 fruits became coarser, and the gaps and depressions increased while the gap spacing decreased. However, the waxy depression on M26 fruit epidermis was more pronounced, with larger and wider gaps visible. The thickness of the epidermal wax layer, total wax and total cuticle were also significantly higher than those of M26 fruits during ambient storage. 28 common cuticle components included 14 fatty acids, 7 hydroxy fatty acids, 2 dicarboxylic acids and 5 alcohols. 34 common wax components included 5 alkanes, 6 alcohols, 4 fatty acids, 12 esters, 2 aldehydes and 4 other substances. In addition, SH6 fruits contained four unique components: arachidonic acid, 18-hydroxy-9,12-octadetadienoic acid, ursolic acid methyl ester and butyl eicosanate. M26 fruits contained three unique components: octadecanoic acid, 7,10,13-eicosatrienoic acid and behenic acid ethyl ester. Correlation analysis revealed a significant negative correlation between the weight loss rate of fruit during storage and the thickness of the wax layer. This suggested that fruits with thicker wax and cuticle layers experienced lower rates of weight loss. The weight loss rate was positively correlated with hydroxyl fatty acids and esters, indicating that substances with higher hydrophilicity facilitated water evaporation more effectively. Respiratory intensity was negatively correlated with the thickness of epidermal wax and cuticle layer. This suggested that the thicker the wax layer and cuticle, the lower the respiratory intensity of fruits. Respiratory intensity was positively correlated with the levels of hydroxyl fatty acids and dicarboxylic acids, suggesting that these compounds were advantageous for gas exchange both within and outside the fruit epidermis. 【Conclusion】 Compared with M26 fruits, SH6 fruits had lower weight loss and respiration rate during ambient storage, and the surface morphology of the epidermic wax layer was smoother. SH6 fruits had a thicker epidermal wax layer and a richer cuticle and wax content, resulting in lower weight loss and respiration rate during storage.
Key words: Apple; Intermediate rootstock; Storability; Cutin; Wax
果實角質(zhì)層位于表皮細胞外緣,緊貼細胞壁的果膠層,是由羥基和環(huán)氧羥基脂肪酸經(jīng)酯化形成的疏水性保護結(jié)構(gòu),作為化學(xué)和物理屏障可防止真菌孢子萌發(fā)和侵染果實[1]。角質(zhì)層的外緣分布有蠟質(zhì)層,蠟質(zhì)又可分為內(nèi)表皮蠟質(zhì)和外表皮蠟質(zhì),前者在角質(zhì)層形成中填充在其致密的網(wǎng)狀結(jié)構(gòu)內(nèi),后者則堆積在角質(zhì)層外緣并且組裝成各種形態(tài)的晶體[2]。表皮蠟質(zhì)主要由超長鏈脂肪酸及烷烴等各類衍生物組成,作為疏水保護層可以防止果實水分蒸騰、病原物在表面黏附以及在表面形成水膜[3]。研究表明,果實表面的蠟質(zhì)層和角質(zhì)層作為物理和化學(xué)屏障,可以抑制果實呼吸,減少水分蒸騰,從而降低貯藏期間的果實失重率[4]。
不同蘋果品種果實角質(zhì)層和蠟質(zhì)層的厚度和成分存在差異。金冠的蠟質(zhì)層要明顯厚于元帥,金冠含有更多的9,10-環(huán)氧-12-十八碳烯酸和9,10-環(huán)氧-18-羥基-12-十八碳烯酸[5]。比較皇家嘎啦、澳洲青蘋、粉紅女士和元帥 4個蘋果品種的蠟質(zhì)成分,發(fā)現(xiàn)壬二十烷和五十五烷在澳洲青蘋中含量最高;三萜酸、十七醇、α-法尼烯、法尼乙酸酯以及一些飽和脂肪酸在皇家嘎啦中含量較高;粉紅女士和元帥中扁桃酸和β-谷甾醇含量較高。與元帥相比,粉紅女士含有更多的十六烷酸、γ-亞麻酸和五十七烷[6]。奎里納的表皮蠟質(zhì)層和角質(zhì)層比普利瑪更厚,奎里納還含有更多的9,10,16-二羥基十六烷酸、熊果酸和油酸[7]。角質(zhì)和蠟質(zhì)成分含量的差異對果實的貯藏性具有重要影響。對10個蘋果品種果實的蠟質(zhì)研究表明,紅星果實的蠟質(zhì)含量顯著低于其他品種,貯藏期間的失重率最高[8]。
不同砧木也會影響果實的貯藏品質(zhì)、抗氧化能力和抗病性。與SH3相比,SH6作中間砧的富士果實含有較高的果糖、山梨醇、葡萄糖、蔗糖以及草酸、酒石酸、蘋果酸和檸檬酸含量[9]。與M9相比,G213作砧木的Fuji Suprema果實貯藏期間具有較高的硬度和可溶性固形物含量[10]。與M4和MM106相比,M9 T337砧木可以提高Red Chief? Camspur蘋果果實的總酚、總黃酮含量及總抗氧化能力[11]。與A1和C3相比,B1砧木可提高嘎拉和富士果實的總酚和類黃酮含量,也可提高果皮的花青苷和類胡蘿卜素含量[12]。與M26相比,損傷接種Penicillium expansum和Botrytis cinerea的SH6果實的病斑直徑顯著小于M26果實[13]。
矮化砧木具備使樹體矮化、早熟、高產(chǎn)、便于管理等優(yōu)點,在蘋果栽培中具有重要作用[14]。SH系矮化砧由山西省農(nóng)業(yè)科學(xué)院果樹所選育,是我國廣泛使用的蘋果矮化中間砧,具有抗逆性較強,嫁接后易開花結(jié)果、果實品質(zhì)良好等特點[15]。M系砧木由英國東茂林試驗站選育,是目前全球廣泛使用的蘋果矮化中間砧,但抗逆性不及SH系矮化砧[16]。筆者近期發(fā)現(xiàn),與M26相比,SH6作中間砧的富士蘋果的貯藏品質(zhì)更好,抗氧化活性更高,采后抗病性也更強,但兩種砧木是否通過影響貯藏期間蘋果果實表皮蠟質(zhì)和角質(zhì)的結(jié)構(gòu)和成分,從而影響果實的貯藏性還未見報道。筆者以SH6和M26兩種中間砧的富士蘋果為試材,測定常溫貯藏期間兩種砧木果實的失重率和呼吸強度變化,觀察表皮角質(zhì)層和蠟質(zhì)層形態(tài),分析角質(zhì)和蠟質(zhì)總量以及各種單體成分的含量,以期比較兩種砧木間果實角質(zhì)、蠟質(zhì)形態(tài)和成分的差異對果實失重率和呼吸強度的影響。
1 材料和方法
1.1 材料
富士蘋果于2023年9月底采于甘肅省慶陽市寧縣中村15年生樹,以八棱海棠為基砧,SH6和M26分別為矮化中間砧。當?shù)貙倥瘻貛駶櫚霛駶櫄夂颍昃邓繛?72 mm,平均氣溫8.7 ℃,無霜期170 d左右,田間管理按當?shù)靥O果生產(chǎn)標準進行。挑選外觀良好、大小一致、無病蟲害、無機械損傷的果實,單果套網(wǎng)套裝入包裝箱,于2023年10月初運抵甘肅農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院采后生物學(xué)與技術(shù)實驗室,常溫下[(25±2) ℃,RH 45%~65%]貯藏待用。
1.2 方法
1.2.1" " 失重率的測定" " 采用Wang等[17]的質(zhì)量法測定常溫貯藏0、10、20、30和40 d的果實失重率(%)。每組每個時間點用果實3個,3次重復(fù)。
1.2.2" " 呼吸強度的測定" " 參考Li等[18]的方法,用果蔬呼吸測定儀(GH-3051H,北京托普云農(nóng)有限公司,中國)測定呼吸強度。取貯藏0、10、20、30和40 d的果實,先分別測定空罐內(nèi)CO2的濃度,待罐內(nèi)CO2的質(zhì)量濃度低于600 mg·L-1時,迅速放入3個果實后密封,待罐內(nèi)CO2濃度平衡后,每隔5 min記錄紅外線吸收的CO2濃度。結(jié)果以mg·kg-1·h-1表示。每組每個時間點用果實3個,3次重復(fù)。
1.2.3" " 表皮蠟質(zhì)和角質(zhì)形態(tài)結(jié)構(gòu)觀察" " 參照徐秀萍等[19]的方法,分別在貯藏0和40 d,從果實赤道部位隨機切取1 mm厚的正方形(1 cm×1 cm)表皮,置于2.5%戊二醛中常溫固定2 h,然后用pH 7.4的磷酸緩沖溶液(PBS)漂洗3次,每次15 min。再用30%、50%、70%、80%、90%、95%和100%的梯度酒精分別脫水15 min。將完全脫水后的樣品放入臨界點干燥儀(K850,Quorum,英國)內(nèi)進行干燥。干燥后的樣品緊貼于導(dǎo)電碳膜雙面膠上放入離子濺射儀(MC1000,HITACHI,日本)樣品臺上噴金。在掃描電子顯微鏡(Regulus 8100,HITACHI,日本)下觀察果皮表面蠟質(zhì)形態(tài)和厚度。
1.2.4" " 角質(zhì)成分的提取" " "參考陳劍婷等[20]的方法提取角質(zhì)成分。用1%次氯酸鈉浸泡果實1 min,清水沖洗晾干。分別在果實貯藏第0天、第20天和第40天,從果實赤道部位隨機用打孔器取10個圓片(直徑1.5 cm,厚1 mm)。將圓片置于100 mL檸檬酸緩沖液(20 mmol·L-1,pH 3.7,其中含2%果膠酶和0.1%纖維素酶)中,在37 ℃下酶解3~4 d,酶解后的果皮用去離子水充分沖洗,得到角質(zhì)提取樣品。將上述樣品用氯仿∶甲醇(1∶1)混合溶劑進行索氏抽提6~8 h,隨后用甲醇洗去樣品上的殘留氯仿。將獲得物在55 ℃烘箱中加熱干燥1~2 d,將完全干燥的樣品研磨成粉。取樣品粉末30 mg,加入8 mL 3 mol·L-1甲醇鹽酸溶液(其中含7.5%乙酸甲酯),60 ℃水浴反應(yīng)16 h,冷卻至室溫,加入2 mL飽和NaCI溶液終止反應(yīng)。再加入10 mL二氯甲烷萃取2次,將萃取所得溶液轉(zhuǎn)移至10 mL離心管,在溫和氮氣下吹掃富集,充分干燥后得角質(zhì)粗提物。每一處理每個時間點用果實3個,3次重復(fù)。
取5 mg上述角質(zhì)粗提物,加入100 μg十七烷酸甲酯作內(nèi)標,加入200 μL吡啶:雙 (三甲基硅烷基)三氟乙酰胺(BSTFA)(1∶1)試劑,100 ℃水浴反應(yīng)15 min。殘余的衍生化試劑在溫和氮氣下吹干,用1.5 mL庚烷∶甲苯(1∶1)重新溶解樣品,轉(zhuǎn)移至1.5 mL進樣瓶后待測。
1.2.5" " 蠟質(zhì)成分的提取" " "參考唐瑛[21]的方法提取蠟質(zhì)成分。用自來水清洗果實表面,自然晾干。取1000 mL燒杯,倒入600 mL氯仿,分別在果實貯藏第0、20和40天時,將果實浸沒在氯仿中60 s,用玻璃棒均勻攪拌。所得溶液經(jīng)過濾后旋轉(zhuǎn)蒸發(fā),濃縮至約5 mL,轉(zhuǎn)入10 mL離心管,在穩(wěn)定氮氣下吹掃富集,充分干燥后稱質(zhì)量,置于4 ℃冰箱保存待測。每處理每個時間點用果實3個,3次重復(fù)。
取上述樣品5 mg于10 mL離心管中,加入100 μg正二十四碳烷作為內(nèi)標,加200 μL BSTFA試劑,在100 ℃水浴下衍生反應(yīng)15 min。衍生后的溶液在溫和氮氣下吹干,隨后加入1.5 mL氯仿溶解,轉(zhuǎn)移至1.5 mL進樣瓶后待測。
1.2.6" " 角質(zhì)和蠟質(zhì)成分的測定" " 采用氣相色譜/質(zhì)譜聯(lián)用儀(GC/MS-QP2020NX,島津公司,日本)測定角質(zhì)和蠟質(zhì)成分含量。升溫程序:初始溫度80 ℃,保持2 min;角質(zhì)成分以15 ℃·min-1升至200 ℃,保持2 min;2 ℃·min-1升至280 ℃,保持3 min。蠟質(zhì)成分以40 ℃·min-1升高至200 ℃,保持2 min;3 ℃·min-1升至320 ℃,保持20 min。高純He作載氣,流速1 mL·min-1,四極桿溫度150 ℃,離子源溫度230 ℃。根據(jù)檢測物峰面積和內(nèi)標物峰面積計算含量。最終角質(zhì)單體含量以μg·g-1表示,蠟質(zhì)單體含量以μg·cm-2 表示。
1.3 數(shù)據(jù)分析
上述每項測定至少3次重復(fù)。采用Microsoft Excel 2010軟件計算平均值和標準偏差,采用SPSS 19.0軟件進行Duncan’s多重差異顯著性分析(p<0.05)和Pearson相關(guān)性分析,采用Origin 2021軟件作圖。
2 結(jié)果與分析
2.1 SH6和M26富士蘋果果實常溫貯藏期間的失重率和呼吸速率的變化
失重率和呼吸強度是評價蘋果采后品質(zhì)和生理狀態(tài)的重要指標。貯藏期間,SH6和M26果實的失重率均逐漸升高,M26果實的失重率顯著高于SH6,第20天時高出SH6果實36.33%(圖1-A)。SH6和M26果實的呼吸速率均呈單峰型變化,均在20 d時達到峰值,M26果實的呼吸速率顯著高于SH6果實,峰值時高出SH6果實53.16%(圖1-B)。上述結(jié)果表明,常溫貯藏期間SH6果實的失重率和呼吸強度顯著低于M26果實。
2.2 SH6和M26富士蘋果果實常溫貯藏期間角質(zhì)和蠟質(zhì)總量的變化
采收時及貯藏期間,SH6果實的角質(zhì)總量均顯著高于M26果實,隨著貯藏時間的延長,角質(zhì)總量呈現(xiàn)單峰型變化,貯藏20 d時達到峰值,峰值時SH6果實角質(zhì)含量(w,后同)為(9 683.12±249.58) μg·g-1,M26果實為(6295.88±183.45) μg·g-1,SH果實顯著高出M26果實53.8%(圖2-A)。采收時及貯藏期間,SH6果實的蠟質(zhì)總量也顯著高于M26果實,隨著貯藏時間的延長,蠟質(zhì)含量也呈單峰型變化,貯藏20 d時SH果實蠟質(zhì)含量為(643.94±31.89) μg·cm-2,M26果實為(503.55±23.04) μg·cm-2,SH6果實顯著高出M26果實27.88%(圖2-B)。上述結(jié)果表明,采收時及貯藏期間SH6比M26果實積累了更多的角質(zhì)和蠟質(zhì)。
2.3 SH6和M26富士蘋果果實常溫貯藏期間表皮蠟質(zhì)層形態(tài)的變化
SH6和M26果實表面蠟質(zhì)形態(tài)和厚度存在明顯差異。采收時,SH6果實表面蠟質(zhì)較為平整,有少量較寬的縫隙和凹陷;M26果實表面蠟質(zhì)粗糙,凹陷密布。常溫貯藏40 d時,SH6果實表面蠟質(zhì)變得較為粗糙,縫隙和凹陷增多,縫隙間距縮小;M26果實表皮蠟質(zhì)凹陷更加明顯,可見較大較寬的縫隙(圖3)。
采收時,SH6果實表皮蠟和角質(zhì)層蠟的厚度均顯著大于M26果實,分別高出M26果實36.83%和14.02%;貯藏40 d時,SH6果實的表皮蠟和角質(zhì)層蠟厚度依然顯著大于M26果實,分別高出M26果實44.1%和72.78%(圖4)。
2.4 SH6和M26富士蘋果果實常溫貯藏期間角質(zhì)單體含量的變化
從SH6和M26果皮中共鑒定出37種角質(zhì)單體,其中的28種為共有組分,主要包括脂肪酸(14種)、羥基脂肪酸(7種)、二羧酸(2種)和醇(5種)四大類(表1,表2)。脂肪酸在共有組分中占比最大(54.42%),碳原子數(shù)變化范圍為C16~C31。此外,SH6果實還有5種特有組分,包括花生四烯酸、順式-8,11,14-二十烷三烯酸、18-羥基-9,12-十八碳二烯酸、22-羥基二十二烷酸和二十四烷醇。M26果實有4種特有組分,包括十八烷酸、(3β)-3-三羥基-齊墩果-12-烯-28-酸、10,13-二十碳二烯酸和7,10,13-二十碳三烯酸。
采收時及貯藏期間,SH6果實硬脂酸、亞油酸和γ-亞麻酸含量顯著高于M26果實,隨著貯藏時間延長,SH6和M26果實中硬脂酸、油酸和γ-亞麻酸含量呈下降趨勢,貯藏20 d時SH6的γ-亞麻酸含量高出M26果實82.93%。此外,SH6果實的8-[(2R,3S)-3-辛基環(huán)氧乙烷-2-基]辛酸、二十烷酸、7,10,13-二十碳三烯酸、10,13-二十碳二烯酸、二十四烷酸、二十八烷酸、蜂蠟酸、齊墩果酸和烏宋酸含量在采收時及貯藏期間也顯著高于M26果實;隨著貯藏時間延長,8-[(2R,3S)-3-辛基環(huán)氧乙烷-2-基]辛酸和二十烷酸含量逐漸降低,而7,10,13-二十碳三烯酸、10,13-二十碳二烯酸、二十四烷酸、蜂蠟酸、齊墩果酸和烏宋酸含量均呈單峰型變化;其中,二十八烷酸在采收時和貯藏20 d時未檢出,SH6果實中的7,10,13-二十碳三烯酸和蜂蠟酸含量在20 d時分別是M26果實的2.22倍和3.32倍(表1)。采收時及貯藏期間,SH6和M26果實中5種羥基脂肪酸含量呈上升趨勢,除18-羥基-9,12-十八碳二烯酸外,SH6果實的6種羥基脂肪酸含量均高于M26果實,包括18-羥基-9-十八碳烯酸、9,10-二羥基十八烷酸、22-羥基二十二烷酸、16-羥基十六烷酸、10,16-二羥基-十六烷酸和9,10,18-三羥基十八烷酸;其中,SH6果實中的18-羥基-9-十八碳烯酸和9,10-二羥基十八烷酸在貯藏20 d時分別是M26果實3.24倍和2.32倍。此外,SH6果實在采收時和貯藏期間十六烷二酸含量呈下降趨勢,而十八烷二酸含量呈單峰型變化趨勢,且SH6果實十六烷二酸和十八烷二酸含量顯著高于M26果實(表2)。采收時及貯藏期間,SH6果實的5種醇含量顯著高于M26果實,包括二十六烷醇、二十八烷醇、烯醇、羊毛甾醇和γ-谷甾醇,SH6和M26果實中二十六烷醇和羊毛甾醇含量呈先升高再降低的趨勢,γ-谷甾醇含量呈下降趨勢,其中SH6果實中的二十六烷醇含量在貯藏20 d時是M26果實的2.75倍(表2)。
2.5 SH6和M26富士蘋果果實常溫貯藏期間蠟質(zhì)單體組分含量的變化
從SH6和M26果實中鑒定出了40種蠟質(zhì)化合物,其中34種為共有組分,主要包括烷烴(5種)、醇(6種)、脂肪酸(4種)、酯類(12種)、醛類(2種)和其他物質(zhì)(4種)六大類。烷烴在共有組分中所占比例最大(17.47%),碳原子數(shù)變化范圍為C21~C54。其次是脂肪酸和其他萜類化合物。此外,SH6果實還有3種特有組分,包括熊果醛、二十烷酸丁酯和熊果酸甲酯。M26果實也有3種特有組分,包括二十烷酸、棕櫚酸-3-甲基丁酯和山崳酸乙酯。
采收時及貯藏期間,SH6果實的5種烷烴含量顯著高于M26果實,包括二十一烷、二十五烷、二十九烷、四十烷和五十四烷;SH6和M26果實中烷烴含量呈下降趨勢,SH6果實貯藏20 d時的二十一烷和二十五烷含量分別是M26果實的2.64倍和5.09倍(表3)。采收時及貯藏期間,SH6果實的5種醇類物質(zhì)含量顯著高于M26果實,包括三十烷醇、1,5,9,13-四甲基十四烷醇、二十八烷醇、三十三烷醇和3,7,11-三甲基-2,6,10-十二碳三烯醇;除M26果實的二十六烷醇含量外,SH6和M26果實中醇類物質(zhì)含量均呈下降趨勢,其中,SH6果實中的二十六烷醇含量在采收時高出M26果實63.84%,而3,7,11-三甲基-2,6,10-十二碳三烯醇含量在貯藏20 d時是M26果實的6.64倍(表3)。
采收時及貯藏期間,SH6果實的棕櫚酸、硬脂酸、亞油酸和二十八烷酸含量高于M26果實;隨著貯藏時間延長,SH6和M26果實中脂肪酸含量均呈上升趨勢,其中SH6果實中的二十八烷酸含量在貯藏20 d時是M26果實的2.14倍(表4)。采收時,SH6果實9種酯類物質(zhì)含量高于M26果實,包括己酸丁酯、2-甲基丁酸己酯、亞油酸甘油酯、油酸乙酯、9,12-十八碳二烯酸(9Z,12Z)-戊酯、二十二烷酸丁酯、二十四烷酸丁酯、(2E,6E)-3,7,11-三甲基-2,6,10-十二碳三烯-1-基十八烷酸酯和亞油酸乙酯,隨著貯藏時間延長,除SH6果實的(2E,6E)-3,7,11-三甲基-2,6,10-十二碳三烯-1-基十八烷酸酯含量及M26果實的二十四烷酸丁酯和亞油酸乙酯含量外,SH6和M26果實的其余9種酯類物質(zhì)含量均呈上升趨勢,其中SH6果實中亞油酸甘油酯含量在貯藏20 d時是M26果實的3.91倍;二十二烷酸丁酯和二十四烷酸丁酯含量在貯藏40 d時分別高出M26果實89.27%和85.00%(表4)。
采收及貯藏40 d時,SH6果實的2種醛類物質(zhì)含量顯著高于M26果實,分別是順-7-十四碳烯醛和二十九烷醛,其中二十九烷醛含量在貯藏20 d時是M26果實的2.31倍。隨著貯藏時間延長,SH6和M26果實這兩種醛含量均呈上升趨勢。采收及貯藏40 d時,SH6果實的4種其他物質(zhì)含量顯著高于M26果實,包括α-法尼烯、α-香樹脂醇、(3β,24S)-5-烯豆甾醇和其他萜類化合物,隨著貯藏時間延長,這4種物質(zhì)含量呈先上升后下降趨勢(表5)。
2.6 SH6和M26富士蘋果果實常溫貯藏期間失重率和呼吸強度與果實角質(zhì)和蠟質(zhì)成分含量的相關(guān)性分析
相關(guān)性分析表明(圖5),貯藏期間果實的失重率與表皮蠟質(zhì)和角質(zhì)層蠟厚度呈顯著負相關(guān)(r=-0.85,r=-0.96),表明蠟質(zhì)層和角質(zhì)層越厚,果實的失重率就越低。失重率與羥基脂肪酸和酯類化合物含量呈極顯著正相關(guān)(r=0.81,r=0.87),表明這些親水性物質(zhì)含量越多就越有利于水分蒸發(fā)。呼吸強度與表皮蠟質(zhì)和角質(zhì)層蠟厚度呈顯著負相關(guān)(r=-0.77,r=-0.82),表明蠟質(zhì)層和角質(zhì)層越厚,果實的呼吸強度就越弱。呼吸強度與羥基脂肪酸和二羧酸含量呈顯著正相關(guān)(r=0.59,r=0.50),表明這些物質(zhì)有利于果實表皮內(nèi)外氣體交換。
3 討 論
砧木在果樹栽培產(chǎn)業(yè)發(fā)展過程中起關(guān)鍵作用,不同砧木對接穗的影響不同。植物表皮角質(zhì)層作為一層疏水性屏障,可以控制水分在表皮細胞外的細胞壁與大氣之間的流動[22]。嫁接不同的砧木會影響果實蠟質(zhì)和角質(zhì)層的積累,導(dǎo)致果實的角質(zhì)層和蠟質(zhì)層在厚度和成分上存在差異。矮化砧木通過影響樹體的激素水平達到樹體矮化的效果[23]。筆者在本研究中發(fā)現(xiàn),SH6果實角質(zhì)總量顯著高于M26果實,SH6果實中的14種脂肪酸、7種羥基脂肪酸、2種二羧酸和5種醇的含量也顯著高于M26果實。有研究表明,不同砧木會影響接穗的激素分泌。將黃瓜嫁接到南瓜砧木上,黃瓜植株中的脫落酸(ABA)濃度明顯增高[24]。油茶嫁接18號砧木后體內(nèi)吲哚乙酸(IAA)、反式玉米素(TZR)、玉米素(ZT)、水楊酸(SA)等多種植物激素含量均顯著高于53號砧木[25]。辣椒嫁接在Atlante砧木后體內(nèi)細胞分裂素(CTK)和ABA含量顯著高于Terrano砧木[26]。另外,ABA可通過調(diào)控角質(zhì)層代謝基因的表達模式影響角質(zhì)成分積累,ABA缺乏會導(dǎo)致甜橙果實成熟過程中角質(zhì)層透性增強[27]。目前,已證明轉(zhuǎn)錄因子MYB、WRKY和AP2/ERF 等均參與了植物蠟質(zhì)合成和轉(zhuǎn)運的調(diào)控[3]。因此筆者推測,SH6砧木可能通過分泌更多的植物激素調(diào)控角質(zhì)合成相關(guān)基因的表達,進而促進角質(zhì)單體的積累,但詳細作用機制還有待進一步研究。
蠟質(zhì)的成分和含量根據(jù)物種、個體發(fā)育和環(huán)境的變化而變化[28]。表皮蠟質(zhì)在控制水分散失,提高耐旱性、減輕紫外光傷害、維持植物表面清潔、抵抗細菌和真菌病原體傷害等方面發(fā)揮著重要作用[29]。筆者在本研究中發(fā)現(xiàn),SH6果實的蠟質(zhì)總量顯著高于M26果實,SH6果實中5種烷烴、6種醇、4種脂肪酸、12種酯類、2種醛類和4種其他物質(zhì)的含量也顯著高于M26果實。有研究表明,蘋果嫁接在中間砧SH40后,體內(nèi)IAA、GA(赤霉素)和ABA含量顯著高于自根砧嫁接[30]。嫁接在Micro-Tom上的番茄植株ABA含量顯著高于在Solanum pennellii上嫁接[31]。以P2和P16作為煙富3號的矮化中間砧時,葉片中ABA含量顯著高于其他砧穗組合,IAA/ABA和(ZT+IAA+GA3)/ABA的比值最小[32]。研究發(fā)現(xiàn),番茄果實中GA含量過高,會誘導(dǎo)一系列角質(zhì)層形成相關(guān)基因的表達,從而促進番茄果實蠟質(zhì)的沉積[33]。蘋果中MYB家族成員MdMYB30與MdKCS1基因啟動子結(jié)合,激活了MdKCS1基因轉(zhuǎn)錄表達,導(dǎo)致果實蠟質(zhì)積累[34]。此外,其他MYB家族成員(如MYB16/96/106)可調(diào)控梨果實表皮蠟生物合成[35-36]。因此筆者推測,SH6砧木可能通過分泌多種植物激素激活了蠟質(zhì)合成相關(guān)基因的表達,進一步促進了蠟質(zhì)成分的積累。但詳細作用機制還有待進一步研究。
研究表明,角質(zhì)層中的疏水晶體屏障被認為是高度有序、緊密排列的非環(huán)化合物,這些化合物與其他蠟質(zhì)成分相比更能有效阻止表皮中水分運動,使得果實在采后呈現(xiàn)出低水分蒸騰速率[37]。本研究結(jié)果表明,果實的蠟質(zhì)層和角質(zhì)層越厚,果實的失重率和呼吸強度就越低。羥基脂肪酸和酯類化合物含量越多就越有利于果實水分蒸發(fā),二羧酸含量有利于果實表皮內(nèi)外氣體交換。此外,筆者還觀察到M26果實表皮蠟質(zhì)在貯藏期間會產(chǎn)生更多的縫隙和凹陷,更加有助于水分蒸騰和內(nèi)外氣體交換,導(dǎo)致果實貯藏期間更高的失重率和呼吸速率。
4 結(jié) 論
與M26果實相比,SH6果實的表皮蠟質(zhì)層更厚,表面形態(tài)更為平整,且表皮蠟質(zhì)和角質(zhì)總量顯著高于M26果實,SH6果實角質(zhì)單體中的12種脂肪酸、5種羥基脂肪酸、2種二羧酸和4種醇含量,以及蠟質(zhì)單體中的5種烷烴、5種醇、2種脂肪酸、5種酯類、1種醛類和2種其他物質(zhì)在采收和貯藏期間的含量均顯著高于M26果實。由此可見,SH6果實具有較厚的表皮蠟質(zhì)層和更豐富的角質(zhì)和蠟質(zhì)含量,使其在貯藏期間具有更低的失重率和呼吸強度。
參考文獻References:
[1] FICH E A,SEGERSON N A,ROSE J K C. The plant polyester cutin:Biosynthesis,structure,and biological roles[J]. Annual Review of Plant Biology,2016,67:207-233.
[2] TRIVEDI P,NGUYEN N,HYKKERUD A L,H?GGMAN H,MARTINUSSEN I,JAAKOLA L,KARPPINEN K. Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits[J]. Frontiers in Plant Science,2019,10:431.
[3] WU W J,JIANG B,LIU R L,HAN Y C,F(xiàn)ANG X J,MU H L,F(xiàn)ARAG M A,SIMAL-GANDARA J,PRIETO M A,CHEN H J,XIAO J B,GAO H Y. Structures and functions of cuticular wax in postharvest fruit and its regulation:A comprehensive review with future perspectives[J]. Engineering,2023,23:118-129.
[4] YANG H B,ZOU Y Q,LI X,ZHANG M F,ZHU Z F,XU R W,XU J,DENG X X,CHENG Y J. QTL analysis reveals the effect of CER1-1 and CER1-3 to reduce fruit water loss by increasing cuticular wax alkanes in citrus fruit[J]. Postharvest Biology and Technology,2022,185:111771.
[5] ARRIETA-BAEZ D,PEREA FLORES M J,MéNDEZ-MéNDEZ J V,MENDOZA LEóN H F,GóMEZ-PATI?O M B. Structural studies of the cutin from two apple varieties:Golden delicious and red delicious (Malus domestica)[J]. Molecules,2020,25(24):5955.
[6] KLEIN B,THEWES F R,ROGéRIO DE OLIVEIRA A,BRACKMANN A,BARIN J S,CICHOSKI A J,WAGNER R. Development of dispersive solvent extraction method to determine the chemical composition of apple peel wax[J]. Food Research International,2019,116:611-619.
[7] LEIDE J,DE SOUZA A X,PAPP I,RIEDERER M. Specific characteristics of the apple fruit cuticle:Investigation of early and late season cultivars ‘Prima’ and ‘Florina’ (Malus domestica Borkh.)[J]. Scientia Horticulturae,2018,229:137-147.
[8] 柴奕豐. 蘋果貯藏期間表皮蠟質(zhì)變化對生理品質(zhì)的影響[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2020.
CHAI Yifeng. Effects of cuticular wax changes on physiological quality of apple during storage[D]. Shenyang:Shenyang Agricultural University,2020.
[9] 李民吉,張強,李興亮,周貝貝,楊雨璋,周佳,張軍科,魏欽平. SH系矮化中間砧對‘富士’蘋果樹體生長、產(chǎn)量和果實品質(zhì)的影響[J]. 園藝學(xué)報,2018,45(10):1999-2007.
LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,YANG Yuzhang,ZHOU Jia,ZHANG Junke,WEI Qinping. Effects of five different dwarfing interstocks of SH on growth,light distribution,yield and fruit quality in ‘Fuji’ apple trees[J]. Acta Horticulturae Sinica,2018,45(10):1999-2007.
[10] DE MACEDO T A,DA SILVA P S,SANDER G F,WELTER J F,RUFATO L,DE ROSSI A. Productivity and quality of ‘Fuji Suprema’ apple fruit in different rootstocks and growing conditions[J]. Scientia Horticulturae,2019,256:108651.
[11] MILO?EVI? T,MILO?EVI? N,MLADENOVI? J. Role of apple clonal rootstocks on yield,fruit size,nutritional value and antioxidant activity of ‘Red Chief? Camspur’ cultivar[J]. Scientia Horticulturae,2018,236:214-221.
[12] 宋伊真,王芝云,沙廣利,張玉剛,祝軍,戴洪義. 不同砧穗組合的蘋果果實總酚、類黃酮和果皮色素含量變化的研究[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2014,31(3):172-176.
SONG Yizhen,WANG Zhiyun,SHA Guangli,ZHANG Yugang,ZHU Jun,DAI Hongyi. Research on the dynamic changes of total phenols,flavonoids and pericarp pigment content in apples derived from different stock-scion combinations during growth and development period[J]. Journal of Qingdao Agricultural University (Natural Science),2014,31(3):172-176.
[13] 賈菊艷. 兩種中間砧對采后‘富士’蘋果品質(zhì)、抗氧化和抗病性影響的比較[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2022.
JIA Juyan. Comparison of effects of two intermediate anvils on quality,oxidation resistance and disease resistance of postharvest ‘Fuji’ apple[D]. Lanzhou:Gansu Agricultural University,2022.
[14] 陳學(xué)森,韓明玉,蘇桂林,劉鳳之,過國南,姜遠茂,毛志泉,彭福田,束懷瑞. 當今世界蘋果產(chǎn)業(yè)發(fā)展趨勢及我國蘋果產(chǎn)業(yè)優(yōu)質(zhì)高效發(fā)展意見[J]. 果樹學(xué)報,2010,27(4):598-604.
CHEN Xuesen,HAN Mingyu,SU Guilin,LIU Fengzhi,GUO Guonan,JIANG Yuanmao,MAO Zhiquan,PENG Futian,SHU Huairui. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China[J]. Journal of Fruit Science,2010,27(4):598-604.
[15] JIN W M,ZHANG Q,LIU S Z,WEI Q P,JIN W M,CHENG Z M,XUE X H,YANG T Z. Genetic diversity of 41 apple rootstocks based on simple sequence repeat markers[J]. Journal of the American Society for Horticultural Science,2012,137(1):51-56.
[16] RABI F,RAB A,RAHMAN K U,MUNIR M,BOSTAN N. Response of apple cultivars to graft take success on apple rootstock[J]. Journal of Biology,Agriculture and Healthcare,2014,4(3):78-84.
[17] WANG Y,YANG Q,JIANG H,WANG B,BI Y,LI Y C,PRUSKY D. Reactive oxygen species-mediated the accumulation of suberin polyphenolics and lignin at wound sites on muskmelons elicited by benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester[J]. Postharvest Biology and Technology,2020,170:111325.
[18] LI X,BI Y,WANG J J,DONG B Y,LI H J,GONG D,ZHAO Y,TANG Y M,YU X Y,SHANG Q. BTH treatment caused physiological,biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening[J]. Journal of Proteomics,2015,120:179-193.
[19] 徐秀蘋,谷丹,馮旻. 適用于掃描電鏡的擬南芥蠟質(zhì)樣品制備方法[J]. 電子顯微學(xué)報,2015,34(1):82-84.
XU Xiuping,GU Dan,F(xiàn)ENG Min. Comparison of sample preparation methods for scanning electron microscopy(SEM) of leaf epicuticular waxes in Arabidopsis[J]. Journal of Chinese Electron Microscopy Society,2015,34(1):82-84.
[20] 陳劍婷,吳坤勝,周磊磊,宋歡,李沆,曲桂芹. 蘋果果實角質(zhì)層提取及分析方法的優(yōu)化[J]. 中國農(nóng)學(xué)通報,2017,33(16):53-58.
CHEN Jianting,WU Kunsheng,ZHOU Leilei,SONG Huan,LI Hang,QU Guiqin. Optimization of extraction and analysis method of apple fruit cuticle[J]. Chinese Agricultural Science Bulletin,2017,33(16):53-58.
[21] 唐瑛. 發(fā)育及貯藏期蘋果梨果皮蠟質(zhì)對Alternaria alternata侵染的影響[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2016.
TANG Ying. Effect of cuticular wax of pingguoli pear from developing and storage on Alternaria alternata pre-penetration process[D]. Lanzhou:Gansu Agricultural University,2016.
[22] SHEPHERD T,WYNNE GRIFFITHS D. The effects of stress on plant cuticular waxes[J]. New Phytologist,2006,171(3):469-499.
[23] 隗曉雯,郭靜,王菲,張學(xué)英,徐繼忠. 不同矮化砧木葉片酶活性與內(nèi)源激素含量的差異[J]. 北方園藝,2013(14):15-18.
WEI Xiaowen,GUO Jing,WANG Fei,ZHANG Xueying,XU Jizhong. Difference of enzyme activity and the content of endogenous hormones in the leaves of different apple dwarfing rootstocks[J]. Northern Horticulture,2013(14):15-18.
[24] NIU M L,SUN S T,NAWAZ M A,SUN J Y,CAO H S,LU J Y,HUANG Y,BIE Z L. Grafting cucumber onto pumpkin induced early stomatal closure by increasing ABA sensitivity under salinity conditions[J]. Frontiers in Plant Science,2019,10:1290.
[25] 龍偉,姚小華,呂樂燕. 基于芽苗砧嫁接油茶砧穗創(chuàng)傷后內(nèi)源激素動態(tài)變化分析[J]. 植物研究,2021,41(2):232-242.
LONG Wei,YAO Xiaohua,Lü Leyan. Dynamic changes of endogenous hormones in rootstocks and scions within nurse seedling graft in Camellia oleifera under wound[J]. Bulletin of Botanical Research,2021,41(2):232-242.
[26] GáLVEZ A,ALBACETE A,MARTíNEZ-ANDúJAR C,DEL AMOR F M,LóPEZ-MARíN J. Contrasting rootstock-mediated growth and yield responses in salinized pepper plants (Capsicum annuum L.) are associated with changes in the hormonal balance[J]. International Journal of Molecular Sciences,2021,22(7):3297.
[27] ROMERO P,LAFUENTE M T. Abscisic acid deficiency alters epicuticular wax metabolism and morphology that leads to increased cuticle permeability during sweet orange (Citrus sinensis) fruit ripening[J]. Frontiers in Plant Science,2020,11:594184.
[28] BAKER E A. The influence of environment on leaf wax development in Brassica oleracea var. gemmifera[J]. New Phytologist,1974,73(5):955-966.
[29] RAHMAN T,SHAO M X,PAHARI S,VENGLAT P,SOOLANAYAKANAHALLY R,QIU X,RAHMAN A,TANINO K. Dissecting the roles of cuticular wax in plant resistance to shoot dehydration and low-temperature stress in Arabidopsis[J]. International Journal of Molecular Sciences,2021,22(4):1554.
[30] 孟紅志,姜璇,陳修德,李中勇,徐繼忠. SH40中間砧和自根砧對蘋果根系生長和內(nèi)源激素含量的影響[J]. 園藝學(xué)報,2018,45(6):1193-1203.
MENG Hongzhi,JIANG Xuan,CHEN Xiude,LI Zhongyong,XU Jizhong. Effects of SH40 interstocks and scion-roots on apple root growth and content of endogenous hormones[J]. Acta Horticulturae Sinica,2018,45(6):1193-1203.
[31] PATANè C,COSENTINO S L. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate[J]. Agricultural Water Management,2010,97(1):131-138.
[32] 楊生瑞,毛娟,馬宗桓,侯應(yīng)軍,李鵬鵬,李建明,馮童,陳佰鴻. 不同矮化中間砧對煙富3號蘋果幼樹葉片內(nèi)源激素及糖含量的影響[J]. 果樹學(xué)報,2022,39(7):1203-1212.
YANG Shengrui,MAO Juan,MA Zonghuan,HOU Yingjun,LI Pengpeng,LI Jianming,F(xiàn)ENG Tong,CHEN Baihong. Effects of different dwarfing interstocks on endogenous hormone and sugar contents in leaves of young Yanfu No. 3 apple trees[J]. Journal of Fruit Science,2022,39(7):1203-1212.
[33] LI R,SUN S,WANG H J,WANG K T,YU H,ZHOU Z,XIN P Y,CHU J F,ZHAO T M,WANG H Z,LI J Y,CUI X. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato[J]. Nature Communications,2020,11(1):5844.
[34] ZHANG Y L,ZHANG C L,WANG G L,WANG Y X,QI C H,ZHAO Q,YOU C X,LI Y Y,HAO Y J. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis[J]. BMC Plant Biology,2019,19(1):362.
[35] WU X,YIN H,CHEN Y Y,LI L,WANG Y Z,HAO P P,CAO P,QI K J,ZHANG S L. Chemical composition,crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage[J]. Postharvest Biology and Technology,2017,132:71-80.
[36] WU X,CHEN Y Y,SHI X J,QI K J,CAO P,LIU X Y,YIN H,ZHANG S L. Effects of palmitic acid (16:0),hexacosanoic acid (26:0),ethephon and methyl jasmonate on the cuticular wax composition,structure and expression of key gene in the fruits of three pear cultivars[J]. Functional Plant Biology,2020,47(2):156-169.
[37] 潘永貴. 果實表皮組織對采后失水影響研究進展[J]. 廣東農(nóng)業(yè)科學(xué),2023,50(10):1-10.
PAN Yonggui. Research progress in the effects of epidermal tissue on postharvest fruit water loss[J]. Guangdong Agricultural Sciences,2023,50(10):1-10.
收稿日期:2024-03-27 接受日期:2024-05-24
基金項目:(701)校科研項目統(tǒng)管(0722089)
作者簡介:李芳紅,女,在讀碩士研究生,研究方向為采后生物學(xué)與技術(shù)。E-mail:lifanghong2022@163.com
*通信作者Author for correspondence. E-mail:biyang@gsau.edu.cn