摘要: 通過將一類含阻尼器、彈簧、慣容的無源網絡及接地的負剛度元件引入到基礎隔振系統中,研究系統的優化設計問題。建立系統的動力學方程,得到無量綱化的頻率響應函數。由于系統的幅頻響應曲線存在四個固定點,故利用廣義固定點法進行參數優化。將這四個固定點調整到同一高度,得到系統的最優慣容質量比、最優固有頻率比和最優角頻率比的表達式。令三個不變頻率處的幅值與四個固定點處的幅值相等,計算得到最優阻尼比的表達式。通過Hurwitz穩定性判據推導得到取最優參數值時系統穩定的充分必要條件。通過與其他三種最優化隔振器進行對比,發現所提的優化后的隔振系統具有更優的H∞ 性能,且在多層樓房的減振中也具有更優的輸出響應。
關鍵詞: 基礎隔振器;"負剛度;"慣容;"廣義固定點法;"參數優化
中圖分類號: TU352.1 """文獻標志碼: A """文章編號: 1004-4523(2024)11-1836-12
DOI:10.16385/j.cnki.issn.1004-4523.2024.11.005
引""言
由于成本低、可靠性高、實現簡單等優勢,基礎隔振系統(Base Isolation System,BIS)受到廣泛關注,在許多減振領域得到了成功應用[1?2]。吳應雄等[3]提出一類復合隔振系統,并將其應用于長周期地震動作用下的高層樓房減振,研究發現該系統能有效控制隔振層的最大位移,且同時保證隔振層以上的樓層也具有較好的減振效果。劉艷等[4]將隔振系統應用到各層高架軌道,并進行了匹配設計,發現在改善沿線環境隔振效果的同時還兼顧車?軌?橋各層子系統的動力響應特性。宋丹龍等[5]將一類低頻隔振器應用到了電梯中,實現了電梯轎廂的低頻隔振,提高了人們乘坐電梯的舒適性。ZHANG等[6]將隔振器應用到LNG液化儲罐系統中,發現隔振器能有效地減小地震下罐體的振動,從而很好地保護罐體。因此,基礎隔振器具有廣泛的應用前景及重要的應用價值。
IKAGO等[7]提出一類調諧黏性質量阻尼(Tuned Viscous Mass Damper,簡稱TVMD)隔振器,并通過傳統固定點法[8]對其參數進行優化設計,將所得最優隔振器應用于房屋在地震激勵下的減振研究,研究表明在地震時TVMD隔振器能以相對較小的質量來抑制較大質量的樓房的振動。隨后,學者們相繼研究各類不同結構的基礎隔振器的優化設計問題。HU等[9]將SMITH[10]提出的無源機械元件“慣容”應用于基礎隔振器的優化設計中,針對不同結構的模型,通過傳統固定點法進行系統的參數優化,得到各元件值的最優解析解。近些年,也出現了許多其他含慣容的隔振系統優化研究[11?13]。其中,文獻[11]提出了一類含接地慣容的隔振器,通過優化得到系統各參數的最優值,并將其應用于多自由度振動系統,結果表明此系統能夠更有效地抑制系統的振動。文獻[12]通過利用MATLAB中的優化工具箱對三種含慣容?彈簧?阻尼器網絡的隔振器進行和的數值優化,得到這兩種性能指標下的數值最優解。BARREDO等[13]通過對不同結構的彈簧?阻尼器?慣容網絡進行數值優化,得到數值解。
負剛度是近年來提出的機械構造結構,負剛度性能可以通過倒立擺、壓桿機構等物理結構構造獲得,目前越來越多的學者[14?16]構造出性能穩定的負剛度特性物理結構,為日后在機械工程上的應用提供了物理基礎。隨著具有負剛度特性的機械元件被提出及成功應用[17?18],一些學者將其應用到動力吸振和隔振系統中[19?23],"研究發現引入負剛度元件的隔振器能夠在原系統減振性能的基礎上得到進一步的提升。其中,ISLAM等[22]提出了四種基于負剛度的隔振器系統,并通過傳統固定點法對其進行優化設計,得到各系統的參數最優解。WANG等[23]通過傳統固定點法優化設計了一類含負剛度元件的單自由度減振系統,其最優系統性能相比于不含負剛度的情形得到進一步提升。
隨著隔振系統中機械網絡的復雜度增加,系統幅頻響應曲線的固定點數量也隨之增加,使得傳統的固定點法很難適用。為此,BARREDO等[24]提出了采用廣義固定點法解決當減振系統的幅頻響應曲線出現四個固定點時的優化問題,并指出該方法同樣適用于復雜隔振網絡的優化設計。采用文獻[24]中的方法進行研究,發現阻尼器?彈簧?慣容串聯的隔振系統相較于其他隔振網絡系統具有較優的性能。由此,本文提出了一類含阻尼器?彈簧?慣容網絡及負剛度元件的基礎隔振器,通過廣義固定點法對系統進行優化設計,推導出了在負剛度比和質量比給定情況下,最優阻尼比、最優固有頻率比、最優角頻率比和最優慣容質量比的解析表達式。并且,通過Hurwitz穩定性判據,給出負剛度比的范圍,以保證系統的穩定。另外,將最優化后的隔振器應用到多層樓房的減振系統中,與其他三種已有的隔振系統進行對比,發現本文提出的隔振系統在地震這種隨機外界激勵下也具有良好的隔振性能。
1 問
2 優化過程和結果
3 性能對比
4 結""論
本文提出了一種含阻尼器?彈簧?慣容的無源網絡及負剛度元件的隔振系統,并研究了此系統的優化設計問題。本文將最新的廣義固定點法應用到研究隔振系統中,得到解析解。研究結果除應用在樓房模型進行減振外,也可應用于橋梁、儲液罐等振動控制系統的減振設計,并可為后續隔振系統的研究提供基礎。
(1)"研究發現,系統的幅頻響應曲線存在四個固定點,故通過廣義固定點法對其進行優化(算法1)。
(2)"推導出了在給定負剛度比及質量比的情況下系統的最優慣容質量比、最優固有頻率比、最優角頻率比及最優阻尼比的解析表達式(定理1及定理2)。
(3)"根據Hurwitz穩定性判據,推導出了在參數取最優值時系統穩定的充分必要條件,此條件與給定的負剛度比及質量比相關(定理3)。
(4)"根據所推導出的定理,將此類系統的優化設計步驟進行了概括(算法2)。
(5)"通過時域仿真,說明了相比于其他文獻中三種優化后的隔振器,本文優化后的基礎隔振系統在三種地震波下具有相對較優的輸出響應性能。
參考文獻:
[1] SYMANS M D,"CHARNEY F A,"WHITTAKER A S,"et al. Energy dissipation systems for seismic applications:"current practice and recent developments[J]. Journal of Structural Engineering,"2008,"134(1):"3?21.
[2] LUO H,"ZHANG R F,"WENG D. Mitigation of liquid sloshing in storage tanks by using a hybrid control method[J]. Soil Dynamics and Earthquake Engineering,"2016,"90:"183?195.
[3] 吳應雄,顏桂云,石文龍,等. 長周期地震動作用下高層隔震結構減震性能試驗研究[J]. 振動工程學報,2017,30(5):"806?816.
WU Yingxiong,"YAN Guiyun,"SHI Wenlong,"et al. "Experimental study on the seismic reduction performance of high?rise isolated structure under long?period ground motions[J]. Journal of Vibration Engineering,"2017,"30(5):"806?816.
[4] 劉艷,"羅雁云. 城市高架軌道多層隔振系統影響參數匹配[J]. 同濟大學學報(自然科學版),"2018,"46(11):"1520?1527.
LIU Yan,"LUO Yanyun. Parameter matching on multi-layer vibration isolation system of viaduct rail transit[J]. Journal of Tongji University (Natural Science),"2018,"46(11):"1520?1527.
[5] 宋丹龍,"師樸,"杜春華,"等. 電梯垂直低頻隔振器設計與分析[J]. 振動與沖擊,"2022,"41(19):"296?302.
SONG Danlong,"SHI Pu,"DU Chunhua,"et al. Design and analysis of elevator vertical low frequency vibration isolator[J]. Journal of Vibration and Shock,"2022,"41(19):"296?302.
[6] ZHANG R F,"ZHAO Z P,"PAN C. Influence of mechanical layout of inerter systems on seismic mitigation of storage tanks[J]. Soil Dynamics and Earthquake Engineering,"2018,"114:"639?649.
[7] IKAGO K,"SAITO K,"INOUE N. Seismic control of single?degree?of?freedom structure using tuned viscous mass damper[J]. Earthquake Engineering amp; Structural Dynamics,"2012,"41(3):"453?474.
[8] DEN HARTOG J P. Mechanical Vibrations[M]. New York:"McGraw?Hill,"1956.
[9] HU Y L,"CHEN M Z Q,"SHU Z,"et al. Analysis and optimisation for inerter?based isolators via fixed?point theory and algebraic solution[J]. Journal of Sound and Vibration,"2015,"346:"17?36.
[10] SMITH M C. Synthesis of mechanical networks:"the "inerter[J]. IEEE Transactions on Automatic Control,"2002,"47(10):"1648?1662.
[11] MARIAN L,"GIARALIS A. Optimal design of a novel tuned "mass?damper?inerter (TMDI)"passive vibration control configuration for stochastically support?excited structural systems[J]. Probabilistic Engineering Mechanics,"2014,"38:"156?164.
[12] JAVIDIALESAADI A,"WIERSCHEM N E. Design and performance evaluation of inerter?based tuned mass dampers for a ground acceleration excited structure[J]. Soil Dynamics and Earthquake Engineering,"2021,"140:"106463.
[13] BARREDO E,"LARIOS G M,"MAYéN J,"et al. Optimal design for high?performance passive dynamic vibration absorbers under random vibration[J]. Engineering Structures,"2019,"195:"469?489.
[14] WANG Y,"JING X J. Nonlinear stiffness and dynamical response characteristics of an asymmetric X?shaped structure[J]. Mechanical Systems and Signal Processing,"2019,"125:"142?169.
[15] ZOU D L,"LIU G Y,"RAO Z S,"et al. A device capable of customizing nonlinear forces for vibration energy harvesting,"vibration isolation,"and nonlinear energy sink[J]. Mechanical Systems and Signal Processing,"2021,"147:"107101.
[16] HAO Y,"SHEN Y J,"WANG J F,"et al. A piecewise negative stiffness mechanism and its application in dynamic vibration absorber[J]. International Journal of Mechanical System Dynamics,"2021,"1(2):173?181.
[17] 程志鵬,"汪志昊,"郜輝,"等.負剛度非線性黏滯阻尼器對斜拉索振動控制研究[J]. 振動工程學報,"2022,"35(3):"652?662.
CHENG Zhipeng,"WANG Zhihao,"GAO Hui,"et al. Nonlinear viscous dampers paralleled with negative stiffness for cable vibration control[J]. Journal of Vibration Engineering,"2022,"35(3):"652?662.
[18] 劉海平,"黃志鋒,"邊新孝. 負剛度吸振器對有限長彈性梁的抑振效果研究[J]. 振動與沖擊,"2022,"41(4):"134?141.
LIU Haiping,"HUANG Zhifeng,"BIAN Xinxiao. A study on vibration suppression effect of a finite elastic beam with a negative stiffness vibration absorber[J]. Journal of Vibration and Shock,"2022,"41(4):"134?141.
[19] SHEN Y J,"PENG H B,"LI X H,"et al. Analytically optimal parameters of dynamic vibration absorber with negative stiffness[J]. Mechanical Systems and Signal Processing,"2017,"85:"193?203.
[20] SHEN Y J,"WANG X R,"YANG S P,"et al. Parameters optimization for a kind of dynamic vibration absorber with negative stiffness[J]. Mathematical Problems in Engineering,"2016,"2016:"9624325 .
[21] 王孝然,"申永軍,"楊紹普,"等. 含負剛度元件的三要素型動力吸振器的參數優化[J]. 振動工程學報,"2017,"30(2):"177?184.
WANG Xiaoran,"SHEN Yongjun,"YANG Shaopu,"et al. Parameter optimization of three?element type dynamic vibration absorber with negative stiffness[J]. Journal of Vibration Engineering,"2017,"30(2):"177?184.
[22] ISLAM N U,"JANGID R S. Optimum parameters and performance of negative stiffness and inerter based dampers for base?isolated structures[J]. Bulletin of Earthquake Engineering,"2023,"21:"1411?1438.
[23] WANG M,"SUN F F,"YANG J Q,"et al. Seismic protection of SDOF systems with a negative stiffness amplifying damper[J]. Engineering Structures,"2019,"190:"128?141.
[24] BARREDO E,"LARIOS J G M,"COLíN J,"et al. A novel high?performance passive non?traditional inerter-based dynamic vibration absorber[J]. Journal of Sound and Vibration,"2020,"485:"115583.
[25] WARBURTON G B. Optimum absorber parameters for various combinations of response and excitation parameters[J]. Earthquake Engineering amp; Structural Dynamics,"1982,"10(3):"381?401.
[26] BADUIDANA M,"KENFACK?JIOTSA A. Optimal design of inerter?based isolators minimizing the compliance and mobility transfer function versus harmonic and random ground acceleration excitation[J]. Journal of Vibration and control,"2021,"27(11?12):"1297?1310.
[27] YE K,"NYANGI P. "optimization of tuned inerter damper with negative stiffness device subjected to support excitation[J]. Shock and Vibration,"2020,"2020:"7608078.
[28] DE DOMENICO D,"RICCIARDI G. An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)[J]. Earthquake Engineering amp; Structural Dynamics,"2018,"47(5):"1169?1192.
[29] 曹資,"薛素鐸,"王雪生,"等. 空間結構抗震分析中的地震波選取與阻尼比取值[J]. 空間結構,"2008,"14(3):"3?8.
CAO Zi,"XUE Suduo,"WANG Xuesheng,"et al. Selection of earthquake waves and values of damping ratio for space structures in aseismic analysis[J]. Spatial Structures,"2008,"14(3):"3?8.
[30] LAZAR I F,"NEILD S A,"WAGG D J. Vibration suppression of cables using tuned inerter dampers[J]. Engineering Structures,"2016,"122:"62?71.
[31] 劉良坤,譚平,閆維明,等. 一種新型慣容減震器的設計及減震效果研究[J]. 振動與沖擊,"2018,"37(15):156?163.
LIU Liangkun,"TAN Ping,"YAN Weiming,"et al. Design of a novel inerter damper and its aseismic effect under earthquake[J]. Journal of Vibration and Shock,"2018,"37(15):"156?163.
[32] BHOWMIK K,"DEBNATH N. On stochastic design of negative stiffness integrated tuned mass damper (NS?TMD)[J]. Journal of Vibration Engineering amp; Technologies,"2021,"9:"2197?2211.
Optimization design of an isolation system with an inerter and an element of negative stiffness
WANG Kai,"WU Li-ting,"LIU Fei
(Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education),"School of Internet of Things Engineering,"Jiangnan University,"Wuxi 214122,"China)
Abstract:"This article investigates the optimization problem of a novel base isolation system by introducing a passive network consisting of one damper,"one spring and one inerter and a grounded element with negative stiffness. The dynamic equations of the system are established and the frequency response function in the dimensionless form is derived. Since it is found that the amplitude-frequency response curves pass through four fixed-points,"the extended fixed-point method is utilized to solve the parameter optimization problem. The explicit expressions of the optimal inertance-to-mass ratio,"the optimal natural frequency ratio,"and the optimal corner frequency ratio of the system are derived by adjusting the four fixed points to the same height. The expression of the optimal damping ratio is calculated by letting the amplitudes of the three invariant frequencies among the four fixed points to the same amplitudes as those of the four fixed-points. A necessary and sufficient condition for the system with optimal parameter values to be stable is derived by utilizing the Hurwitz stability criterion. Compared with other three optimal isolation systems,"the optimal isolation system in this article can provide better H∞"performance and better output responses in the multi-storey building vibration system.
Key words:"base isolator;"negative stiffness;"inerter;"extended fixed-point theory;"parameter optimization
作者簡介:王""鍇(1988―),男,博士,副教授。"E-mail:"kaiwang@jiangnan.edu.cn。