摘要: 抽油桿柱是由接箍與抽油桿通過螺紋連接組成的細長桿柱。對抽油桿柱動力學行為的研究是預防抽油桿柱失效破壞,降低油井運行成本的基礎(chǔ)。針對抽油桿柱的縱橫扭耦合振動,提出桿管摩擦力產(chǎn)生的繞軸扭矩是扭轉(zhuǎn)振動的激勵這一觀點。考慮摩擦力對桿柱縱橫扭耦合振動的影響,建立了具有初彎曲的定向井抽油桿柱在頂端位移激勵、底端載荷激勵、彎曲井眼軌道激勵與油管約束條件下的縱橫扭耦合振動仿真模型。采用四階龍格?庫塔法實現(xiàn)了對仿真模型的求解和對桿柱動力學行為的仿真模擬。仿真結(jié)果表明:桿柱的縱橫扭耦合振動對桿柱縱向、橫向振動仿真結(jié)果均有影響,相對來說對縱向振動的影響并不明顯;油井造斜段的桿管接觸力大,桿柱受壓段的桿管碰撞嚴重,因此油井的造斜段與桿柱的受壓段為桿管偏磨的危險點;正常預緊情況下,桿柱的扭轉(zhuǎn)振動不足以導致抽油桿柱脫扣,但當接箍螺紋預緊力降至桿柱的最大扭矩以下后,扭轉(zhuǎn)振動即可能導致抽油桿柱脫扣。
關(guān)鍵詞: 耦合振動;"抽油桿柱;"定向井;"軌道激勵;"摩擦扭矩
中圖分類號: O327;"TE933+.2 """文獻標志碼: A """""文章編號: 1004-4523(2024)11-1936-14
DOI:10.16385/j.cnki.issn.1004-4523.2024.11.014
引""言
抽油桿柱作為將地面抽油機能量傳遞至井底抽油泵的主要載體,是有桿泵抽油系統(tǒng)的重要組成部分[1]。在油井生產(chǎn)過程中,抽油桿柱的失效破壞是油井停井作業(yè)的主要原因之一。油井停井作業(yè)不僅增加了油井的生產(chǎn)成本,還降低了油井的產(chǎn)量,進而導致巨大的經(jīng)濟損失。油井運行過程中桿柱的振動是桿柱失效破壞的主要原因,因此對抽油桿柱振動的研究是預防桿柱失效破壞的基礎(chǔ)。
目前大量學者對抽油桿柱的縱向振動與橫向振動進行了研究,實現(xiàn)了對油井懸點示功圖預測仿真與桿管偏磨現(xiàn)象的分析。1963年,GIBBS[2]采用一維有阻尼波動方程建立了描述抽油桿柱縱向振動的仿真模型,并采用有限差分法實現(xiàn)了仿真求解,為抽油桿柱動力學研究提供了思路。后來有研究人員分別考慮柱塞磨損、動靜摩擦、溫度變化等不同的影響因素,改進了抽油桿柱縱向振動的仿真模型[3?7]。孫秀榮等[8]考慮屈曲變形激勵建立了直井抽油桿柱橫向振動仿真模型。
LUKASIEWICZ[9]基于縱橫彎曲梁理論提出了定向井抽油桿柱在井斜平面的縱橫耦合振動仿真模型。XU等[10?11]采用虛位移原理建立了抽油桿柱在彎曲井眼內(nèi)的縱橫耦合振動仿真模型。WANG等[12?13]考慮彎曲井眼軌道對軸向運動抽油桿柱橫向振動的激勵,建立了考慮彎曲井眼軌道激勵的抽油桿柱縱橫耦合振動仿真模型。在以上桿柱縱向與橫向仿真模型中均僅考慮了桿管庫侖摩擦力對桿柱縱向振動的影響,而忽略了其對橫向振動的影響。
抽油桿柱失效破壞的形式除了桿管偏磨外還包括抽油桿柱的脫扣現(xiàn)象。抽油桿柱的脫扣現(xiàn)象表明:除了縱向和橫向振動以外,抽油桿柱還存在扭轉(zhuǎn)振動,即抽油桿柱的動力學行為是縱橫扭的耦合振動。與鉆柱、螺桿泵不同,抽油機井在運行過程中,抽油桿柱不受系統(tǒng)外部扭矩,因此對抽油桿柱扭轉(zhuǎn)激勵的研究也就成為了抽油桿柱扭轉(zhuǎn)振動研究的難點。王文昌等[14]曾采用有限元法建立了定向井抽油桿柱的縱橫扭耦合振動仿真模型,但其模型中未指出抽油桿柱扭轉(zhuǎn)振動的激勵。針對這一問題,本文作者結(jié)合抽油桿柱縱橫耦合振動現(xiàn)象認識到:抽油機井運行過程中彎曲變形的抽油桿柱與油管之間存在接觸力與相對運動,相對運動又將導致桿管接觸點出現(xiàn)摩擦力,桿管之間的摩擦力作用點分別為油管的內(nèi)壁以及抽油桿柱表面,作用于抽油桿柱表面上的摩擦力在與抽油桿柱軸線不同向時將產(chǎn)生繞其軸線的扭矩,進而激勵抽油桿柱產(chǎn)生扭轉(zhuǎn)振動。因此,桿管摩擦力產(chǎn)生的繞軸扭矩即為抽油桿柱扭轉(zhuǎn)振動的真實激勵。
抽油桿柱的摩擦扭矩是導致桿柱扭轉(zhuǎn)振動的主要原因,因此對摩擦扭矩的仿真建模是抽油桿柱扭轉(zhuǎn)振動建模的基礎(chǔ)。目前大量學者對鉆柱在井眼內(nèi)的摩擦扭矩進行了分析。JOHANCSIK等[15]將鉆柱簡化為沒有剛度的繩索,假設(shè)鉆柱軸線與井眼重合,考慮軸向受力與鉆柱自重推導出了鉆柱與井壁的接觸力模型;在不考慮摩擦力方向的前提下,基于鉆柱與井壁接觸力以及摩擦系數(shù)建立了鉆柱摩擦扭矩的仿真模型。HO[16]考慮彎曲井眼軌道對鉆柱彎曲變形的影響,以及彎曲鉆柱剛度對鉆柱與井壁接觸力的影響,建立了鉆柱摩擦扭矩的仿真模型。李子豐等[17]考慮鉆井液等對鉆柱阻力的影響,考慮軸向運動與鉆柱自身旋轉(zhuǎn)運動對阻力方向的影響、阻力方向?qū)δΣ僚ぞ氐挠绊懱岢隽说刃Σ料禂?shù)的概念,建立了鉆柱穩(wěn)態(tài)拉力與扭矩仿真模型。此外,有的學者考慮不同的影響因素建立了描述鉆柱動力學行為的有限元模型,但其在計算摩擦扭矩時所采用的模型與上述兩類模型并無本質(zhì)差別[18?21]。祝效華等等[22?24]基于Hamilton原理與有限元原理建立了描述鉆柱在彎曲井眼軌道內(nèi)縱橫耦合振動的動力學仿真模型,并據(jù)此得到了鉆柱與井壁接觸力的仿真模型,然后以鉆柱縱橫扭耦合振動的仿真模型為基礎(chǔ),考慮縱向振動與扭轉(zhuǎn)振動對桿柱摩擦力方向的影響建立摩擦扭矩的仿真模型。此外在部分鉆柱縱橫扭耦合仿真模型中,部分學者還考慮了桿柱橫向振動導致的相對速度改變對摩擦扭矩的影響[25?26]。
以上鉆柱摩擦扭矩的研究為抽油桿柱摩擦扭矩的研究提供了思路。但針對抽油桿柱這一研究對象,易忽略如下問題:(1)由于鉆柱工作特性的影響,自身的旋轉(zhuǎn)運動是影響相對運動速度橫向分量的主要原因,因此忽略桿柱橫向振動對桿管相對運動速度的影響不大。但抽油桿柱工作過程中不存在主動的旋轉(zhuǎn)運動,即橫向振動是影響桿管之間的相對運動的主要因素,在仿真建模時應(yīng)特別注意。(2)除桿管相對運動速度外,桿柱軸線方向也是影響摩擦扭矩的原因。對于鉆柱來說,其軸向速度比較小、橫向速度比較大,因此桿管相對運動速度對摩擦扭矩的影響要遠大于桿柱軸線方向的影響,以上模型中均忽略了桿柱彎曲形態(tài)的影響。但對于抽油桿柱,其工作過程中存在軸向往復運動,軸向速度比較大、橫向速度比較小,桿柱彎曲形態(tài)對摩擦扭矩的影響明顯,因此在建立仿真模型時需要考慮桿柱彎曲變形的影響。
通過對以上研究內(nèi)容的分析可知,由于縱向振動、橫向振動與彎曲井眼軌道的共同作用,抽油桿柱受油管庫侖摩擦力的方向不再與桿柱軸線方向一致,進而產(chǎn)生繞桿柱軸線的摩擦扭矩,導致抽油桿柱產(chǎn)生扭轉(zhuǎn)振動。同時桿柱的扭轉(zhuǎn)振動將影響桿柱彎曲剪切力與桿管相對運動,進而影響桿柱振動。
目前已有部分學者對抽油桿柱的縱橫扭耦合振動進行了研究,總結(jié)其研究,存在如下不足:(1)沒有研究彎曲井眼軌道對軸向往復運動抽油桿柱縱橫扭耦合振動的影響;(2)未明確指出抽油桿柱扭轉(zhuǎn)振動的激勵。
本文針對上述不足,將定向井抽油桿柱的動力學問題概括為:具有初彎曲的抽油桿柱在頂端周期性位移激勵、底端載荷激勵與彎曲井眼軌道激勵下,考慮油管壁與抽油桿柱的彈性碰撞、桿管之間的庫侖摩擦力與液體黏滯阻力的縱橫扭耦合振動問題,進而建立了定向井抽油桿柱縱橫扭耦合振動的仿真模型。采用有限差分法對桿柱長度進行離散,得到常微分方程組,并進一步采用四階龍格?庫塔法進行求解計算,實現(xiàn)了對定向井抽油桿柱動力行為的仿真模擬。
1 井眼軌道及桿柱位置矢量描述模型
圖1為定向井井眼軌道及抽油桿柱空間形態(tài)示意圖。圖中抽油桿柱由一定數(shù)量的抽油桿、接箍、扶正器組成。為描述井眼軌道與抽油桿柱的軸向位置,分別建立了固定坐標系和運動坐標系。固定坐標系原點為井口;運動坐標系原點在懸點處,且隨懸點運動。以固定坐標系下sw描述井眼軌道上任意點相對于井口的曲線長度,以運動坐標系下s描述抽油桿柱任意點相對于懸點的曲線長度。
4 仿真分析
4.1 基本參數(shù)
本文算例仿真參數(shù)如表1所示。油井全井布置扶正器,每根桿上均勻布置兩個扶正器。查找油井井斜數(shù)據(jù)得到井眼軌道示意圖如圖6所示。
4.2 縱向振動仿真結(jié)果
分別采用本文建立的抽油桿柱縱橫扭耦合振動仿真模型與文獻[29]建立的定向井抽油桿柱縱向振動仿真模型對桿柱的振動進行仿真,得到了如圖7(圖中懸點位移以下死點為0點,向上為坐標軸正方向)和8所示的桿柱縱向振動仿真結(jié)果。
觀察桿柱縱向振動仿真結(jié)果發(fā)現(xiàn):(1)桿柱縱橫扭耦合振動仿真模型所得桿柱縱向振動仿真結(jié)果與桿柱縱向振動仿真模型所得桿柱縱向振動仿真結(jié)果近似。(2)與桿柱縱向振動仿真結(jié)果相比,在抽油機的下沖程縱橫扭耦合振動所得到的懸點載荷更小。
以上現(xiàn)象說明:(1)桿柱的縱橫扭耦合振動對桿柱縱向振動的仿真結(jié)果有影響,但影響不明顯。(2)考慮桿柱的縱橫扭耦合振動后桿柱的下行阻力增大,進而導致下沖程懸點載荷降低。
4.3 橫向振動仿真結(jié)果
分別采用本文建立的抽油桿柱縱橫扭耦合振動仿真模型與文獻[30]建立的定向井抽油桿柱橫向振動仿真模型對桿柱的振動進行仿真,得到如圖9和10所示的相同時刻桿柱橫向振動仿真結(jié)果對比。
觀察桿柱橫向振動仿真結(jié)果對比發(fā)現(xiàn):(1)相同時刻兩種模型的桿柱橫向位移仿真結(jié)果有明顯區(qū)別,在桿柱的受壓段(約1800~2100 m)尤為不同。(2)相同時刻兩種模型的桿管接觸力的仿真結(jié)果也有明顯區(qū)別。由于考慮縱橫扭耦合振動后桿柱下行阻力更大,因此在桿柱的造斜段(約400~800 m)縱橫扭耦合振動仿真模型所得桿管接觸力仿真值相對較小,在桿柱的受壓段,兩種模型所得桿管接觸力仿真值明顯不同。
以上現(xiàn)象說明:桿柱的縱橫扭耦合振動對桿柱的橫向振動仿真結(jié)果有明顯影響,在進行橫向振動仿真時有必要考慮縱橫扭耦合振動的影響。
圖11為一完整沖程不同節(jié)點桿柱橫向振動仿真結(jié)果;圖12為桿管最大接觸力沿桿長的分布曲線。
觀察圖11,12仿真結(jié)果可以發(fā)現(xiàn):(1)在桿柱的受拉段,接箍節(jié)點與扶正器節(jié)點均存在與油管的接觸(接觸力不為0),桿體節(jié)點不與油管接觸(接觸力為0)。在桿柱的受壓段,接箍節(jié)點、扶正器節(jié)點與桿體節(jié)點均與油管接觸。(2)油井造斜段的桿管接觸力較桿柱受壓段的接觸力大;桿柱受壓段的橫向振動與桿管碰撞較油井造斜段劇烈。(3)相較于桿體節(jié)點與接箍節(jié)點,扶正器節(jié)點的桿管接觸力更大。
以上現(xiàn)象說明:(1)油井的造斜段與桿柱的受壓段為桿管偏磨的危險點。(2)扶正器有降低桿管偏磨現(xiàn)象的作用。
4.4 扭轉(zhuǎn)振動仿真結(jié)果
采用本文建立的縱橫扭耦合振動仿真模型對桿柱進行仿真,得到如圖13所示的扭轉(zhuǎn)振動仿真結(jié)果。
根據(jù)圖13發(fā)現(xiàn):(1)桿柱上下沖程轉(zhuǎn)化時桿柱軸向速度較慢,桿管庫侖摩擦力在垂直于軸線方向上的分量更大,因此桿柱扭轉(zhuǎn)角在上下沖程轉(zhuǎn)化時變化最為明顯。(2)整體來說桿柱扭轉(zhuǎn)振動的幅值沿桿長逐漸增大。在油井的造斜段由于桿管接觸力較大,因此桿柱扭轉(zhuǎn)振動的幅值在此部分有突變;最后一級桿柱桿徑最小、扭轉(zhuǎn)剛度最低,且桿柱受壓段桿管變形與橫向振動更明顯,因此最后一級桿柱扭轉(zhuǎn)振動幅值增幅顯著。(3)算例油井桿柱扭轉(zhuǎn)振動所產(chǎn)生的扭矩遠小于接箍的上扣預緊扭矩,即正常預緊情況下桿柱的扭轉(zhuǎn)振動不足以導致抽油桿柱的脫扣現(xiàn)象。但在實際油井中,抽油桿柱軸向受較大交變軸向載荷作用,在循環(huán)載荷的作用下螺紋連接的預緊力有可能逐漸降低,當其預緊力降低到桿柱的最大扭矩后即可能導致抽油桿柱產(chǎn)生脫扣現(xiàn)象。
5 結(jié)""論
(1)指出了彎曲變形抽油桿柱與油管之間的摩擦力是影響桿柱橫向振動的一項主要因素;桿管摩擦力導致的繞軸扭矩是抽油桿柱扭轉(zhuǎn)振動的根本原因。考慮桿柱縱、橫、扭振動之間的相互影響,建立了抽油桿柱的縱橫扭耦合振動仿真模型。采用四階龍格?庫塔法實現(xiàn)對仿真模型的求解。
(2)仿真結(jié)果表明:桿柱的耦合振動對桿柱縱向振動、橫向振動仿真結(jié)果均有影響。油井造斜段的桿管接觸力相對較大,桿柱受壓段的橫向振動更為劇烈,因此油井的造斜段與桿柱的受壓段均為桿管偏磨的危險點。定向井中,正常預緊情況下桿柱的扭轉(zhuǎn)振動不足以導致抽油桿柱的脫扣現(xiàn)象,但當其螺紋預緊力降低到桿柱的最大扭矩后即可能導致抽油桿柱脫扣。
(3)本文研究工作指出了抽油桿柱扭轉(zhuǎn)振動的機理,實現(xiàn)了對定向井抽油桿柱縱橫扭耦合振動的仿真求解,對指導油田生產(chǎn)具有理論與實際意義。除了桿柱偏磨外,桿柱的疲勞破壞也是油井常見故障,因此下一步有必要基于本文仿真結(jié)果分析抽油桿柱在多軸應(yīng)力下的疲勞強度。
參考文獻:
[1] 劉合,"郝忠獻,"王連剛,"等. 人工舉升技術(shù)現(xiàn)狀與發(fā)展趨勢[J]. 石油學報,"2015,"36(11):1441-1448.
LIU He,"HAO Zhongxian,"WANG Liangang,"et al. Current technical status and development trend of artificial lift[J]. Acta Petrolei Sinica,"2015,"36(11):"1441?1448.
[2] GIBBS S G. Predicting the behavior of sucker-rod pumping system[J]. Journal of Petroleum Technology,"1963,"15(7):769-778.
[3] WANG D Y,"LIU H Z. Prediction and analysis of polished rod dynamometer card in sucker rod pumping system with wear[J]. Shock and Vibration,"2018,nbsp;2018:"4979405.
[4] MORENO G A,"GARRIZ A E. Sucker rod string dynamics in deviated wells[J]. Journal of Petroleum Science and Engineering,"2020,"184:"106534.
[5] LI Q,"CHEN B,"HUANG Z Q,"et al. Study on equivalent viscous damping coefficient of sucker rod based on the principle of equal friction loss[J]. Mathematical Problems in Engineering:Theory,"Methods and Applications,"2019,"2019:"9272751.
[6] WANG X B,"Lü L G,"LI S,"et al. Longitudinal vibration analysis of sucker rod based on a simplified thermo-solid model[J]. Journal of Petroleum Science and Engineering,"2021,"196:"107951.
[7] YIN J J,"SUN D,"YANG Y S. Predicting multi-tapered sucker-rod pumping systems with the analytical solution[J]. Journal of Petroleum Science and Engineering,"2021,"197:"108115.
[8] 孫秀榮,江少波,黃有泉,等. 直井抽油桿柱在屈曲位移激勵下橫向振動的仿真研究[J].振動工程學報,2018,31(5):854-861.
SUN Xiurong,JIANG Shaobo,HUANG Youquan,"et al. The simulation research of sucker rod string transverse vibration under buckling deformation excitation in vertical wells[J]. Journal of Vibration Engineering,2018,31(5):854-861.
[9] LUKASIEWICZ S A. Dynamic behavior of the sucker rod string in the inclined well[C]//SPE Production Operations Symposium. Oklahoma,"1991.
[10] XU J. A new approach to the analysis of deviated rod-pumped wells[C]//SPE International Petroleum Conference amp; Exhibition of Mexico. Veracruz,"Mexico,"1994.
[11] XU J,"DOTY D R,"BLAIS R,"et al. A comprehensive rod-pumping model and its application to vertical and deviated wells[C]//SPE Mid-Continent Operations Symposium. Oklahoma,"1999.
[12] 王宏博,"董世民. 軸向往復運動抽油桿柱在彎曲井眼內(nèi)橫向振動的仿真模型[J]. 工程力學,"2020,"37(10):228-237.
WANG Hongbo,"DONG Shimin. A model for the transverse vibration simulation of sucker rod strings with axial reciprocating motion in curved wellbores[J]. Engineering Mechanics,"2020,"37(10):228-237.
[13] WANG H B,"DONG S M. Spatial transverse vibration simulation model of axially moving sucker rod string under the excitation of curved borehole[J]. Shock and Vibration,"2020,"2020:3108718.
[14] 王文昌,"狄勤豐,"姚建林,"等. 三維定向井抽油桿柱力學特性有限元分析新方法[J]. 石油學報,"2010,"31(6):"1018-1023.
WANG Wenchang,"DI Qinfeng,"YAO Jianlin,"et al. A new finite element method in analyzing mechanical properties of sucker rod strings in 3D directional wellbores[J]. Acta Petrolei Sinica,"2010,"31(6):1018-1023.
[15] JOHANCSIK C A,"FRIESEN D B,"DAWSON R. Torque and drag in directional wells-prediction and measurement[J]. Journal of Petroleum Technology,"1984,"36(6):"987-992.
[16] HO H S. An improved modeling program for computing the torque and drag in directional and deep wells[C]//SPE Annual Technical Conference and Exhibition. Houston,"Texas,"1988:"407-418.
[17] 李子豐,"李相方,"單志剛. 海底大位移井井眼凈化程度和卡鉆可能性監(jiān)測[J]. 石油鉆探技術(shù),"2000,"28(5):"4-6.
LI Zifeng,"LI Xiangfang,"SHAN Zhigang. Monitoring wellbore cleaning degree and sticking possibility in offshore extended wells[J]. Petroleum Drilling Techniques,"2000,"28(5):"4-6.
[18] 張學鴻,"陳掄元,"劉巨保. 整體鉆柱力學接觸有限元分析[J]. 石油學報,"1992,"13(3):"102-108.
ZHANG Xuehong,"CHEN Lunyuan,"LIU Jubao. Finite element analysis of the contact and friction of a whole drillpipe string[J]. Acta Petrolei Sinica,1992,"13(3):"102-108.
[19] 帥健,"呂英民,"蔡強康. 全井中鉆柱的有限元模型及應(yīng)用[J]. 石油學報,"1995,"16(1):"118-126.
SHUAI Jian,"Lü Yingmin,"CAI Qiangkang. Finite element model of the drill string in a whole well bore and its application[J]. Acta Petrolei Sinica,1995,"16(1):"118-126.
[20] 郭永峰,"金曉劍,"譚樹人. 非線性有限元法預測近海水平井鉆進摩阻[J]. 中國造船,"2003,"44(2):"61-66.
GUO Yongfeng,"JIN Xiaojian,"TAN Shuren. Prediction of drilling drag and torque in horizontal wells of offshore oilfield by nonlinear FEM[J]. Shipbuilding of China,"2003,"44(2):"61-66.
[21] 付建紅,"龔龍祥,"胡順渠,"等. 基于ANSYS的水平井下套管摩阻分析計算[J]. 石油鉆采工藝,"2007,"29(4):"32-35.
FU Jianhong,"GONG Longxiang,"HU Shunqu,"et al. Calculation of frictional drag of casing running in horizontal well based on ANSYS[J]. Oil Drilling amp; Production Technology,"2007,"29(4):"32-35.
[22] 祝效華,"童華,"劉清友,"等. 基于鉆柱系統(tǒng)動力學的摩阻扭矩計算新方法[J]. 系統(tǒng)仿真學報,"2007,"21(19):"4853-4856.
ZHU Xiaohua,"TONG Hua,"LIU Qingyou,"et al. New method on calculation of torque and drag based on drilling string system dynamics[J]. Journal of System Simulation,"2007,"21(19):"4853-4856.
[23] ZHU X H,"LI B,"LIU Q Y,"et al. New analysis theory and method for drag and torque based on full-hole system dynamics in highly deviated well[J]. Mathematical Problems in Engineering,"2015,"2015:"535830.
[24] 祝效華,"童華,"劉清友,"等. 旋轉(zhuǎn)鉆柱與井壁的碰撞摩擦邊界問題研究[J]. 中國機械工程,"2017,"18(15):1833-1837.
ZHU Xiaohua,"TONG Hua,"LIU Qingyou,"et al. Research on the dynamic boundary condition between revolving drill string and borehole wall[J]. China Mechanical Engineering,"2017,"18(15):1833-1837.
[25] FIRU L S,"CHELU T,"MILITARU-PETRE C. A modern approach to the optimum design of sucker-rod pumping system[C]// SPE Annual Technical Conference and Exhibition. Denver,"Colorado,"2003:"1-9.
[26] VOLPI L P,"LOBO D M,"RITTO T G. A Stochastic analysis of the coupled lateral-torsional drill string vibration[J]. Nonlinear Dynamic,"2021,"103:"49-62.
[27] 王宏博,"董世民,"張洋,"等. 基于氣液分離的泵內(nèi)壓力與抽油桿柱縱向振動耦合仿真[J]. 石油學報,"2023,"44(2):"394-404.
WANG Hongbo,"DONG Shimin,"ZHANG Yang,"et al. Coupling simulation of the pressure in pump and the longitudinal vibration of sucker rod string based on gas liquid separation[J]. Acta Petrolei Sinica,"2023,"44(2):"394-404.
[28] 董世民,"姚春東. 抽油桿柱縱向振動共振條件的質(zhì)疑與力學模型的修正[J]. 振動工程學報,"2003,16 (3):"135-138.
DONG Shimin,"YAO Chundong. Doubting the resonance condition of the longitudinal vibration of the sucker rod string introduced by APIRP11L and improving of the mechanical modeling[J]. Journal of Vibration Engineering,"2003,"16(3):"135-138.
[29] 董世民,李寶生. 水平井有桿抽油系統(tǒng)設(shè)計[M]. 北京:石油工業(yè)出版社,"1996:"19-21.
[30] 董世民,"王宏博. 定向井抽油桿柱橫向振動仿真模型及扶正器布點優(yōu)化[J].石油學報,2020,41(12):1686-1696.
DONG Shimin,"WANG Hongbo. Simulation model of lateral vibration of sucker rod string in directional wells and point arrangement optimization of centralizer[J]. Acta Petrolei Sinica,"2020,41(12):1686-1696.
Simulation study of sucker rod string on longitudinal,"transverse and torsional coupling vibration in directional wells
WANG"Hong-bo1,"SUN"Xiu-rong2,"LI"Feng-xin2,"LI"Wei-cheng3,"XIN"Shun1,WANG"Chang-liang1,"LI"Dong-fang1
(1.Offshore Oil Engineering Co.,Ltd.,Tianjin 300451,China;"2.Hebei University of Environmental Engineering,Qinhuangdao 066102,China;"3.School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China)
Abstract: The rod string is a thin rod string composed of a coupling and a rod connected by threads. The research on the dynamic behavior of the sucker rod string is the basis to prevent the failure of the sucker rod string and reduce the operation cost of the oil well. In view of the coupling vibration of rod string,"it is proposed that the torsional torque generated by the friction force between the rod and tubing is the excitation of torsional vibration. Considering the influence of friction force on the coupling vibration of rod string,"a simulation model of the coupling vibration of rod string in one directional well with initial bending is established under the conditions of displacement excitation at the top,"load excitation at the bottom,"trajectory excitation at the curved hole and tubing constraint. The four-order Runge-Kutta method is used to solve the simulation model and to simulate the dynamic behavior of the rod string. The simulation results show that:"both longitudinal and transverse vibration simulation results are affected by the coupling vibration of the rod string. The effect on longitudinal vibration is not obvious. The contact force between the rod and the tubing in the inclined section of the oil well is high,"and the collision in the compressed section of the rod string is serious. Hence,"the inclined section of the oil well and the compressed section of the rod string are dangerous points for eccentric wear. Under normal preload conditions,"the torsional vibration of the rod string is not sufficient to cause the rod string to trip. However,"when the preload force of the coupling drops below the maximum torque of the rod string,"torsional vibration may cause the rod string to trip. The research provides a theoretical basis for analyzing the failure mechanism of pumping rods,"improving the working life of pumping rods and optimizing the design of pumping rods.
Key words: coupling vibration;sucker rod string;directional well;trajectory excitation;friction torque
作者簡介: 王宏博(1992—),男,博士,工程師。E-mail:mr_whb@163.com。
通訊作者: 孫秀榮(1984—),女,博士,副教授。E-mail:sunxiurong84@163.com。