摘要: 基于應(yīng)變梯度非局部Biot理論,以深埋圓形襯砌為研究對(duì)象,利用波函數(shù)展開(kāi)法和飽和土與襯砌間的邊界條件,得到隧道襯砌在P波作用下的動(dòng)力響應(yīng)解析解。研究了不同入射P波頻率下,非局部參數(shù)與尺寸因子對(duì)動(dòng)應(yīng)力集中系數(shù)(DSCF)的影響規(guī)律。結(jié)果表明,入射波頻率較低時(shí),非局部參數(shù)和尺寸因子對(duì)DSCF幾乎沒(méi)有影響,隨著入射波頻率的增大,非局部參數(shù)和尺寸因子對(duì)DSCF的影響會(huì)越來(lái)越明顯,且非局部參數(shù)與DSCF呈負(fù)相關(guān),尺寸因子與DSCF呈正相關(guān);襯砌內(nèi)動(dòng)應(yīng)力最大處均出現(xiàn)在襯砌右側(cè);隨著頻率的增加,襯砌內(nèi)DSCF沿徑向呈現(xiàn)明顯的波動(dòng),非局部參數(shù)和尺寸因子對(duì)襯砌內(nèi)環(huán)向應(yīng)力的分布模式影響不大。
關(guān)鍵詞: 應(yīng)變梯度非局部Biot理論;"隧道襯砌;"非局部參數(shù);"尺寸因子;"動(dòng)應(yīng)力集中系數(shù)
中圖分類(lèi)號(hào): TU435;"U451 """文獻(xiàn)標(biāo)志碼: A """文章編號(hào): 1004-4523(2024)11-1959-10
DOI:10.16385/j.cnki.issn.1004-4523.2024.11.016
引 言
隨著中國(guó)地下工程的快速發(fā)展,其安全問(wèn)題也日益突出,而地震、工程爆破是影響地下工程安全問(wèn)題的主要因素。鉆爆法施工過(guò)程中會(huì)產(chǎn)生巨大的爆破能量,這些能量以彈性波的形式傳播,且能量大、頻率高,對(duì)隧道的安全有極大的威脅。當(dāng)?shù)叵陆Y(jié)構(gòu)遭受損壞時(shí),修復(fù)工作將面臨巨大的困難,因此,研究隧道襯砌在彈性波作用下的動(dòng)力響應(yīng)對(duì)于抗震設(shè)計(jì)具有重要意義。
國(guó)內(nèi)外已有眾多學(xué)者針對(duì)彈性波作用下圓形襯砌的動(dòng)態(tài)響應(yīng)問(wèn)題開(kāi)展了大量的研究,其中PAO等[1]開(kāi)創(chuàng)性地將動(dòng)應(yīng)力集中系數(shù)引入全空間中以評(píng)估彈性波入射條件下隧道的動(dòng)力響應(yīng)。隨后,LEE等[2]研究了平面SV波在彈性半空間中不同深度空腔的散射和衍射問(wèn)題。YI等[3?4]采用波函數(shù)展開(kāi)法,用彈簧連接模擬圍巖與襯砌間的接觸,研究了P波作用下圍巖和剛度等參數(shù)對(duì)圓形隧道襯砌動(dòng)力響應(yīng)的影響。王長(zhǎng)柏等[5]考慮無(wú)限彈性介質(zhì)中深埋隧道的雙層襯砌情況,分析了圍巖及雙層襯砌的結(jié)構(gòu)參數(shù)對(duì)隧道內(nèi)/外襯砌動(dòng)力響應(yīng)的影響。
以上研究均將土體視為單相介質(zhì),然而,由于地下水的影響,襯砌周?chē)馏w大多處于飽和狀態(tài)。由BIOT[6]提出的經(jīng)典飽和孔隙介質(zhì)動(dòng)力理論,因其形式簡(jiǎn)單、物理意義明確和易于試驗(yàn)測(cè)得相關(guān)參數(shù)等特點(diǎn),在各個(gè)領(lǐng)域得到了廣泛應(yīng)用。許多學(xué)者應(yīng)用Biot理論[6]研究了飽和多孔彈性介質(zhì)中洞室對(duì)彈性波的散射及衍射問(wèn)題。李偉華等[7?8]利用拉普拉斯變換解決了瞬態(tài)波作用下圍巖和襯砌的應(yīng)力與位移的時(shí)域解。由于地下結(jié)構(gòu)形狀復(fù)雜多樣,陸建飛等[9]利用復(fù)變函數(shù)方法,求解出不規(guī)則形狀洞室彈性波的散射波場(chǎng)。同時(shí),也有學(xué)者采用這種方法分析了無(wú)量綱波數(shù)和隧道內(nèi)/外半徑比對(duì)圍巖及襯砌動(dòng)力響應(yīng)的影響[10]。范凱祥等[11]考慮飽和土中的雙層襯砌情況,并用傅里葉技術(shù)求出了平面瑞利波的波場(chǎng)和頻域內(nèi)復(fù)合式襯砌的孔壓集中因子、動(dòng)應(yīng)力集中系數(shù)的解析解。DING等[12]基于Biot理論,采用波函數(shù)展開(kāi)法,對(duì)飽和土中復(fù)合襯砌問(wèn)題進(jìn)行了研究。
從以往的研究來(lái)看,對(duì)飽和孔隙介質(zhì)的研究主要基于經(jīng)典Biot理論,但Biot理論沒(méi)有考慮到孔隙尺寸對(duì)飽和孔隙介質(zhì)中彈性波散射和衍射的影響。然而,在高頻的情況下,孔隙尺寸效應(yīng)會(huì)對(duì)彈性波的散射和衍射產(chǎn)生明顯的影響。為此,TONG等[13]考慮孔隙尺寸效應(yīng)的影響,并通過(guò)引入非局部參數(shù),對(duì)經(jīng)典的Biot理論進(jìn)行改進(jìn),從而提出了非局部Biot理論。徐長(zhǎng)節(jié)等[14?15]基于非局部Biot理論,研究了在深埋和淺埋情況下的襯砌內(nèi)邊界和外邊界的動(dòng)力響應(yīng)問(wèn)題。DING等[16]基于非局部Biot理論,分析了頻率、非局部參數(shù)和入射波角度等參數(shù)對(duì)雙層襯砌隧道的動(dòng)力響應(yīng)影響。KIMURA等[17]在波速試驗(yàn)中發(fā)現(xiàn),孔隙介質(zhì)中波除了具有負(fù)色散效應(yīng)外,還具有正色散效應(yīng),已有的理論不能對(duì)這一現(xiàn)象作出解釋。為此,TONG等[18]提出應(yīng)變梯度非局部Biot理論,這一理論既能反映土體的孔隙尺寸效應(yīng),又能反映土體的結(jié)構(gòu)非均勻效應(yīng),并通過(guò)試驗(yàn)成功預(yù)測(cè)飽和孔隙介質(zhì)中波速的正、負(fù)色散效應(yīng)。基于該理論,DING等[19]利用波函數(shù)展開(kāi)法,分析了瑞利波作用下的非局部參數(shù)和尺寸因子對(duì)其波場(chǎng)的影響。
綜上所述,本文基于應(yīng)變梯度非局部Biot理論,開(kāi)展P波作用下飽和孔隙介質(zhì)中的非局部參數(shù)和尺寸因子對(duì)圓形襯砌動(dòng)力響應(yīng)的影響規(guī)律研究。本文的研究為彈性波作用下更加準(zhǔn)確地預(yù)測(cè)隧道動(dòng)力響應(yīng)提供理論依據(jù),為隧道結(jié)構(gòu)抗震設(shè)計(jì)奠定基礎(chǔ)。
1 計(jì)算模型及波場(chǎng)求解
1.1 計(jì)算模型
P波與隧道襯砌相互作用的計(jì)算模型如圖1所示,圖中r和θ分別表示極徑和極角。假設(shè)深埋圓形襯砌為無(wú)限長(zhǎng)圓柱形洞室,襯砌周?chē)橘|(zhì)為飽和土,因此該問(wèn)題屬于平面應(yīng)變問(wèn)題,R2和R1分別表示襯砌的內(nèi)徑和外徑。假設(shè)P波從左到右水平入射到襯砌的外表面上。
1.2 飽和土中波場(chǎng)求解
1.3 襯砌中波場(chǎng)求解
2 邊界條件及待定系數(shù)的求解
3 結(jié)果驗(yàn)證與算例分析
3.1 結(jié)果驗(yàn)證
3.2 算例分析
4 結(jié)""論
本文基于波函數(shù)展開(kāi)法,在應(yīng)變梯度非局部Biot理論的基礎(chǔ)上,求解了P波入射情況下圓形襯砌隧道動(dòng)力響應(yīng)的解析解。將結(jié)果退化為單相介質(zhì)的情況,驗(yàn)證了計(jì)算程序。通過(guò)算例分析,得出了以下結(jié)論:
(1)"頻率較低時(shí),非局部參數(shù)和尺寸因子對(duì)襯砌DSCF的影響可以忽略不計(jì)。而隨著頻率的增加,非局部參數(shù)的增加會(huì)衰減襯砌內(nèi)DSCF,尺寸因子的增加則會(huì)增強(qiáng)襯砌內(nèi)DSCF。
(2)"DSCF沿襯砌環(huán)向分布,最大值出現(xiàn)在θ=0°的位置,且非局部參數(shù)和尺寸因子僅改變DSCF的大小,不會(huì)影響其環(huán)向分布形式。
(3)"襯砌內(nèi)DSCF沿襯砌徑向分布,隨著頻率的增加,其波動(dòng)變得更加明顯。隨著非局部參數(shù)和尺寸因子的增加,襯砌內(nèi)動(dòng)應(yīng)力的分布模式不變,但DSCF的大小與非局部參數(shù)呈負(fù)相關(guān),與尺寸因子呈正相關(guān)。
參考文獻(xiàn):
[1] PAO Y H,"MOW C C,"ACHENBACH J D. Diffraction of elastic waves and dynamic stress concentrations[J]. Journal of Applied Mechanics,"1973,"40(4):"872.
[2] LEE V W,"CAO H. Diffraction of SV waves by circular canyons of various depths[J]. Journal of Engineering Mechanics,"1989,"115(9):"2035-2056.
[3] YI C P,"ZHANG P,"JOHANSSON D,"et al. Dynamic response of a circular lined tunnel with an imperfect interface subjected to cylindrical P-waves[J]. Computers and Geotechnics,"2014,"55:"165-171.
[4] YI C P,"LU W B,"ZHANG P,"et al. Effect of imperfect interface on the dynamic response of a circular lined tunnel impacted by plane P-waves[J]. Tunnelling and Underground Space Technology,"2016,"51:"68-74.
[5] 王長(zhǎng)柏,"李海波,"周青春,"等. P波作用下深埋隧道動(dòng)應(yīng)力集中問(wèn)題參數(shù)敏感性分析[J]. 巖土力學(xué),"2011,"32(3):"775-780.
WANG Changbai,"LI Haibo,"ZHOU Qingchun,"et al. Parameters sensitivity analysis of dynamic stress concentration for deep buried tunnel under incident plane waves[J]. Rock and Soil Mechanics,"2011,"32(3):"775-780.
[6] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics,"1962,"33(4):"1483-1498.
[7] 李偉華,"趙成剛. 飽和土半空間中圓柱形孔洞對(duì)平面P波的散射[J]. 巖土力學(xué),"2004,"25(12):"1867-1872.
LI Weihua,"ZHAO Chenggang. An analytical solution for diffraction of plane P-waves by cylindrical cavity in a fluid-saturated porous media semi-space[J]. Rock and Soil Mechanics,"2004,"25(12):"1867-1872.
[8] 李偉華,"張釗. 飽和土中深埋圓柱形襯砌洞室對(duì)瞬態(tài)平面波的散射[J]. 地球物理學(xué)報(bào),"2013,"56(1):"325-334.
LI Weihua,"ZHANG Zhao. Scattering of transient plane waves by deep buried cylindrical lining cavity in saturated soil[J]. Chinese Journal of Geophysics,"2013,"56(1):"325-334.
[9] 陸建飛,"王建華. 飽和土中的任意形狀孔洞對(duì)彈性波的散射[J]. 力學(xué)學(xué)報(bào),"2002,"34(6):"904-913.
LU Jianfei,"WANG Jianhua. The scattering of elastic waves by holes of arbitrary shapes in saturated soil[J]. Chinese Journal of Theoretical and Applied Mechanics,"2002,"34(6):"904-913.
[10] 周香蓮,"周光明,"王建華. 飽和土中圓形襯砌結(jié)構(gòu)對(duì)彈性波的散射[J]. 巖石力學(xué)與工程學(xué)報(bào),"2005,"24(9):"1572-1576.
ZHOU Xianglian,"ZHOU Guangming,"WANG Jianhua. Scattering of elastic wave by circular cavity with lining in saturated soil[J]. Chinese Journal of Rock Mechanics and Engineering,"2005,"24(9):"1572-1576.
[11] 范凱祥,"申玉生,"聞毓民,"等. 平面Rayleigh波入射下飽和土中淺埋隧道復(fù)合式襯砌的動(dòng)力響應(yīng)[J]. 巖土工程學(xué)報(bào),"2022,"44(3):"444-455.
FAN Kaixiang,"SHEN Yusheng,"WEN Yumin,"et al. Dynamic response of composite linings of shallowly buried tunnels in saturated soils subjected to incidence of plane Rayleigh waves[J]. Chinese Journal of Geotechnical Engineering,"2022,"44(3):"444-455.
[12] DING H B,"TONG L H,"XU C J,"et al. Aseismic performance analysis of composite lining embedded in saturated poroelastic half space[J]. International Journal of Geomechanics,"2020,"20(9):"4020156.
[13] TONG L H,"YU Y,"HU W T,"et al. On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory[J]. Journal of Sound and Vibration,"2016,"379:"106-118.
[14] 徐長(zhǎng)節(jié),"丁海濱,"童立紅,"等. 基于非局部Biot理論下飽和土中深埋圓柱形襯砌對(duì)平面彈性波的散射[J]. 巖土工程學(xué)報(bào),"2018,"40(9):"1563-1570.
XU Changjie,"DING Haibin,"TONG Lihong,"et al. Scattering waves generated by cylindrical lining in saturated soil based on nonlocal Biot theory[J]. Chinese Journal of Geotechnical Engineering,"2018,"40(9):"1563-1570.
[15] XU C J,"DING H B,"TONG L H,"et al. Scattering of a plane wave by shallow buried cylindrical lining in a poroelastic half-space[J]. Applied Mathematical Modelling,"2019,"70:"171-189.
[16] DING H B,"TONG L H,"XU C J,"et al. Dynamic responses of shallow buried composite cylindrical lining embedded in saturated soil under incident P wave based on nonlocal Biot theory[J]. Soil Dynamics and Earthquake Engineering,"2019,"121:"40-56.
[17] KIMURA M. Velocity dispersion and attenuation in granular marine sediments:"comparison of measurements with predictions using acoustic models[J]. The Journal of the Acoustical Society of America,"2011,"129(6):"3544-3561.
[18] TONG L H,"DING H B,"YAN J W,"et al. Strain gradient nonlocal Biot poromechanics[J]. International Journal of Engineering Science,"2020,"156:103372.
[19] DING H B,"TONG L H,"XU C J,"et al. On propagation characteristics of Rayleigh wave in saturated porous media based on the strain gradient nonlocal Biot theory[J]. Computers and Geotechnics,"2022,"141:104522.
Influence of soil pore size and structure heterogeneity on the dynamic characteristics of circular lining subjected to P-wave
Ding"Hai-bin1,2,3,"LIU"Zhi-yun1,2,3,"LI"Peng4,"CHEN"Chang-ke1,2,3,"TONG"Li-hong1,2,3,"XU"Chang-jie1,2,3
(1.State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure,"East China Jiaotong University,"Nanchang 330013,"China;"2.Engineering Research amp; Development Centre for Underground Technology of Jiangxi Province,"Nanchang 330013,"China;"3.Jiangxi Key Laboratory of Infrastructure Safety Control in Geotechnical Engineering,"East China Jiaotong University,"Nanchang 330013,"China;"4.CCCC Second Public Bureau Third Engineering Company Limited,"Xi’an 710016,"China)
Abstract: Based on the strain gradient nonlocal Biot theory,"the analytical solution of the dynamic response of the tunnel lining under the action of P-wave is obtained by using the wave function expansion method and the boundary conditions between saturated soil and lining with the deeply buried circular lining as the research object. The influence of non-local parameters and size factors on the dynamic stress concentration factor (DSCF)"is investigated for different incident P-wave frequencies. The results show that when the incident wave frequency is low,"the non-local parameters and size factor have almost no effect on the DSCF. As the incident wave frequency increases,"the effects of the non-local parameters and size factor on the DSCF become more and more obvious. The non-local parameters are negatively correlated with the DSCF,"and the size factor is positively correlated with the DSCF. The maximum dynamic stresses in the lining appear on the right side of the lining. With an increase of frequency,"the DSCF in the lining shows obvious radial direction and the dynamic stresses in the lining appear in the right side of the lining. The maximum dynamic stresses in the lining all appear on the right side of the lining,"With an increase of frequency,"the DSCF in the lining shows obvious fluctuation along the radial direction,"and the non-local parameters and size factor have little influence on the distribution pattern of the cyclic stresses in the lining.
Key words: strain gradient non-local Biot theory;tunnel lining;non-local parameters;scale factors;DSCF
作者簡(jiǎn)介: 丁海濱(1991―),男,博士,副教授。E-mail:hbding@ecjtu.edu.cn。
通訊作者: 童立紅(1988―),男,博士,教授。E-mail:lhtong@ecjtu.edu.cn。