999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

非平穩地震激勵下慣容耗能結構動力響應解析法

2024-12-31 00:00:00李創第王瑞勃葛新廣江麗富
振動工程學報 2024年11期

摘要: 針對慣容減震系統在非平穩地震激勵下動力響應研究不足的問題,提出設有混聯Ⅰ型慣容減震系統的多自由度耗能結構動力響應時變方差的解析解法。根據慣容減震系統的本構關系、結構的動力方程及非平穩地震激勵,綜合利用復模態法和虛擬激勵法,將慣容耗能結構解耦為一階系統,以便獲得結構位移、速度、層間剪力等響應量的統一解。采用二次式分解法將統一解的時變功率譜密度函數轉化為慣容耗能結構復模態特征值、模態系數、時變模態強度系數和含有圓頻率平方項的二次式乘積的線性組合。在此基礎上,利用非平穩模態譜矩在無限積分區間有解析解的特征,推導出非平穩地震激勵下耗能結構響應時變方差的解析解。通過采用突加型白噪聲激勵對結構動力響應進行分析,驗證了所提動力響應功率譜和時變方差的正確性。同時,基于突加型Kanai?Tajimi模型的框架結構動力響應研究,分析了慣容系統參數對減震效果的影響。所提方法可適用于線性結構在其他非平穩調制函數的地震動下的響應分析。

關鍵詞: 慣容減震系統;"非平穩地震激勵;"功率譜二次式分解法;"時變方差;"解析解法

中圖分類號: TU311.3;"O324 """文獻標志碼: A """文章編號: 1004-4523(2024)11-1862-13 "DOI:10.16385/j.cnki.issn.1004-4523.2024.11.007

引 言

慣容器作為實用有效的被動控制裝置,在結構中可采用與傳統消能裝置相同的安裝方式。在外部激勵作用下,慣容器通過兩端點之間的加速度差值產生作用力,從而降低結構的動力響應1?3。IKAGO等4提出了調諧黏性質量阻尼器(Tuned Viscous Mass Damper,TVMD),并驗證了單自由度結構中TVMD在諧波地震激勵下抗震的有效性。LAZAR等5將慣容?彈簧?阻尼3個元件相互連接構成調諧慣容阻尼器(Tuned Inerter Damper,TID),經研究表明TID在地震激勵作用下能夠達到極好的減震效果。LI等6探索了調諧黏性質量阻尼器(TVMD)、調諧慣容阻尼器(TID)和調諧質量阻尼器(Tuned Mass Damper,TMD)3種控制系統在白噪聲激勵下對結構響應的影響,同時基于不同控制目標對3種控制系統進行了優化設計。DE DOMENICO等7以雙過濾白噪聲激勵作為地震加速度,研究了基礎隔震結構中調諧慣容質量阻尼器(Tuned Mass Damper Inerter,TMDI)的抗震性能,研究表明TMDI的抗震效果比TMD更好,同時能夠避免長周期地震作用下可能發生的共振行為。為進一步加強慣容器的振動控制效果,國內外學者將慣容元件、耗能元件和彈簧元件連接協同工作構成慣容減震系統,其中經典的慣容減震系統有:串聯型慣容減震系統8、混聯Ⅰ型慣容減震系統(SPIS?Ⅰ)9和混聯Ⅱ型慣容減震系統(SPIS?Ⅱ)10。文獻[11?12]對3種慣容減震系統在平穩隨機地震激勵作用下的耗能增效現象進行了研究,闡明了耗能增效理論并推導了與之相關的解析表達式。為促進慣容減震系統在工程中的應用,文獻[13?14]對其振動控制性能和參數設計15也進行了研究,研究結果表明,慣容減震系統可以顯著降低結構的動力響應,在結構的振動控制中具有良好的應用前景。

上述研究基于平穩地震激勵(如白噪聲激勵、Kanai?Tajimi激勵、雙過濾白噪聲激勵等),雖簡化了分析過程,但平穩地震激勵與實際地震過程存在一定差異。實際地震過程具有明顯的非平穩特性,故擬合地震的隨機模型應呈非平穩狀態。目前已經提出了多種擬合非平穩隨機過程的功率譜模型16?18,其中,PRIESTLEY18提出的演變功率譜模型,用“頻率”和“能量”的概念解釋了演變隨機過程的時變均方能量分布,該模型在地震工程的動力響應分析中尤為重要。演變功率譜模型可分為均勻調制非平穩19?21和完全非平穩22兩類。其中,均勻調制非平穩的譜密度函數等于與時間t相關的調制函數和與圓頻率ω相關的平穩地震激勵譜密度函數的乘積?,F有的調制函數主要包括階躍型調制函數21、余弦型調制函數21?23、Shinozuka?Sato調制函數22?23及Iyengar型調制函數23等。時域法和頻域法是求解非平穩隨機結構動力響應的主要方法。方同等20,22利用復模態法和杜哈梅積分,求解了響應及激勵的協方差,分析了結構基于非平穩激勵的動力響應。由于現存的地震激勵模型以功率譜形式存在,采用時域法分析結構隨機響應時,需對地震激勵的功率譜密度函數進行轉換,增加了計算量。文獻[24?26]從頻域角度提出虛擬激勵法,通過構造虛擬激勵,將求解非平穩響應功率譜密度函數的問題轉化為確定性外荷載作用下的瞬態響應分析,簡化了計算過程。響應的功率譜密度函數和時變方差是非平穩隨機響應分析的重要參數。虛擬激勵法計算響應時變方差是在已知響應功率譜的前提下,對其在整個頻率范圍內進行積分,為獲得準確的結果需取較大的積分上限值和非常小的積分步長,導致計算效率較低。葛新廣等27在研究平穩地震過程中提出功率譜二次式分解法,該方法能避開平穩激勵下響應譜矩和方差的復雜計算,但并未研究非平穩激勵下耗能結構的動力特性。

本文為研究設有慣容減震系統的耗能結構在非平穩地震作用下的動力特性,同時為提高時變方差的計算效率和計算精度,以設有混聯Ⅰ型慣容減震系統的耗能結構為例,對均勻調制非平穩隨機地震激勵下的結構響應做完整的推導,并獲得功率譜及時變方差的解析解。應用多自由度數值算例及框架結構算例,證明了本文所求動力響應解析解的有效性,對參數及減震效果也進行了分析。

1 動力方程

2

混聯Ⅰ型慣容系統設置于結構第i層的構造簡圖如圖1所示。

將式(37a)~(37c)代入式(34),即可獲得在突加型白噪聲激勵下結構動力響應時變方差的解析解。為驗證所求結果的有效性,借助MATLAB工具將本文方法與傳統分析方法(虛擬激勵法)得到的結果進行對比。傳統方法依據式(32a)~(32b)對響應時變方差進行求解,即對響應功率譜在頻率域ω中?。?,∞)進行積分,為保證計算結果的準確性,本文取積分上限為500 rad/s,劃分區間的積分步長Δω依次取2,1,0.5和0.1 rad/s。對比本文方法和傳統方法(4種不同工況)所求結構頂層的各響應時變方差的吻合程度,如圖4~9所示。

由圖4~9可知,在固定積分上限的情形下,積分步長的大小影響了傳統方法計算結果的準確性和精度。傳統方法在Δω=2"rad/s工況下,獲得的結構頂層的位移、層間位移、速度、層間速度、層間剪力和層間位移角的時變方差準確度不高,且兩種方法存在較大偏差。傳統方法在Δω=1"rad/s工況下,上述響應時變方差的準確性及計算精度有一定提升,兩種方法之間的偏差相對減小。在Δω=0.5"rad/s工況下,傳統方法與本文方法結果較為接近,且隨時間t的增大偏差逐漸增大,兩種結果不完全相同。在Δω=0.1"rad/s工況下,頻率域ω被5000等分,時間域t被80等分,傳統方法與本文方法結果完全一致。經分析可知,傳統方法所求結果的計算精度與積分步長Δω的取值密切相關,Δω取值越小,越逼近本文結果,由此反映了本文方法所求各響應的時變方差正確、有效且精度較高。由于傳統方法及本文方法都是在響應功率譜的基礎上對時變方差進行求解,且兩種方法所得結果最終相同,再次證明了本文推導的響應功率譜表達式合理。

5.2 框架結構的動力響應分析

為進一步研究本文方法的實用性,采用與文獻[30]相似的10層框架結構進行分析,如圖10所示。結構中柱子尺寸為600 mm×600 mm,梁橫截面尺寸為300 mm×700 mm,樓板厚10 mm。結構跨度6 m,層高為3 m,梁、板、柱均采用C30混凝土,材料彈性模量E= 3.0×1010"N/m2,假設樓板為剛性,結構各層間的抗側剛度等于各柱的抗側剛度之和,單個柱的抗側剛度為12EI/h3。結構豎向荷載主要由結構自重、樓板的鋪裝自重(1.0 kN/m2)、樓板自重(2.5 kN/m2)及豎向活荷載(2.0 kN/m2)構成。各節點質量依據集中質量法進行計算,荷載從屬寬度為6.0 m,活荷載系數為0.5,恒荷載系數為1.0,阻尼比為0.05。將混聯Ⅰ型慣容系統設置于多層框架結構中,各層設置慣容系統的型號相同?,F對混聯Ⅰ型慣容耗能框架結構的動力響應進行研究。

為分析框架結構基于均勻調制非平穩函數的動力特性,取調制函數為階躍性調制函數,平穩地震激勵選用考慮了基巖土層的過濾作用且具有明確頻譜特性的Kanai?Tajimi平穩隨機激勵。依據文獻[31]中提出的Kanai?Tajimi模型,參數取值分別為S0= 5.75 cm2/s4/Hz,"= 242.0 s-2,= 0.63988,Kanai?Tajimi模型的譜密度函數為:

獲得突加型Kanai?Tajimi激勵下響應時變方差的前提是已知響應功率譜,響應功率譜與激勵功率譜之間存在定關系,2.2節對調制函數進行了處理,現對式(38)進行簡化,結果如下式所示:

5.2.1 響應功率譜正確性分析

響應功率譜可顯示耗能結構響應隨頻率及時間的振動特性,現對框架結構的動力響應功率譜進行分析。采用與5.1節相同的慣質比、剛度比和阻尼比驗證本節框架結構響應功率譜的正確性。將式(39)代入式(29),即可獲得混聯Ⅰ型耗能框架結構基于突加型Kanai?Tajimi激勵的層間剪力功率譜、層間位移角功率譜、位移功率譜、層間位移功率譜速度功率譜。圖11為兩種方法所求結構頂層的各響應功率譜的對比。由圖11可知,本文方法與傳統方法所求,,,及同樣受時間t與頻率ω的共同影響,且兩種方法所求各響應的功率譜峰值與變化趨勢完全一致,由此反映了所求結果的正確性,同時也表明本文方法同樣適用于突加型Kanai?Tajimi激勵的動力響應分析。其次,由圖11可知,響應功率譜,,,及在頻率ω"= 3 rad/s及時間t = 20 s左右出現最大值,隨后受到突加型地震激勵的影響趨于平穩。

5.2.2 響應時變方差分析

在已知響應功率譜的前提下,依據式(35a)~(35c)求解了基于突加型Kanai?Tajimi激勵的,和,計算過程見附錄B,結果為:

將式(40a)~(40c)代入式(34),即可獲得基于突加型Kanai?Tajimi地震激勵的響應時變方差解析解。圖12~17分別為結構頂層各響應時變方差基于本文方法與虛擬激勵法(取不同積分步長Δω)的對比圖。由圖12~17可知,隨積分步長Δω的減小,傳統方法(虛擬激勵法)所獲得的位移、層間位移、速度、層間速度、層間剪力和層間位移角的時變方差越逼近本文結果。傳統方法在Δω"≤ 0.5 rad/s工況下所求結果與本文所求結果完全相同,由此表明了本文所求各響應時變方差的正確性。此外,借助MATLAB工具,傳統方法依據式(32a)~(32b)計算響應時變方差,在工況Δω=2 rad/s,Δω=1 rad/s,Δω=0.5 rad/s和Δω=0.1 rad/s下分別耗時150.23,287.845,497.137,537.92 s,而本文方法耗時54.01 s,由此反映了本文方法在保證計算精度的同時也提高了計算效率。

5.2.3 參數及減震效果分析

上文驗證了本文方法所求框架結構在突加型Kanai?Tajimi激勵下的響應方差正確有效,為研究慣容系統主要參數對減震效果的影響,基于式(40a)~(40c)及(34),通過改變慣質比、剛度比及阻尼比分析位移方差及速度方差的變化趨勢。的取值范圍為0.001~0.4,取值范圍為0.001~0.06,的取值范圍為0.01~1。

圖18展示了慣質比、剛度比和阻尼比在t=20 s時對結構頂層的位移方差和速度方差的影響。由圖18(a)和(b)可知,阻尼比時,位移方差和速度方差隨慣質比的增大而逐漸減小,位移方差和速度方差隨剛度比的增大先減小后增大,且在左右出現極小值。由圖18(c)和(d)可知,慣質比時,位移方差和速度方差隨阻尼比的增大逐漸增大,隨剛度比的增大先減小后增大。分析表明,位移方差和速度方差在其中兩個參數的共同作用下出現極小值,此時減震效果較好。

圖18改變參數使位移方差和速度方差同時出現極小值,此時慣質比、剛度比及阻尼比分別為0.4,0.023及0.2,依據式(40a)~(40c)和(34),對比該情形下耗能結構與無控結構的響應量(位移、速度、層間位移和層間剪力)如圖19所示。由圖19可知,在結構中設置混聯Ⅰ型慣容系統可使結構頂層的位移、速度、層間位移及層間剪力顯著減小,各響應最大值分別減小26.71%,31.15%,26.09%及31.16%。

6 結 論

本文研究了混聯Ⅰ型慣容耗能結構在均勻調制非平穩隨機地震激勵作用下的動力響應,為進一步了解結構的振動特性,推導了結構響應時變功率譜及時變方差的解析解。基于解析解的表達式,借助與動力學相關的數值算例及框架結構的算例,驗證了本文結果的正確性,分析了參數對減震效果的影響。所得結論如下:

(1)"將非平穩地震激勵下的響應時變功率譜密度函數二次式分解轉化為由振動特征值,模態系數及時變模態強度系數等參數構成的線性組合,給定模態響應系數可得到與之對應的響應時變功率譜,具有明確的物理意義。

(2)"經本文方法的運算,將求解響應時變方差的積分問題轉化為求解非平穩模態譜矩問題。非平穩模態譜矩的積分運算存在原函數,進而可獲得響應時變方差的解析解,簡化了計算過程。響應的時變方差可應用于分析結構在地震激勵下的可靠度、安全性及舒適性。

(3)"通過動力學數值算例與框架結構算例分析表明,本文與虛擬激勵法所求響應時變功率譜完全一致,驗證了本文方法的準確性。本文所求響應時變方差與虛擬激勵法最精確的值相同,且計算效率較高,即在提高精度的同時也提高了計算效率。

(4)"通過參數對位移時變方差、速度時變方差和減震效果的影響分析表明,改變慣質比、剛度比及阻尼比,動力響應方差出現極小值,此時混聯Ⅰ型慣容系統具有良好的減震性能。

參考文獻:

[1] 李壯壯,"申永軍,"楊紹普,"等. 基于慣容-彈簧-阻尼的結構減振研究[J]. 振動工程學報,"2018,"31(6):"1061-1067.

LI Zhuangzhuang,"SHEN Yongjun,"YANG Shaopu,"et al. Study on vibration mitigation based on inerter-spring-damping structure[J]. Journal of Vibration Engineering,"2018,"31(6):"1061-1067.

[2] 路暢,"李春祥,"曹黎媛. 基于拓撲布置的超高層建筑TTMDI風致振動控制[J]. 振動與沖擊,"2022,"41(9):"244-252.

LU Chang,"LI Chunxiang,"CAO Liyuan. Wind-induced vibration control of super high-rise building TTMDI system based on topological layout[J]. Journal of Vibration and Shock,"2022,"41(9):"244-252.

[3] LI Z C,"XU K,"MA R S,"et al. A novel lever-arm tuned mass damper inerter (LTMDI)"for vibration control of long-span bridges[J]. Engineering Structures,"2023,"293:"116662.

[4] IKAGO K,"SAITO K,"INOUE N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper[J]. Earthquake Engineering and Structural Dynamics,"2012,"41(3):"453-474.

[5] LAZAR I F,"NEILD S A,"WAGG D J. Using an inerter‐based device for structural vibration suppression[J]. Earthquake Engineering and Structural Dynamics,"2014,"43(8):"1129-1147.

[6] LI Y F,"LI S Y,"CHEN Z Q. Optimal design and effectiveness evaluation for inerter-based devices on mitigating seismic responses of base isolated structures[J]. Earthquake Engineering and Engineering Vibration,"2021,"20(4):"1021-1032.

[7] DE DOMENICO D,"RICCIARDI G. Optimal design and seismic performance of tuned mass damper inerter (TMDI)"for structures with nonlinear base isolation systems[J]. Earthquake Engineering and Structural Dynamics,"2018,"47(12):"2539-2560.

[8] 張瑞甫,"曹嫣如,"潘超. 慣容減震(振)系統及其研究進展[J]. 工程力學,"2019,"36(10):"8-27.

ZHANG Ruifu,"CAO Yanru,"PAN Chao. Inerter system and its state-of-the-art[J]. Engineering Mechanics,"2019,"36(10):"8-27.

[9] KRENK S,"H?GSBERG J. Tuned resonant mass or inerter-based absorbers:"unified calibration with quasi-dynamic flexibility and inertia correction[J]. Proceedings of the Royal Society A,"2016,"472(2185):"20150718.

[10] 李創第,"江麗富,"王瑞勃,"等. 單自由度混聯Ⅱ型慣容系統隨機地震動響應分析[J]. 應用數學和力學,"2023,"44(3):"260-271.

LI Chuangdi,"JIANG Lifu,"WANG Ruibo,"et al. Responses of SDOF structures with SPIS-Ⅱ dampers under random seismic excitation[J]. Applied Mathematics and Mechanics,"2023,"44(3):"260-271.

[11] ZHANG R F,"ZHAO Z P,"PAN C,"et al. Damping enhancement principle of inerter system[J]. Structural Control and Health Monitoring,"2020,"27(5):"e2523.

[12] 潘超,"韓笑,"張瑞甫,"等. 基于最大耗能增效原則的慣容減震系統解析設計公式[J]. 工程力學,"2023,"40(4):"91-101.

PAN Chao,"HAN Xiao,"ZHANG Ruifu,"et al. Closed-form design formula for inerter system based on the principle of maximum damping enhancement[J]. Engineering mechanics,"2023,"40(4):"91-101.

[13] 張瑞甫,"張璐琦,"潘超,"等. 考慮正常使用功能的非線性黏滯阻尼慣容系統多指標減震控制[J]. 工程科學與技術,2023,"55(5):"14-22.

ZHANG Ruifu,"ZHANG Luqi,"PAN Chao,"et al. Multi-objective seismic control effect of inerter system with nonlinear viscous damping considering functionality of buildings[J]. Advanced Engineering Sciences,2023,"55(5):"14-22.

[14] 潘超,"劉媛,"張瑞甫,"等. 慣容減震系統性能成本控制解析設計方法[J]. 建筑結構學報,"2022,"43(11):"107-116.

PAN Chao,"LIU Yuan,"ZHANG Ruifu,"et al. Performance-cost design method of inerter system based on closed-form formulae[J]. Journal of Building Structures,"2022,"43(11):"107-116.

[15] 潘超,"張瑞甫,"王超,"等. 單自由度混聯Ⅱ型慣容減震體系的隨機地震響應與參數設計[J]. 工程力學,"2019,"36(1):"129-137.

PAN Chao,"ZHANG Ruifu,"WANG Chao,"et al. Stochastic seismic response and design of structural system with series-parallel-Ⅱ inerter system[J]. Engineering Mechanics,"2019,"36(1):"129-137.

[16] WANG D,"FAN Z L,"HAO S W,"et al. An evolutionary power spectrum model of fully nonstationary seismic ground motion[J]. Soil Dynamics and Earthquake Engineering,"2018,"105:"1-10.

[17] 何浩祥,"丁佳偉,"閆維明. 地震動全非平穩時頻譜統計模型及其在結構分析中的應用[J]. 振動工程學報,"2021,"34(6):"1257-1267.

HE Haoxiang,DING Jiawei,YAN Weiming. Statistical model of time-frequency spectrum of earthquake and application in structural vibration analysis[J]. Journal of Vibration Engineering,"2021,"34(6):"1257-1267.

[18] PRIESTLEY M B. Evolutionary spectra and non-stationary processes[J]. Journal of the Royal Statistical Society:"Series B,"1965,"27(2):"204-229.

[19] 霍慧,"陳國海,"王文培,"等. 平穩/非平穩激勵下中厚圓柱殼隨機振動響應的基準解[J]. 力學學報,"2022,"54(3):"762-776.

HUO Hui,"CHEN Guohai,"WANG Wenpei,"et al. Benchmark solutions of random vibration responses for moderately thick cylindrical shells under stationary/nonstationary excitations[J]. Chinese Journal of Theoretical and Applied Mechanics,"2022,"54(3):"762-776.

[20] 方同,"孫木楠,"張天舒. 相關演變隨機激勵下響應演變譜矩陣的表達式[J]. 應用力學學報,"2008,"25(3):"351-354.

FANG Tong,"SUN Munan,"ZHANG Tianshu. General expression of response evolutionary spectrum matrix due to correlated evolutionary random excitations[J]. Chinese Journal of Applied Mechanics,"2008,"25(3):"351-354.

[21] 李創第,"王博文,"昌明靜. 廣義Maxwell阻尼耗能系統非均勻響應精細積分精確格式[J]. 桂林理工大學學報,"2021,"41(4):"783-790.

LI Chuangdi,"WANG Bowen,"CHANG Mingjing. Precise integration scheme for nonuniform response of energy dissipation system with generalized Maxwell damping[J]. Journal of Guilin University of Technology,"2021,"41(4):"783-790.

[22] 方同. 工程隨機振動[M]. 北京:"國防工業出版社,"1995.

[23] 李創第,"王博文,"昌明靜. 一般線性黏彈性阻尼器保護系統非均勻與完全非平穩地震響應解析分析[J]. 振動工程學報,"2022,"35(5):"1084-1100.

LI Chuangdi,"WANG Bowen,"CHANG Mingjing. Analytical analysis of non-uniform and completely nonstationary seismic response of a general linear viscoelastic damper protection system[J]. Journal of Vibration Engineering,"2022,"35(5):"1084-1100.

[24] 林家浩,"張亞輝. 隨機振動的虛擬激勵法[M]. 北京:"科學出版社,"2004.

[25] XING Chenxi,nbsp;WANG Hao,"XU Zidong,"et al. Stochastic analysis of a large-span continuous girder high-speed railway bridge under fully non-stationary earthquake[J]. Applied Sciences,"2022,"12(24):"12684.

[26] 張步云,"戴濤,"TAN Chin-An,"等. 懸架系統振動特性的非平穩虛擬激勵法研究[J]. 振動、測試與診斷,"2022,"42(2):"227-234.

ZHANG Buyun,"DAI Tao,"TAN Chin-An,"et al. Non?stationary pseudo excitation method for analyzing vibration characteristics of suspension system[J]. Journal of Vibration,"Measurement and Diagnosis,"2022,"42(2):"227-234.

[27] 葛新廣,"龔景海,"李創第,"等. 功率譜二次正交化法在隨機地震動響應的應用[J].振動工程學報,"2022,"35(3):"616-624.

GE Xinguang,"GONG Jinghai,"LI Chuangdi,"et al. Application of quadratic orthogonalization method of response power spectrum to random ground motion response[J]. Journal of Vibration Engineering,"2022,"35(3):"616-624.

[28] 鄒萬杰,"劉美華,"李創第,"等. 基于胡聿賢譜的帶支撐廣義Maxwell阻尼隔震結構隨機響應分析[J]. 力學學報,"2022,"54(9):"2601-2615.

ZOU Wanjie,"LIU Meihua,"LI Chuangdi,"et al. Seismic response analysis of generalized Maxwell damping isolated structure with braces under Hu Yuxian spectrum excitation[J]. Chinese Journal of Theoretical and Applied Mechanics,"2022,"54(9):"2601-2615.

[29] 葛新廣. 分數導數型阻尼耗能結構地震動響應的分析方法研究[D]. 上海:"上海交通大學,"2022.

GE Xinguang. Research on analysis methods for seismic response of energy dissipative structure with dampers modeled by fractional derivative[D]. Shanghai:"Shanghai Jiao Tong University,"2022.

[30] CHEN M,"LIANG X J,"YANG Z W,"et al. Analytical Study on the random seismic responses of an asymmetrical suspension structure[J]. Buildings,"2023,"13(6):"1435.

[31] HOUSNER G W. Characteristics of strong-motion earthquakes[J]. Bulletin of the Seismological Society of America,"1947,"37(1):"19-31.

Analytical solution for dynamic response of inertial energy dissipation structures under non-stationary seismic excitation

LI"Chuang-di1,"WANG"Rui-bo1,"GE"Xin-guang2,"JIANG"Li-fu1

(1.School of Civil Engineering and Architecture,"Guangxi University of Science and Technology,"Liuzhou 545006,"China;"2.School of Civil Engineering and Architecture,"Liuzhou Institute of Technology,"Liuzhou 545616,"China)

Abstract: Due to the lack of research on the dynamical response of the inerter system based on non-stationary seismic excitation,"an analytical solution for the time-varying variance of the dynamical response of a multi-degree-of-freedom energy-consuming structure with series-parallel layout Ⅰ inerter system (SPIS-Ⅰ)"is proposed. According to the constitutive relationship of the SPIS-Ⅰ,"the dynamic equations of the energy dissipation structure,"and the impulsive non-stationary seismic excitation,"we decouple the inertial energy dissipation structure into first-order systems using complex modal analysis and the virtual excitation method. It is convenient to obtain the unified solution of the structural response quantities such as displacement,"velocity,"inter-story shear force,"etc. The quadratic decomposition method is used to transform the time-varying power spectral density function of the unified solution into a linear combination of the complex modal eigenvalues of the inertial-capacitated energy-consuming structure,"the modal coefficients,"the time-varying modal strength coefficients,"and the quadratic product containing the squared term of the circular frequency. On this basis,"an analytical solution for the time-varying variance of the response of the energy-consuming structure under non-stationary seismic excitation is derived by utilizing the characteristics that the non-stationary modes spectral moments have an analytical solution in the infinite integration interval. The accuracy of the proposed dynamic response power spectrum and time-varying variance is verified by using the sudden white noise excitation to analyze the dynamic response of the structure. At the same time,"the dynamic response of the frame structure based on the sudden Kanai-Tajimi model is studied,"and the influence of the parameters of the inertial system on the damping effect is analyzed. The proposed method can be applied to analyze the seismic response of linear structures under other non-stationary modulation functions.

Key words: inertial damping system;non-stationary seismic excitation;quadratic decomposition method of power spectrum;time-varying variance;analytical solution

作者簡介: 李創第(1964—),男,博士,教授。E-mail:lichuangdi1964@163.com。

通訊作者: 葛新廣(1977—),男,博士,講師。E-mail:gxgzlr.2008@163.com。

主站蜘蛛池模板: 国产69精品久久久久孕妇大杂乱| 亚洲精品午夜天堂网页| 亚洲有码在线播放| 18禁黄无遮挡网站| 欧美午夜一区| 思思99思思久久最新精品| 91成人精品视频| 亚洲最黄视频| 国产色图在线观看| 欲色天天综合网| 婷婷亚洲天堂| 91精品人妻一区二区| A级全黄试看30分钟小视频| 亚洲欧美激情小说另类| 伊人久久综在合线亚洲91| 亚洲一区毛片| 国产精品极品美女自在线网站| 无码专区在线观看| 亚洲人成网址| 亚洲国产天堂在线观看| 亚洲水蜜桃久久综合网站 | 国产精品视频999| 国产丝袜91| 国产无码高清视频不卡| 久久狠狠色噜噜狠狠狠狠97视色 | 亚洲av日韩av制服丝袜| jizz在线观看| 精品国产成人av免费| 被公侵犯人妻少妇一区二区三区| 97亚洲色综久久精品| 亚洲色欲色欲www网| 激情综合婷婷丁香五月尤物| 日韩经典精品无码一区二区| 欧美黄色网站在线看| 亚洲欧美成aⅴ人在线观看| 亚洲中文字幕无码爆乳| 日韩在线1| 91视频日本| 国产欧美日韩va另类在线播放| 国产小视频a在线观看| 国模在线视频一区二区三区| 久青草国产高清在线视频| 四虎影院国产| 欧美成人二区| 中国精品自拍| 日韩精品无码免费专网站| 国产亚洲一区二区三区在线| 久久天天躁狠狠躁夜夜2020一| 亚洲一区无码在线| 在线播放国产99re| 色悠久久久| 人妻少妇乱子伦精品无码专区毛片| 亚洲国产AV无码综合原创| jijzzizz老师出水喷水喷出| 女人18一级毛片免费观看| 欧美国产日韩在线| 日本免费高清一区| 国产产在线精品亚洲aavv| 国产精品蜜芽在线观看| 激情午夜婷婷| 九九视频免费在线观看| 国产91视频免费观看| 噜噜噜久久| 亚洲天堂福利视频| yjizz国产在线视频网| 亚洲精品成人福利在线电影| 97人人做人人爽香蕉精品| 亚洲欧美另类视频| 香蕉久久国产超碰青草| 国产毛片片精品天天看视频| 中文字幕色在线| 日韩 欧美 小说 综合网 另类| 久久夜色精品| 欧美不卡二区| 成人夜夜嗨| 日本a∨在线观看| 国产精品自在在线午夜| 亚洲国产精品VA在线看黑人| 成人自拍视频在线观看| 色婷婷在线影院| 国产在线高清一级毛片| 亚洲91在线精品|