











摘要:目的" 分析剪切波彈性成像(SWE)和脈沖多普勒(PW)對乳腺良惡性病變的診斷性能,并探討彈性模量值與血流參數的潛在聯系。方法" 選取2019年8月-2021年2月于安徽醫科大學第一附屬醫院就診的349例患者(共356個病變)作為研究對象,均行PW和SWE檢查,獲得SWE參數包括E-max、E-mean、E-min、E-sd、E-ratio,PW參數包括PI、RI、PSV、EDV。以病理結果為金標準,分析血流參數及彈性模量值對乳腺病變的診斷效能,并探討SWE與PW參數的相關性。結果" 根據病理結果將病變分為良性組及惡性組,結果顯示兩組E-max、E-mean、E-min、E-sd、E-ratio、PI、RI、PSV、EDV比較,差異有統計學意義(P<0.05);其中,E-max和E-sd的AUC最佳,分別為0.912和0.903,以E-max>84.45 Kpa為截斷值時,E-max診斷乳腺病變良惡性的靈敏度為91.51%;以E-sd>22.35 Kpa為截斷值時,E-sd診斷乳腺病變良惡性的特異度為86.38%;以RI>0.70為截斷值時,RI診斷乳腺病變良惡性的特異度為89.00%,以PI>1.07為截斷值時,PI診斷乳腺病變良惡性的靈敏度為85.45%。相關性分析顯示,E-max與PI(r=0.793,P<0.05)和RI(r=0.767,P<0.05)呈中等相關,E-sd與PI(r=0.752,P<0.05)和RI(r=0.731,P<0.05)呈中等相關。在惡性組中,E-max、E-sd與PI、RI存在相關性,良性組中各參數均無相關性。結論" SWE與PW參數對乳腺病變的診斷性能相似,且SWE與PW參數在乳腺病變中有相關性,尤其是惡性病變中存在顯著相關,可反映乳腺病變的彈性特征和血管特征之間存在的內在聯系。
關鍵詞:剪切波彈性成像;脈沖多普勒;乳腺病變;超聲參數
中圖分類號:R737.9" " " " " " " " " " " " " " " " 文獻標識碼:A" " " " " " " " " " " " " " " " " DOI:10.3969/j.issn.1006-1959.2024.14.019
文章編號:1006-1959(2024)14-0100-06
Comparison of Diagnostic Performance of Shear Wave Elastography
and Pulsed Wave Doppler Parameters in Breast Lesions
LI Yu,ZHANG Wen-xin,ZHANG Han-qi,GUO Yi-xuan,ZHENG Hui
(Department of Ultrasound,the First Affiliated Hospital of Anhui Medical University,Hefei 230022,Anhui,China)
Abstract:Objective" To analyze the diagnostic performance of shear wave elastography (SWE) and pulsed wave Doppler (PW) in benign and malignant breast lesions, and to explore the potential relationship between elastic modulus and blood flow parameters.Methods" A total of 349 patients (356 lesions in total) who were admitted to the First Affiliated Hospital of Anhui Medical University from August 2019 to February 2021 were selected as the research objects. All patients underwent PW and SWE examinations. The obtained SWE parameters included E-max, E-mean, E-min, E-sd, and E-ratio, and the PW parameters included PI, RI, PSV, and EDV. The pathological results were used as the gold standard to analyze the diagnostic efficacy of blood flow parameters and elastic modulus values for breast lesions, and to explore the correlation between SWE and PW parameters.Results" According to the pathological results, the lesions were divided into benign group and malignant group, the results showed that There were significant differences in E-max, E-mean, E-min, E-sd, E-ratio, PI, RI, PSV and EDV between the two groups (Plt;0.05), while The AUC of E-max and E-sd were the best, which were 0.912 and 0.903, respectively. When E-maxgt;84.45 Kpa was used as the cut-off value, the sensitivity of E-max in the diagnosis of benign and malignant breast lesions was 91.51%. When E-sdgt;22.35 Kpa was used as the cut-off value, the specificity of E-sd in the diagnosis of benign and malignant breast lesions was 86.38%. When RIgt;0.70 was used as the cut-off value, the specificity of RI in the diagnosis of benign and malignant breast lesions was 89.00%. When PIgt;1.07 was used as the cut-off value, the sensitivity of PI in the diagnosis of benign and malignant breast lesions was 85.45%. Correlation analysis showed that E-max was moderately correlated with PI (r=0.793, Plt;0.05) and RI (r=0.767, Plt;0.05), and E-sd was moderately correlated with PI (r=0.752, Plt;0.05) and RI (r=0.731, Plt;0.05). In the malignant group, there was a correlation between E-max, E-sd and PI, RI, and there was no correlation between the parameters in the benign group.Conclusion" The diagnostic performance of SWE and PW parameters for breast lesions is similar, and there is a correlation between SWE and PW parameters in breast lesions, especially in malignant lesions, which can reflect the internal relationship between the elastic characteristics and vascular characteristics of breast lesions.
Key words:Shear wave elastography;Pulsed wave Doppler;Breast lesions;Ultrasound parameters
剪切波彈性成像技術(shear wave elastography, SWE)作為最常用的彈性成像技術之一,通過獲取彈性模量值包括最大彈性模量(E-max)、平均彈性模量(E-mean)、最小彈性模量(E-min)、性模量標準差(E-sd)和彈性模量比值(E-ratio)以鑒別乳腺良惡性病變,并顯示出巨大潛力[1,2]。脈沖多普勒技術(pulsed-wave, PW)的穿透性血流模式可無創獲得阻力指數(RI)、搏動指數(PI)、收縮峰值速度(PSV)、舒張末期速度(EDV)等定量參數,亦有助于區分乳腺良惡性腫塊[3]。第五版BI-RADS分類將血管特征和彈性評估描述為乳腺病變兩個重要而互補的特征[4]。然而,目前較少有文獻對這兩項技術的內在相關性做出具體比較和研究,使其在乳腺病變的鑒別診斷方面應用受到局限。因此,本研究采用SWE和PW量化彈性和血管特征,旨在比較兩項技術在鑒別乳腺病變性質方面的效能,同時探討其內在相關性,現報道如下。
1資料與方法
1.1一般資料" 選取2019年8月-2021年2月于安徽醫科大學第一附屬醫院就診的370例患者作為研究對象。納入標準:所有病變均行粗針穿刺活檢或手術獲得病理結果;所有病變術前2周均行常規二維超聲、PW、SWE檢查;臨床資料完整。排除標準:術前接受過放化療治療;圖像數據因偽影顯示不清;在哺乳期或者有假體植入。最終納入349例患者(共356個病變),其中良性病變191例,年齡19~78歲,平均年齡(42.30±11.49)歲;直徑4~77 mm,平均直徑(18.4±11.47)mm。惡性病變165例,年齡17~80歲,平均年齡(43.27±11.21)歲;直徑4~105 mm,平均直徑(18.59±13.25)mm。病理結果見表1。本研究經安徽醫科大學第一附屬醫院倫理委員會審批通過(倫理號:Quick-PJ 2022-12-17),所有患者或其直系親屬已簽署知情同意書。
1.2儀器" 采用法國Supersonic Aixplorer超聲診斷儀,配備脈沖多普勒、實時剪切波彈性成像功能,探頭選用L4~15線陣探頭,頻率范圍4~15 Hz。
1.3方法
1.3.1 PW" 患者取仰臥位,雙臂上舉,充分暴露雙側乳房和腋窩。對雙乳進行扇形掃查,當掃查到目標病變時,再進行橫向和縱向掃查,對靶病灶進行一般特征描述,包括最大直徑、回聲、邊緣、形狀、方位、后方回聲特征、有無微鈣化等。在此基礎上,啟動彩色多普勒超聲檢查,調整取樣框大小和多普勒增益,探頭避免施壓以使低速血流信號可以顯示,選取目標病灶最顯著的血管啟動脈沖多普勒(PW)功能,調整角度指示線使與血管夾角<60°,手動測量PSV、EDV并測量描記多普勒頻譜,機器自動計算PI、RI,所有參數測量3次取平均值進行分析(圖1)。血流參數:PSV、EDV、PI、RI,其中PI和RI的計算公式為:PI=(PSV-EDV)/TAV,RI=(PSV-EDV)/PSV,TAV為時間平均速度[5],本研究PI、RI由機器自動獲得。
1.3.2 SWE" PW檢查完成后,取病變的最大徑線切面,盡量避免對探頭施壓,囑患者屏住呼吸,啟動SWE功能,std模式,量程0~300 Kpa,使灰度超聲圖像和SWE圖像分屏顯示。待圖像穩定后,凍結圖像。采用機器自帶的“Trace”功能手動描記病變及其周圍受影響彈性明顯異常的組織,機器自動計算E-max、E-mean、E-min、E-sd。再啟動Q-BOX ratio功能于腫塊硬度最大區域及同深度脂肪組織內放置直徑為3 mm的取樣框,獲得二者的彈性模量比值E-ratio(圖2)。彈性參數:E-max、E-mean、E-min、E-sd、E-ratio,在SWE中,組織的彈性用楊氏模量E表示,與橫波的傳播速度v相關,可由下式估算:E=3ρv2,E-max為病變楊氏模量的最大值,E-mean為病變楊氏模量的平均值,E-min為病變楊氏模量的最小值。E-sd為病變所有楊氏模量的值與E-mean之間的差值,E-ratio為病變內的楊氏模量與相同深度的正常脂肪組織的楊氏模量值之比[6]。
1.4觀察指標" 分析SWE、PW參數的診斷性能,包括截斷值、靈敏度、特異度、準確度、AUC。靈敏度=真陽性/(真陽性+假陰性)×100%;特異度=真陰性/(真陰性+假陽性)×100%;準確度=(真陽性+真陰性)/總例數×100%。
1.5統計學方法" 采用SPSS 26.0統計學軟件進行數據分析。計量資料采用(x±s)表示,組間比較采用獨立樣本t檢驗。采用MedCalc 19.05進行受試者操作者特征(ROC)分析,獲取曲線下面積(AUC),采用DeLong's檢驗比較兩種AUC的系統差異。截斷值利用約登指數最大原則確定,評估各參數鑒別良惡性病變的靈敏度、特異度、準確度指標。采用Pearson相關系數計算PW與SWE參數的相關性,其中0~0.3代表弱相關或者不相關,0.3~0.5為弱相關,0.5~0.8為中等程度相關,0.8~1.0代表強相關,雙尾P<0.05表示差異有統計學意義。
2結果
2.1 SWE參數的診斷性能分析" 根據病理結果將病變分為良性組及惡性組,結果顯示兩組E-max、E-mean、E-min、E-sd、E-ratio比較,差異有統計學意義(P<0.05),見表2。其中,E-max和E-sd的AUC最佳,分別為0.912和0.903,以E-max>84.45 Kpa為截斷值時,E-max診斷乳腺病變良惡性的靈敏度為91.51%,以E-sd>22.35 Kpa為截斷值時,E-sd診斷乳腺病變良惡性的特異度為86.38%,見表3。以E-max和E-sd截斷值的二分類結果作為SWE指標來診斷乳腺病變良惡性的結果見表4。
2.2 PW參數的診斷性能分析" 根據病理結果將病變分為良性組及惡性組,結果顯示兩組PI、RI、PSV、EDV比較,差異有統計學意義(P<0.05),見表5。其中,以RI>0.70為截斷值時,RI診斷乳腺病變良惡性的特異度為89.00%,以PI>1.07為截斷值時,PI診斷乳腺病變良惡性的靈敏度為85.45%,見表6。以PI和RI截斷值的二分類結果作為PW指標來診斷乳腺病變良惡性結果見表7。
2.3 SWE聯合PW參數的診斷性能分析" 選擇AUC值較高的參數E-max、E-sd、PI和RI依據最佳截斷值二分類之后進行組合(組合一:如果四個參數均為陽性,則預測結果為陽性;組合二:如果任何一個參數為陽性,則結果為陽性,四個參數均為陰性,則結果為陰性),結果顯示兩種組合方法的AUC分別為0.846和0.835,與未組合前的AUC值比較無顯著差異。然而,組合一的特異度提高到95.28%,組合二的靈敏度達92.12%,見表8。
2.4 SWE與PW參數的相關性" 所有參數中,E-max、E-sd、E-mean和E-ratio與RI和PI具有相關性,其中E-max與PI、RI具有中等相關性,E-sd與PI、RI也具有中等相關性,見表9。進一步分析良惡性組內各參數之間的相關性,結果顯示在良性組中,尚無參數顯示出顯著相關性;而在惡性組中,E-max與RI、RI呈中等程度相關,E-sd與PI、RI呈中等程度相關,見圖3。
3討論
21世紀以來,全球范圍內女性乳腺癌的發病率與死亡率均呈現上升趨勢。至2020年,乳腺癌已躍居全球女性癌癥發病和死亡譜首位[7,8]。常規超聲以其無創、實時、經濟的優點成為乳腺病變最常用的影像學檢查手段[9]。隨著技術的發展,多普勒超聲技術及剪切波彈性成像技術等應運而生,前者通過顯示病灶的血流形態及血流參數反映病變血管的異質性[10,11],后者通過評估剪切波通過組織的速度參數提供病變的硬度信息[12,13],為乳腺癌篩查和診斷提供了更多的選擇。
本研究通過對SWE和PW的參數進行分析,發現其均能起到鑒別乳腺良惡性病變的作用。SWE參數中E-max診斷效能最高(AUC:0.912),這與Lee EJ等[14]研究結果相一致。PW參數中PI診斷效能最佳,這是因為惡性腫瘤會分泌血管內皮生長因子刺激腫瘤及鄰近組織產生大量新生血管[15],從而導致流速增快、PI值顯著增高,這種特點在卵巢癌等多種腫瘤中已被證實[16,17]。此外,本研究還將SWE與PW的重要參數進行組合,分析其組合后的診斷效能,結果提示總體診斷性能無統計學差異,但組合一的特異度提高,組合二的敏感度提高,說明兩種方法聯合使用可用于不同的臨床目的,如篩查或診斷。
本研究還進一步探索了SWE參數與PW參數之間的內在相關性,對所有病變參數進行相關性分析發現E-max與PI呈中等程度相關,E-sd與PI呈中等程度相關。在惡性組中,E-max、E-sd與PI、RI存在相關性,在良性組中各參數均無相關性。研究證實[18],乳腺癌的形成和轉移過程中,成纖維細胞、肌成纖維細胞和內皮細胞等發揮著重要作用,成纖維細胞轉化為肌成纖維細胞,分泌大量的膠原和細胞外基質蛋白,產生乳腺腫瘤特有的收縮力量,導致乳腺腫瘤的硬化特性。另有研究表明[19],肌成纖維細胞可能促進血管生成,在腫瘤局部生長和遠處轉移中起核心作用。這些特征使得乳腺惡性腫瘤的E-max、E-sd與PI、RI產生內在相關性。同時,這種內在相關性的存在使得SWE和PW兩種檢查方法可以在乳腺良惡性病變診斷中相互補充驗證,如對于內部存在鈣化的病變,彈性信息可能會受到干擾[20],此時可以用血流參數預測彈性評估的準確性。
綜上所述,SWE與PW在乳腺病變診斷中具有相似的診斷效能,可根據不同的臨床目的選取不同的診斷組合,實現乳腺病變的個體化、針對性治療方案的制定,且SWE與PW參數的內在聯系性實現了臨床應用中血流與硬度特征評估的互為補充。本研究還存在一些不足,未排除腫塊大小、不同切面彈性模量的差異性對SWE參數的影響;此外,本研究旨在分析血流及彈性特征對乳腺病變的診斷效能及相關性,而忽略了病變的常規特征如邊緣、形狀、縱橫比的差異性對乳腺良惡性風險預測的影響,未來應進一步結合常規超聲、血流、彈性特征綜合分析乳腺惡性病變風險因素。
參考文獻:
[1]薛姍姍,趙巧玲,阮驪韜,等.實時剪切波彈性成像技術在乳腺腫塊診斷中的臨床應用價值[J].中國臨床醫學影像雜志,2019,30(11):778-782.
[2]Avdan AA,Gultekin S,Inan MA.The Utility of Quantitative Parameters of Shear-Wave Elastography to Predict Prognostic Histologic Features of Breast Cancer[J].Ultrasound Q,2023,39(2):81-85.
[3]Watanabe T,Kaoku S,Yamaguchi T,et al.Multicenter Prospective Study of Color Doppler Ultrasound for Breast Masses: Utility of Our Color Doppler Method[J].Ultrasound Med Biol,2019,45(6):1367-1379.
[4]Spak DA,Plaxco JS,Santiago L,et al.BI-RADS((R)) fifth edition:A summary of changes[J].Diagn Interv Imaging,2017,98(3):179-190.
[5]Russ MK,Lafata NM,Robertson SH,et al.Pulsed wave Doppler ultrasound:Accuracy,variability,and impact of acquisition parameters on flow measurements[J].Med Phys,2023,50(11):6704-6713.
[6]Gu J,Polley EC,Ternifi R,et al.Individualized-thresholding Shear Wave Elastography combined with clinical factors improves specificity in discriminating breast masses[J].Breast,2020,54:248-255.
[7]Sung H,Ferlay J,Siegel RL,et al.Global Cancer Statistics 2020:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J].CA Cancer J Clin,2021,71(3):209-249.
[8]何思怡,李賀,曹毛毛,等.全球及我國女性乳腺癌疾病負擔年齡分布及變化趨勢[J].中國腫瘤,2023,32(1):1-7.
[9]Wang Y,Li Y,Song Y,et al.Comparison of ultrasound and mammography for early diagnosis of breast cancer among Chinese women with suspected breast lesions:A prospective trial[J].Thorac Cancer,2022,13(22):3145-3151.
[10]Mohindra N,Jain N,Yadav S,et al.Utility of ultrasound Angio-PLUS imaging for detecting blood flow in breast masses and comparison with color Doppler for differentiating benign frommalignant masses[J].Acta Radiol,2023,64(6):2087-2095.
[11]Patel SP,Nimavat K,Patel P,et al.Doppler Ultrasound Assessment of Tumor Vascularity in Locally Advanced Breast Cancer at Diagnosis and following Primary Systemic Chemotherapy[J].J Pharm Bioallied Sci,2023,15(Suppl 2):S1280-S1282.
[12]Zheng X,Huang Y,Liu Y,et al.Shear-Wave Elastography of the Breast:Added Value of a Quality Map in Diagnosis and Prediction of the Biological Characteristics of Breast Cancer[J].Korean J Radiol,2020,21(2):172-180.
[13]Golatta M,Pfob A,Busch C,et al.The Potential of Shear Wave Elastography to Reduce Unnecessary Biopsies in Breast Cancer Diagnosis:An International,Diagnostic,Multicenter Trial[J].Ultraschall Med,2023,44(2):162-168.
[14]Lee EJ,Jung HK,Ko KH,et al.Diagnostic performances of shear wave elastography:which parameter to use in differential diagnosis of solid breast masses?[J].Eur Radiol,2013,23(7):1803-1811.
[15]Saman H,Raza SS,Uddin S,et al.Inducing Angiogenesis,a Key Step in Cancer Vascularization,and Treatment Approaches[J].Cancers (Basel),2020,12(5):1172.
[16]Chung J,Lee YJ,Choi YJ,et al.Clinical applications of Doppler ultrasonography for thyroid disease:consensus statement by the Korean Society of Thyroid Radiology[J].Ultrasonography,2020,39(4):315-330.
[17]Cui Y,Shi S,Zhang S,et al.Application value of Doppler ultrasound combined with CA125 and CA19.9 in the early diagnosis of epithelial ovarian cancer[J].J BUON,2021,26(5):1802-1808.
[18]Ingthorsson S,Traustadottir GA,Gudjonsson T.Cellular Plasticity and Heterotypic Interactions during Breast Morphogenesis and Cancer Initiation[J].Cancers (Basel),2022,14(21):5209.
[19]Insana MF,Pellot-Barakat C,Sridhar M,et al.Viscoelastic imaging of breast tumor microenvironment with ultrasound[J].J Mammary Gland Biol Neoplasia,2004,9(4):393-404.
[20]Choi SH,Ko EY,Han BK,et al.Effect of Calcifications on Shear-Wave Elastography in Evaluating Breast Lesions[J].Ultrasound Med Biol,2021,47(1):95-103.
收稿日期:2023-11-14;修回日期:2023-12-17
編輯/杜帆