[摘要]"先天性巨結腸是一種先天性腸道疾病,又稱腸無神經節細胞癥。干細胞是具有高度增殖能力和多向分化潛能的細胞群體,可用于先天性巨結腸病變腸段的移植治療,有望修復缺失的腸管神經節細胞。干細胞應用于先天性巨結腸治療仍處于研究和探索階段,但其具有良好的應用前景,可為先天性巨結腸患者提供新的治療選擇。本文主要就干細胞治療先天性巨結腸的研究進展進行闡述。
[關鍵詞]"先天性巨結腸;腸神經系統;移植;干細胞;干細胞治療
[中圖分類號]"R726.5""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.02.032
先天性巨結腸為常見的小兒消化道畸形之一,全球每5000個活產嬰兒中便有1例先天性巨結腸患兒[1]。根據病變腸管的長度和累及范圍,將先天性巨結腸分為常見型、短段型、長段型、全結腸型和全腸型。男女患病比例與病變類型有關,短段型先天性巨結腸男性發病率為女性的4~5倍,長段型先天性巨結腸男性發病率為女性的1~2倍,多呈散發性且有家族性發生傾向[2]。先天性巨結腸的主要病理特點為病變腸段的肌間神經叢和黏膜下神經叢內的神經節細胞完全缺如[3]。解剖見受累腸段有明顯的狹窄段和擴張段,腸管表面失去光澤且無法正常蠕動,造成功能性腸梗阻。患者首發癥狀多在新生兒期,表現為胎糞排出延遲,伴腹脹及嘔吐。手術切除病變腸段是當前治療先天性巨結腸的主要方式。隨著腹腔鏡和機器人輔助手術的不斷發展,先天性巨結腸手術效果和安全性明顯提高,但術后小腸結腸炎、污糞、便秘、吻合口瘺等合并癥仍有較高發生率,嚴重影響患兒的生長發育,降低其生活質量[4-5]。此外,全結腸型和全腸型先天性巨結腸患兒的腸道病變范圍廣,治療難度相對較大。近年來,干細胞因其強大的自我更新和多向分化能力受到廣泛關注[6]。科學家擬通過干細胞移植彌補先天性巨結腸患者腸道中缺失的神經節細胞,恢復腸道正常生理功能。
1""先天性巨結腸發病與腸神經系統的關系
腸神經系統(enteric"nervous"system,ENS)作為人體內的獨立神經系統,對腸道蠕動、分泌和吸收功能起重要調控作用。ENS由腸壁神經元和神經膠質細胞組成[7]。這些細胞大都來源于迷走神經嵴經腹外側的遷移,少部分來自于骶神經嵴[8]。先天性巨結腸是一種因ENS發育異常導致的先天性疾病。在治療先天性巨結腸時,除考慮緩解癥狀外,還應考慮如何恢復或重建ENS的正常功能。神經嵴細胞(neural"crest"cell,NCC)是胚胎發育早期形成的細胞,是能遷移并分化成ENS的細胞。通過誘導干細胞形成NCC并將其移植到患者體內,可促進ENS再生治療先天性巨結腸[9]。Schlieve等[10]培育出一全功能ENS模型,為腸道疾病的研究開辟新道路。研究表明從先天性巨結腸患兒常規內窺鏡檢查中采集黏膜活檢標本,進而獲取ENS干細胞,這一做法提示未來可使用患者來源的細胞進行自體細胞替代治療,可減少倫理和免疫排斥等問題[11]。
2""干細胞相關研究
干細胞可通過細胞分裂產生與母細胞相同的細胞,并產生至少一種類型的高度分化子代細胞[12]。這不僅保證干細胞群體的穩定,還可為組織的發育和修復提供種子細胞來源。干細胞的來源主要有胚胎組織、胎兒組織、成體組織及經過基因重編程的分化體細胞[13]。根據分化潛能高低,干細胞可分為全能干細胞(totipotent"stem"cell,TSC)、多能干細胞(pluripotent"stem"cell,PSC)、專能干細胞等[14]。TSC既具有分化成組成機體所有細胞類型的能力,又具有分化成胚胎發育時期胚外組織中所有細胞類型的潛能[15]。只有來自受精卵和二細胞階段的卵裂球才是真正的TSC,因為其能在植入子宮后完成整個發育過程并形成完整個體[16]。Macfarlan等[17]開創性發現胚胎干細胞(embryonic"stem"cell,ESC)中有一小部分細胞表達全能性基因(MERVL、Zscan4),但根據TSC評估標準,目前還未獲得真正達到全能狀態或代替全能狀態的干細胞[18]。PSC具有分化成組織或器官中多種細胞類型的能力,但其不具備分化成滋養層來源所有細胞類型的能力。PSC包括ESC和誘導多能干細胞。專能干細胞是一類能夠分化成多種細胞類型的干細胞,通常只能分化成特定譜系細胞,包括神經干細胞(neural"stem"cell,NSC)和造血干細胞等。
3""PSC治療先天性巨結腸
Fattahi等[19]從人多能干細胞(human"pluripotent"stem"cell,hPSC)中衍生和分離ENS祖細胞,并進一步誘導這些祖細胞分化為腸神經嵴衍生細胞和功能性腸神經元,隨后將其移植到先天性巨結腸小鼠盲腸肌層中,觀察ENS的變化。結果發現這些細胞在小鼠腸道中廣泛定植,可改善小鼠的腸道運動功能。該研究不僅建立了第1個關于人ENS發展的研究平臺,還揭示了基于細胞治療先天性巨結腸的前景。但該研究團隊尚未明確具體的作用機制,且移植細胞的功能也沒有得到證實。Fan等[9]將hPSC來源的迷走神經嵴細胞和骶骨神經嵴細胞注射到敲除,EDNRB的KO小鼠盲腸中,發現這些細胞不僅表現出較強的遷移能力,還可在腸道環境中分化為ENS細胞,揭示hPSC來源的NCC在ENS中具有重要作用。Frith等[20]發現在體外培養條件下,使用維甲酸可加速NCC分化為ENS祖細胞并定植于腸道內,這不僅優化hPSC的來源,還對人們理解ENS發育及治療腸道神經相關疾病有重要意義。
ESC是從內細胞團中提取培養獲得的細胞系,其可分化成外胚層、中胚層及內胚層細胞,并能產生腸神經元[17,21-22]。ESC在疾病治療領域應用潛力巨大,但其獲取需破壞早期胚胎,這引起倫理爭議。因此,科學家希望找到一種可避免使用胚胎的方式獲取ESC或類似iPSC,而具有ESC特性的極小胚胎樣干細胞是一個值得考慮的選擇[23]。2006年,Takahashi等[24]首次使用逆轉錄病毒將c-Myc等4個轉錄因子導入成纖維細胞并成功將其重編程為具有類似ESC特性的細胞,稱作iPSC。iPSC可在保留宿主基因的同時維持干細胞的多能狀態[25]。Lai等[26]提取患者皮膚成纖維細胞來源的iPSC,使用CRISPR/Cas9基因編輯技術,糾正先天性巨結腸相關基因突變,恢復患者腸神經嵴細胞(enteric"neural"crest"cell,ENCC)的功能。目前科研人員對PSC進行大量研究并初見成果。人胚胎干細胞衍生細胞已用于多種疾病的臨床治療研究[27-29]。
4""專能干細胞治療先天性巨結腸
Micci等[30]從轉基因胚胎小鼠的中樞神經系統中成功分離出NSC,并將這些細胞移植到缺乏神經元型一氧化氮合酶(neuronal"nitric"oxide"synthase,nNOS)小鼠胃幽門部;結果顯示移植的NSC不僅能在胃內存活,還能表達nNOS并合成一氧化氮,恢復胃腸道正常功能。另一研究也證明將中樞神經系統來源的NSC移植到無神經節細胞的大鼠直腸肌層中,可產生表達nNOS和膽堿乙酰轉移酶的神經元和神經膠質細胞,進而形成新的神經網絡,緩解大鼠腸道運動障礙[31]。雖然NSC在改善腸道運動功能方面的潛力在動物實驗中得到初步證實,但從中樞神經系統獲取NSC的方法受到倫理限制。因此,是否能利用iPSC分化為NSC值得商榷。
腸神經干細胞(enteric"neural"stem"cell,ENSC)起源于神經嵴,主要位于成體腸道肌層中,通過迷走神經嵴在胚胎早期遷移至腸道,發育形成ENS。Hotta等[32]獲取正常小鼠的ENSC,并將其移植到nNOS-/-小鼠(敲除nNOS基因)結腸中,發現移植的ENSC與小鼠腸道平滑肌細胞形成功能性連接。ENSC可直接來源于神經組織,也可由間充質干細胞誘導分化而來。Stavely等[33]研究發現,ENSC和腸間充質細胞可共同促進ENS的正常發育,腸間充質細胞分泌的信號分子可模擬腸道微環境,促進ENSC的擴增和分化。以上實驗表明移植后的ENSC可遷移并整合到受損腸道組織中,與周圍細胞和組織建立聯系,在治療先天性巨結腸方面有巨大潛力。
個體發育過程中,NCC通過迷走神經嵴進入近端胃腸道后分化為ENCC,在胚胎第4~7周沿整個胃腸道以遠端定向遷移形成ENS[34]。Nishikawa等[35]從轉基因小鼠中獲取ENCC并將其移植到Ret-/-小鼠(先天性巨結腸動物模型)的腸壁中,發現移植的ENCC能在小鼠無神經節細胞的腸段分化成腸神經元。腸神經元的形成對ENS維持正常功能至關重要。Cooper等[36]將胎兒結腸ENCC移植到先天性巨結腸小鼠中,證明胎兒來源的ENCC能分化為適合小鼠ENS的神經元和膠質細胞,但只有53.3%的小鼠移植成功,比小鼠來源的ENCC體內移植90.3%的成功率低,推測主要原因是人樣本的固有變異[37]。值得注意的是,動物模型并不能完全展現人ENS的復雜性,在ENCC用于臨床治療前還需進一步的實驗和研究。Nakazawa-Tanaka等[38]不僅證明ENCC能遷移和定植到小鼠神經節受損腸道中,還發現腸道微環境影響移植后的ENCC行為。腸道微環境的失衡被視為誘發先天性巨結腸的一個重要因素[39]。干細胞治療與改善微環境相結合的綜合治療模式可能是一個很好的方向[40]。
5""未來面臨的問題和挑戰
關于使用何種干細胞治療先天性巨結腸的問題,PSC雖然展現出潛在的治療價值,但在實際應用中仍存在挑戰。首先,ESC的使用受到倫理、致瘤性及免疫排斥等諸多因素限制[41-42]。iPSC的出現規避了ESC倫理爭議和排斥反應風險,但新的問題也逐漸浮現出來。獲取iPSC使用的編程因子c-Myc本身是原癌基因,研究人員嘗試讓c-Myc消失、沉默或從細胞中剔除,但這些操作同時可降低重組效率,且被沉默的c-Myc也可能被重新激活。盡管研究人員努力提高iPSC的純度和安全性,但仍難以完全消除其致瘤風險[43]。其次,進行干細胞移植過程中可能發生免疫排斥反應,患者將接受長期免疫抑制劑治療,這會增加其感染和患癌風險。在干細胞治療實現臨床轉化前,有必要在移植細胞的獲益與長期使用免疫抑制劑的不良反應之間權衡利弊。最后,從何獲取干細胞作為可靠來源、干細胞治療使用的劑量、細胞移植存活和遞送率都是需要認真考慮的問題。相信隨著先天性巨結腸致病機制的深入剖析和再生醫學在干細胞領域的研究,未來會有更好的干細胞來源和更安全的移植方案,為干細胞治療先天性巨結腸帶來創新性改變。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] KLEIN"M,"VARGA"I."Hirschsprung’s"disease-recent"understanding"of"embryonic"aspects,"etiopathogenesis"and"future"treatment"avenues[J]."Medicina"(Kaunas),"2020,"56(11):"611.
[2] XIAO"J,"HAO"L"W,"WANG"J,"et"al."Comprehensive"characterization"of"the"genetic"landscape"of"familial"Hirschsprung’s"disease[J]."World"J"Pediatr,"2023,"19(7):"644–651.
[3] MONTALVA"L,"CHENG"L"S,"KAPUR"R,"et"al."Hirschsprung"disease[J]."Nat"Rev"Dis"Primers,"2023,"9(1):"54.
[4] ZHANG"S,"CAI"D,"ZHANG"Y,"et"al."Comparation"of"robotic-assisted"surgery"and"laparoscopic?assisted"surgery"in"children"with"Hirschsprung's"disease:"A"single-centered"retrospective"study[J]."BMC"Surg,"2023,"23(1):"294.
[5] LI"W,"LIN"M,"HU"H,"et"al."Surgical"management"of"Hirschsprung’s"disease:"A"comparative"study"between"conventional"laparoscopic"surgery,"transumbilical"single-"site"laparoscopic"surgery,"and"robotic"surgery[J]."Front"Surg,"2022,"9:"924850.
[6] DALEY"G"Q."Stem"cells"and"the"evolving"notion"of"cellular"identity[J]."Philos"Trans"R"Soc"Lond"B"Biol"Sci,"2015,"370(1680):"20140376.
[7] SHARKEY"K"A,"MAWE"G"M."Thenbsp;enteric"nervous"system[J]."Physiological"Reviews,"2023,"103(2):"1487–1564.
[8] MUELLER"J"L,"GOLDSTEIN"A"M."The"science"of"Hirschsprung"disease:"What"we"know"and"where"we"are"headed[J]."Semin"Pediatr"Surg,"2022,"31(2):"151157.
[9] FAN"Y,"HACKLAND"J,"BAGGIOLINI"A,"et"al."HPSC-derived"sacral"neural"crest"enables"rescue"in"a"severe"model"of"Hirschsprung’s"disease[J]."Cell"Stem"Cell,"2023,"30(3):"264–282.
[10] SCHLIEVE"C"R,"FOWLER"K"L,"THORNTON"M,"et"al."Neural"crest"cell"implantation"restores"enteric"nervous"system"function"and"alters"the"gastrointestinal"transcriptome"in"human"tissue-engineered"small"intestine[J]."Stem"Cell"Reports,"2017,"9(3):"883–896.
[11] MARCO"M,"CLAIRE"C,"AMANDA"J"B,"et"al."Enteric"nervous"system"stem"cells"derived"from"human"gut"mucosa"for"the"treatment"of"aganglionic"gut"disorders[J]."Gastroenterology,"2009,"136(7):"2214–2225.
[12] KOLIOS"G,"MOODLEY"Y."Introduction"to"stem"cells"and"regenerative"medicine[J]."Respiration,"2013,"85(1):"3–10.
[13] BACAKOVA"L,"ZARUBOVA"J,"TRAVNICKOVA"M,""""et"al."Stem"cells:"Their"source,"potency"and"use"in"regenerative"therapies"with"focus"on"adipose-derived"stem"cells"-"A"review[J]."Biotechnol"Adv,"2018,"36(4):"1111–1126.
[14] BOZDA?"S"C,"YüKSEL"M"K,"DEMIRER"T."Adult"stem"cells"and"medicine[J]."Adv"Exp"Med"Biol,"2018,"1079:"17–36.
[15] CAI"J,"CHEN"H,"XIE"S,"et"al."Research"progress"of"totipotent"stem"cells[J]."Stem"Cells"Dev,"2022,"31(13-14):"335–345.
[16] HU"Y,"YANG"Y,"TAN"P,"et"al."Induction"of"mouse"totipotent"stem"cells"by"a"defined"chemical"cocktail[J]."Nature,"2023,"617(7962):"792–797.
[17] MACFARLAN"T"S,"GIFFORD"W"D,"DRISCOLL"S,""""et"al."Embryonic"stem"cell"potency"fluctuates"with"endogenous"retrovirus"activity[J]."Nature,"2012,"487(7405):"57–63.
[18] POSFAI"E,"SCHELL"J"P,"JANISZEWSKI"A,"et"al."Evaluating"totipotency"using"criteria"of"increasing"stringency[J]."Nat"Cell"Biol,"2021,"23(1):"49–60.
[19] FATTAHI"F,"STEINBECK"J"A,"KRIKS"S,"et"al."Deriving"human"ENS"lineages"for"cell"therapy"and"drug"discovery"in"Hirschsprung"disease[J]."Nature,"2016,"531(7592):"105–109.
[20] FRITH"T"J"R,"GOGOLOU"A,"HACKLAND"J"O"S,"et"al."Retinoic"acid"accelerates"the"specification"of"enteric"neural"progenitors"from"in-vitro-derived"neural"crest[J]."Stem"Cell"Reports,"2020,"15(3):"557–565.
[21] WEATHERBEE"B"A"T,"CUI"T,"ZERNICKA-GOETZ"M."Modeling"human"embryo"development"with"embryonic"and"extra-embryonic"stem"cells[J]."Dev"Biol,"2021,"474:"91–99.
[22] PEDROZA"M,"GASSALOGLU"S"I,"DIAS"N,"et"al."Self-patterning"of"human"stem"cells"into"post-implantation"lineages[J]."Nature,"2023,"622(7983):"574–583.
[23] RATAJCZAK"M"Z,"RATAJCZAK"J,"KUCIA"M."Very"small"embryonic-like"stem"cells"(VSELs)[J]."Circ"Res,"2019,"124(2):"208–210.
[24] TAKAHASHI"K,"YAMANAKA"S."Induction"of"pluripotent"stem"cells"from"mouse"embryonic"and"adult"fibroblast"cultures"by"defined"factors[J]."Cell,"2006,"126(4):"663–676.
[25] LIU"G,"DAVID"B"T,"TRAWCZYNSKI"M,"et"al."Advances"in"pluripotent"stem"cells:"History,"mechanisms,"technologies,"and"applications[J]."Stem"Cell"Rev"Rep,"2020,"16(1):"3–32.
[26] LAI"F"P,"LAU"S"T,"WONG"J"K,"et"al."Correction"of"Hirschsprung-associated"mutations"in"human"induced"pluripotent"stem"cells"via"clustered"regularly"interspaced"short"palindromic"repeats/Cas9,"restores"neural"crest"cell"function[J]."Gastroenterology,"2017,"153(1):"139–153.
[27] SCHWARTZ"S"D,"REGILLO"C"D,"LAM"B"L,"et"al."Human"embryonic"stem"cell-derived"retinal"pigment"epithelium"in"patients"with"age-related"macular"degeneration"and"Stargardt’s"macular"dystrophy:"Follow-up"of"two"open-label"phase"1/2"studies[J]."Lancet,"2015,"385(9967):"509–516.
[28] PIAO"J,"ZABIEROWSKI"S,"DUBOSE"B"N,"et"al."Preclinical"efficacy"and"safety"of"a"human"embryonic"stem"cell-derived"midbrain"dopamine"progenitor"product,"MSK-DA01[J]."Cell"Stem"Cell,"2021,"28(2):"217–229.
[29] SHIN"J"H,"RYU"C"M,"YUnbsp;H"Y,"et"al."Safety"of"human"embryonic"stem"cell-derived"mesenchymal"stem"cells"for"treating"interstitial"cystitis:"A"phase"Ⅰ"study[J]."Stem"Cells"Transl"Med,"2022,"11(10):"1010–1020.
[30] MICCI"M"A,"KAHRIG"K"M,"SIMMONS"R"S,"et"al."Neural"stem"cell"transplantation"in"the"stomach"rescues"gastric"function"in"neuronal"nitric"oxide"synthase-"deficient"mice[J]."Gastroenterology,"2005,"129(6):"1817–1824.
[31] DONG"Y"L,"LIU"W,"GAO"Y"M,"et"al."Neural"stem"cell"transplantation"rescues"rectum"function"in"the"aganglionic"rat[J]."Transplant"Proc,"2008,"40(10):"3646–3652.
[32] HOTTA"R,"RAHMAN"A,"BHAVE"S,"et"al."Transplanted"ENSCs"form"functional"connections"with"intestinal"smooth"muscle"and"restore"colonic"motility"in"nNOS-"deficient"mice[J]."Stem"Cell"Res"Ther,"2023,"14(1):"232.
[33] STAVELY"R,"BHAVE"S,"HO"W"L"N,"et"al."Enteric"mesenchymal"cells"support"the"growth"of"postnatal"enteric"neural"stem"cells[J]."Stem"Cells,"2021,"39(9):"1236–1252.
[34] ROLLO"B"N,"ZHANG"D,"STAMP"L"A,"et"al."Enteric"neural"cells"from"hirschsprung"disease"patients"form"ganglia"in"autologous"aneuronal"colon[J]."Cell"Mol"Gastroenterol"Hepatol,"2016,"2(1):"92–109.
[35] NISHIKAWA"R,"HOTTA"R,"SHIMOJIMA"N,"et"al."Migration"and"differentiation"of"transplanted"enteric"neural"crest-derived"cells"in"murine"model"of"Hirschsprung’s"disease[J]."Cytotechnology,"2015,"67(4):"661–670.
[36] COOPER"J"E,"NATARAJAN"D,"MCCANN"C"J,"et"al."In"vivo"transplantation"of"fetal"human"gut-derived"enteric"neural"crest"cells[J]."Neurogastroenterol"Motil,"2017,"29(1):"e12900.
[37] COOPER"J"E,"MCCANN"C"J,"NATARAJAN"D,"et"al."In"vivo"transplantation"of"enteric"neural"crest"cells"into"mouse"gut;"engraftment,"functional"integration"and"long-term"safety[J]."PLoS"One,"2016,"11(1):"e0147989.
[38] NAKAZAWA-TANAKA"N,"FUJIWARA"N,"MIYAHARA"K,"et"al."Increased"enteric"neural"crest"cell"differentiation"after"transplantation"into"aganglionic"mouse"gut[J]."Pediatr"Surg"Int,"2022,"39(1):"29.
[39] JI"Y,"TAM"P"K,"TANG"C"S."Roles"of"enteric"neural"stem"cell"niche"and"enteric"nervous"system"development"in"Hirschsprung"disease[J]."Int"J"Mol"Sci,"2021,"22(18):"9659.
[40] VICENTINI"F"A,"KEENAN"C"M,"WALLACE"L"E,"et"al."Intestinal"microbiota"shapes"gut"physiology"and"regulates"enteric"neurons"and"glia[J]."Microbiome,"2021,"9(1):"210.
[41] WANG"H,"GONG"P,"LI"J,"et"al."Role"of"CD133"in"human"embryonic"stem"cell"proliferation"and"teratoma"formation[J]."Stem"Cell"Res"Ther,"2020,"11(1):"208.
[42] GOLCHIN"A,"CHATZIPARASIDOU"A,"RANJBARVAN"P,""""et"al."Embryonic"stem"cells"in"clinical"trials:"Current"overview"of"developments"and"challenges[J]."Adv"Exp"Med"Biol,"2021,"1312:"19–37.
[43] YOSHIHARA"M,"OGUCHI"A,"MURAKAWA"Y."Genomic"instability"of"iPSCs"and"challenges"in"their"clinical"applications[J]."Adv"Exp"Med"Biol,"2019,"1201:"23–47.
(收稿日期:2024–09–27)
(修回日期:2024–11–20)