摘要 鎘(Cd)污染是全球面臨的嚴重環境問題,對人類健康和生態系統構成威脅。探討了植物對Cd脅迫的分子響應機制,特別是水稻作為重要糧食作物對Cd的吸收、轉運和耐受性。研究表明,Cd主要通過植物根系吸收進入體內,并在根部積累,有部分轉運到地上部分。植物體內的Cd主要通過OsNramp5、OsIRT1、OsHMA3、OsHMA2等轉運蛋白進行吸收和轉運。轉錄因子如WRKY、ERF、HSF、NAC和MYB家族成員在Cd脅迫下調節相關基因表達,影響植物對Cd的吸收和耐性。此外,植物激素和小分子效應物如生長素、茉莉酸、脫落酸、水楊酸等在Cd脅迫響應中起到調控作用。含巰基分子如谷胱甘肽、植物螯合肽和金屬硫蛋白在Cd解毒中發揮關鍵作用。抗氧化系統,包括抗氧化酶和非酶促系統,有助于植物抵御Cd引起的氧化應激。為理解植物對Cd脅迫的分子機制提供了重要信息,并為開發低Cd積累作物品種提供了理論基礎。
關鍵詞 鎘污染;分子機制;轉運蛋白;轉錄因子;植物激素;抗氧化系統;水稻
中圖分類號 Q943" 文獻標識碼 A" 文章編號 0517-6611(2025)03-0001-09
doi:10.3969/j.issn.0517-6611.2025.03.001
開放科學(資源服務)標識碼(OSID):
Research Progress on the Molecular Mechanism of Plant Response to Cadmium Stress
CHEN Jin fen, HU Shu bao, QIN Yi ming et al
(College of Life Sciences, Anqing Normal University / Province Key laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui 246133)
Abstract Cadmium (Cd) pollution poses a severe global environmental challenge, threatening human health and ecosystems. This paper explores the molecular response mechanisms of plant responses to Cd stress, with a focus on rice as a crucial food crop, examining its absorption, translocation, and tolerance to Cd. Studies indicate that Cd primarily enters the plant body through the roots, where it accumulates, with only a small fraction being transported to the aerial parts. The absorption and translocation of Cd within plants are mainly facilitated by transporters such as OsNramp5, OsIRT1, OsHMA3, and OsHMA2. Transcription factors from the WRKY, ERF, HSF, NAC, and MYB families regulate gene expression under Cd stress, affecting plant absorption and tolerance to Cd. Additionally, plant hormones and small molecular effectors, including auxin, jasmonic acid, abscisic acid, and salicylic acid, play regulatory roles in the response to Cd stress. Thiol containing molecules like glutathione, phytochelatins, and metallothioneins are crucial for Cd detoxification in plants. The antioxidant system, comprising enzymatic and non enzymatic components, helps plants combat oxidative stress induced by Cd. This paper provides essential insights into the molecular mechanisms of plant response to Cd stress and lays a theoretical foundation for developing rice varieties with low Cd accumulation.
Key words Cadmium pollution;Molecular mechanisms;Transport proteins;Transcription factors;Plant hormones;Antioxidant system;Rice
基金項目 皖西南生物多樣性研究與生態保護安徽省重點實驗室項目(FCZ202001001)。
作者簡介 陳瑾芬(1998—),女,云南紅河人,碩士研究生,研究方向:植物生態學。
*通信作者,教授,從事植物生態學研究。
收稿日期 2024-03-26;修回日期 2024-06-06
鎘(cadmium,Cd)污染已成為全球面臨的一項嚴峻環境問題,對人類健康及生態系統構成了嚴重威脅[1]。作為環境中的主要污染源之一,Cd釋放主要源于工業采礦、農業化肥使用以及城市生活污水排放等活動[2]。在土壤和水環境中,Cd以多種形態存在,如游離態、無機絡合態或與有機物結合態;在植物體內,Cd主要以無機離子形式、磷酸鹽絡合物以及與果膠和蛋白質結合的形式進行累積[3-4]。研究數據顯示,自1990年以來,中國土壤中Cd含量呈現出顯著的上升趨勢,特別是在農田和城市周邊地區,其含量大幅增加,暗示著環境風險正逐步加劇[5-6]。
Cd生物累積特性導致其能夠在食物鏈中逐級富集,進而威脅人類健康[2]。而作為一種劇毒重金屬,Cd在人體內的半衰期長達20~30 a。長期接觸高濃度Cd的人群可能會受到包括呼吸系統損害、腎臟功能障礙、免疫功能低下、代謝失調、骨質疏松癥以及內分泌系統紊亂等多種傷害[1,7]。研究表明,日本“痛痛病”是由于攝入了受Cd污染的稻米而引發的一種骨質軟化癥狀[8]。此外,Cd對遺傳物質具有致突變性,能夠導致人細胞和酵母中DNA錯配修復機制的失效,從而增加罹患癌癥的風險[9]。即便是長期接觸低濃度Cd,也可能導致其在乳腺細胞中的積累[10]。特別是,研究發現女性吸煙者的卵巢卵泡液中Cd濃度升高,這可能會毒害女性生殖細胞[11]。
在植物體內,基因表達調控對于響應環境脅迫、控制代謝途徑和防御病原體侵襲等方面起著至關重要的作用[7]。已有研究揭示,Cd脅迫能夠干擾植物對多種必需元素(Ca、Zn、Fe、Mn等)的吸收與轉運,這些植物包括擬南芥[Arabidopsis thaliana(L.)Heynh]、水稻(Oryza sativa L.)和小麥(Triticum aestivum L.)[1,12-13]。然而,植物在轉錄水平上如何調節對Cd脅迫的響應機制尚不完全明了[7]。深入探究植物對Cd積累過程及其調控機制對于保護人類健康、開發植物修復Cd污染土壤的策略具有至關重要的意義。這些機制的闡明不僅深化了人們對植物體內金屬離子平衡調控機制的認識,而且為開發高效的生物技術手段以去除土壤中的重金屬污染提供了堅實的理論支撐。進一步地,這些研究成果對于指導抗重金屬污染農作物品種的選育具有重要的指導意義,有助于提升農作物對重金屬脅迫的適應能力和耐受性,從而增強食品安全性,保障公眾健康。
1 Cd脅迫對植物的影響
Cd脅迫作為一種重要的非生物脅迫因素,會對植物的生長發育造成顯著不良影響。Cd毒害的具體表現為葉綠素含量下降、葉片發黃、生長速度減緩以及產量降低等癥狀[11]。Cd在植物體內的分布和定位因植物種類及其生長階段的不同而存在差異。植物如水稻通過細胞壁中Cd的沉積等機制來限制Cd進入細胞質[14]。此外,Cd脅迫還會導致植物細胞內產生過量的活性氧,這些活性氧會破壞很多生物活性大分子如DNA和蛋白質的結構,進而對植物的代謝和生理功能造成不利的影響[15]。Cd還可能干擾植物對Zn和Fe等營養元素的吸收與利用,抑制植物的正常生長[16]。深入理解Cd在植物體內的積累機制對于制定有效的環境保護策略和提升食品安全至關重要。
2 植物Cd的吸收與轉運
Cd主要通過植物根的吸收進入植物體,而大部分Cd被截留在根中,只有一小部分Cd被轉運到地上部分[17-18]。相對于其他重金屬如Cu、Pb、Zn,Cd更容易被植物的根系吸收[19]。植物中參與Cd吸收與轉運過程的轉運體有很多種,包括OsNramp5(Oryza sativa natural resistance-associated macrophage protein 5)、OsHMA3(Oryza sativa P1B-type heavy metal ATPases3)、OsHMA2(Oryza sativa P1B-type heavy metal ATPases2)和OsLCT1(Oryza sativa low-affinity cation transporter 1)等[20-24]。
2.1 OsNramp5
OsNramp5是水稻Mn,Cd和Pb吸收的主要轉運體[21]。OsNramp5在水稻根中組成型表達,編碼一個細胞質膜定位的蛋白。OsNramp5主要定位于水稻根的內皮層和外皮層的細胞外側。在Mn供應不足條件下,OsNramp5敲除會導致水稻生長受抑制和產量降低。吸收動力學試驗顯示,OsNramp5轉運體對Cd吸收的米氏常數(Michaelis constant,Km)為0.38 μmol/L遠低于對Mn吸收Km 1.08 μmol/L。這暗示著OsNramp5轉運體對Cd比對Mn具有更高的親和性[21]。日本研究人員利用碳離子束輻照誘變越光水稻(koshihikari rice)品種選育出稻米中幾乎不含Cd的突變體,后經過遺傳鑒定發現為OsNramp5基因第九號外顯子一個單堿基對的缺失突變所致。并且該突變體材料的農藝性狀與野生型水稻相比并沒有顯著性差異[25]。利用Crispr/Cas9技術敲除秈稻品種(華占和隆科638S)中OsNramp5基因,可以在不損失產量的情況下降低水稻的Cd積累[26]。盡管敲除OsNramp5基因可以顯著地降低水稻籽粒中Cd含量,但種植前需要謹慎考慮農田土壤pH和含水量,因為這可能會影響到產量[27]。在大麥(Hordeum vulgare)中,HvNRAMP5亦顯示出吸收Cd和Mn的能力[28]。水稻比其他禾本科農作物吸收Cd的能力更強,也是由于水稻中OsNramp5的表達水平更高,其蛋白對Cd的轉運能力更強[29]。然而,用組成型表達基因(OsActin1和玉米Ubiquitin)的啟動子在水稻中過表達OsNramp5,會增強根中Mn和Cd的吸收,并顯著降低水稻地上部分和籽粒中Cd的含量。OsNramp5過表達植株由于其向中柱的徑向運輸受到干擾,導致從根部到地上部分的Cd轉運減少,這一結果表明了OsNramp5轉運蛋白的定位和極性對Cd的吸收與轉運影響較大。Liu等[30]研究發現,低Cd積累品種湘晚秈12號(Xiangwanxian No.12)通過在關鍵部位(如節點I和穗節)維持OsNramp5和OsIRT1基因的低表達水平來限制Cd的吸收,而高Cd積累品種玉針香(Yuzhenxiang)則通過下調節點I中OsNramp5的表達來減少Cd的攝取。這種表達差異可能構成了兩個品種Cd積累差異的分子基礎,從而凸顯了OsNramp5和OsIRT1在植物應對Cd脅迫中的重要作用。
2.2 OsHMA3和OsHMA2
P1b型重金屬ATP酶家族(P1B-type heavy metal ATPases,HMAs)是重金屬跨膜的外排轉運蛋白,被分為2個亞組:Cu/Ag亞群和Zn/Co/Cd/ Pb亞群[31]。其中OsHMA1~OsHMA3屬于Zn/Co/Cd/Pb亞群,OsHMA2是OsHMA3的近同源物[23,31]。OsHMA3會影響水稻的Cd轉運量和地上部分Cd的積累。研究發現,OsHMA3是水稻地上部分和籽粒中Cd濃度的主要QTL和響應基因[32]。OsHMA3蛋白中氨基酸替換使得其功能散失,限制液泡Cd隔離,導致細胞質Cd濃度上升,進而促進Cd向木質部和地上部分轉運[33]。OsHMA3在水稻中嘉早17品種(Zhongjiazao 17)過表達顯著降低Cd從根部望地上部轉移,并增加了植株對Cd的耐受性[34]。有報道稱,OsHMA3啟動子序列變異的QTL GCC7是控制9311和PA64s之間差異粒Cd積累的重要決定因素[35]。研究證實,粳稻OsHMA3-OsNramp5-OsNramp1片段可降低秈稻Cd積累,改良9311品種顯著減少稻米Cd含量,不影響產量。所鑒定的新OsHMA3等位基因OsNramp1和OsNramp5在根部的表達差異與粳稻和秈稻Cd積累差異相關[36]。OsHMA3編碼序列在水稻品種間存在不同的等位基因,而多個等位基因的Cd轉運活性較弱或失活,導致水稻更容易將Cd從根部運輸到上部組織和籽粒,增加了Cd的積累[22,32,37]。OsHMA3功能缺失會導致水稻地上部分和籽粒中Cd含量增加[38-39]。在水稻中過表達OsHMA3可以減少籽粒中九成以上Cd的積累[38]。OsHMA2在維管束中高表達,負責將Cd和Zn從根部轉運至地上部分。OsHMA2對Cd在木質部的裝載起到關鍵作用,其功能缺失會導致地上部分和籽粒中Cd濃度降低。然而,過表達OsHMA2基因會導致水稻地上部分和籽粒中Cd的含量顯著降低[23]。OsHMA2突變會影響Zn向生長點轉運,降低籽粒產量[40]。表明OsHMA2在整個植物的所有生長和發育階段的Cd/Zn運輸中發揮作用。此外,OsHMA2基因在Capataz水稻中的表達不受Cd脅迫影響,而在Beiraz水稻中則隨Cd濃度增加而表達上調,表明在不同品種水稻中OsHMA2的表達模式存在差異[39]。
2.3 其他Cd相關的轉運體
OsNramp1參與Cd和Mn等重金屬離子的吸收。敲除OsNramp1后,水稻根部對Cd和Mn的吸收顯著降低[41]。OsNramp2定位在液泡膜上,具有向液泡外轉運Fe和Cd的能力。OsNramp2在種子萌發過程中重新動員液泡Fe具有重要作用,并影響Cd從植物營養組織向水稻籽粒的轉運[42]。OsLCT1在水稻節的擴散維管束中表達,其功能缺失會降低木質部汁液和種子中Cd的濃度[43]。在水稻細胞中,OsZIP1定位于質膜和內質網,其過表達能夠限制水稻體內Zn、Cu和Cd的積累[44]。OsZIP3的過表達顯著降低了水稻根部和地上部分的Cd、Zn含量,而OsZIP7在Zn和Cd從木質部轉運至穗粒中起到關鍵作用[45-46]。OsLCD基因主要在根的維管組織中表達,功能缺失會降低水稻籽粒中Cd積累[47]。在水稻中,對Cd處理后根部基因表達的分析揭示了金屬耐受蛋白OsMTP(monosaccharide transporters)在應對Cd脅迫中扮演的關鍵角色[24]。
3 轉錄水平調控參與到植物應對Cd脅迫過程
轉錄調控在植物響應Cd脅迫的過程中起著至關重要的作用。相關研究成果逐漸揭示了植物應對Cd脅迫所涉及的復雜轉錄調控網絡。在這一網絡中,轉錄因子作為調控植物生長發育以及應對非生物和生物脅迫的關鍵分子,發揮著核心作用[48]。特別是,WRKY、ERF和MTF等轉錄因子被證實參與了植物對重金屬的吸收、轉運和耐受性的調控[49-51]。
3.1 WRKY家族
WRKY轉錄因子家族是植物中一個龐大的轉錄因子群體,它們在植物應對生物和非生物脅迫反應中發揮核心作用[52]。根據其結構特征,WRKY蛋白被分為3個類別:I類含有2個WRKY結構域,II類和III類各含有一個WRKY結構域。I類和II類WRKY蛋白含有C2H2型鋅指結構,而III類則含有C2HC型鋅指結構[52-53]。WRKY轉錄因子通過識別并結合到含有TGAC核心序列的W-box元件,實現對下游目標基因的調控[52]。在Cd脅迫條件下,AtWRKY12的表達受到抑制,而AtWRKY13的表達升高,后者通過上調AtPDR8(Arabidopsis thaliana pleiotropic drug resistance 8)的表達,增強了植物對Cd的耐受性[54-55]。盡管AtWRKY12和AtWRKY13均屬于WRKY家族,但它們在生理功能上顯示出相反的作用[49,55]。AtWRKY13還能夠激活D-半胱氨酸脫硫酶(D-cysteine desulfhydrase,DCD),不僅提升了植物對Cd的耐受性,也影響了Cu和Mg的代謝平衡,其中DCD是其直接調控靶標。Cd誘導的WRKY13轉錄因子激活了DCD基因的表達,增加了H2S的產生,提高了植物對Cd的耐受性[55]。
在擬南芥中,Arabidopsis Tóxicos en Levadura 31(ATL31)基因的突變導致植物對Cd的超敏反應及Cd積累量的增加。AtWRKY33通過激活ATL31的轉錄,進而促進AtIRT1的降解,調控Cd的吸收。此外,AtWRKY33能夠直接結合到ATL31啟動子區域的W-box(TTGACC)序列,激活ATL31的表達。WRKY33-ATL31-IRT1模塊在植物對Cd耐受性中起關鍵作用[56]。過表達AtWRKY45能增強植株對Cd的抗性,該基因缺失導致植株對Cd脅迫更敏感。AtWRKY45則通過與AtPCS2(Arabidopsis thaliana phytochelatins 2)啟動子上的W-box1(TTGACT)區域結合,直接調控AtPCS2的表達。WRKY45轉錄因子則通過誘導PCS1與PCS2的轉錄和表達上調,增強植物對Cd的耐受性和積累能力,同時也參與Fe的轉運,但其對其他金屬離子的影響尚不明確[57]。在小麥中,TaWRKY74通過調節TaNramp1、TaNramp5、TaIRT2、TaHMA2、TaHMA3和TaLCT1等一系列金屬轉運蛋白基因的表達,參與調控小麥對Cd的耐受性。TaWRKY74轉錄因子在小麥中的作用復雜,它既增強了植物對Cd脅迫的抗氧化能力,也使植物對Cd更敏感,這表明TaWRKY74在調節植物對Cd脅迫的反應和基因表達中扮演著重要角色[58]。綜合上述研究,WRKY蛋白家族在植物應對多種脅迫,包括在調節重金屬耐受性方面扮演著不可替代的角色。
3.2 ERF家族
AP2/ERF(APETALA2/ethylene-responsive element binding factors)轉錄因子家族是植物中一個重要的轉錄因子超家族,包括DREB(dehydration responsive element-binding)、ERF(ethylene-responsive-element-binding protein)、AP2(APETALA2)、RAV(related to ABI3/VP)和Soloists(few unclassified factors)5個亞家族,它們在植物對干旱、乙烯響應、花器官發育、種子發育以及其他未明確分類的功能中發揮作用[59]。AP2/ERF家族成員通常通過結合GCC-box啟動子來調控基因表達,但不同亞家族成員在激活程度上存在差異[60]。ERF轉錄因子根據其與順式作用元件的結合特性被分為兩類:一類與GCC盒結合,另一類與DRE//C-repeat element(CRT)結合。GCC盒主要存在于乙烯響應基因的啟動子中,而DRE/CRT則與低溫和干旱應答基因相關[59]。Xie等[61]通過對擬南芥進行正向遺傳篩選,發現ERF34和ERF35 2個轉錄因子能夠調節植物對Cd脅迫的敏感性。在菜豆(Phaseolus vulgaris)中,ERF家族成員PvERF104作為金屬響應元件(metal-responsive element,MRE)結合的轉錄抑制因子,通過調節相關基因的表達來降低Cd敏感性,提高植物的Cd耐受性。PvERF104還可能通過調控MYBS1(MYB transcription factor gene)基因表達參與植物對Cd脅迫的適應機制[62]。在擬南芥中,Cd或鹽等脅迫條件下誘導乙烯(ethylene,ET/ETH)和茉莉酸(jasmonic acid,JA)的產生,這些信號分子進一步激活相應的信號通路。ethylene insensitive3(EIN3)/ EIN3-like1(EIL1)作為ETH和JA信號通路的交匯點,能夠調節下游效應分子ERF,影響nitrate transporters(NRT)1.8的表達。同時,EIN3/EIL1通過結合NRT1.5的啟動子抑制其表達,而JA信號通路中的COI1(coronatine insensitive1)參與NRT1.5的下調。這些調節機制通過改變硝酸鹽分布來適應Cd脅迫條件[63]。研究發現,在Cd脅迫下,水稻中編碼ERF的OsERF83以及編碼ZIP的OsbZIP49和OsbZIP17/ OsTGA4基因表達下調[7]。在馬鈴薯(Solanum tuberosum L.)中,StAP2/ERF基因家族共鑒定出181個基因,這些基因被分為3類:Cd積累型(CdD型)、Cd還原型(CdA型)和Cd解毒型(CdR型)。CdR型基因可能通過減少Cd吸收來抵抗Cd毒性[51]。此外,納米零價鐵(nZVI)通過激活番茄(Solanum lycopersicum L.)中SlERF1的表達,提高了植物對Cd脅迫的耐受性[64]。硬粒小麥(Triticum turgidum L.subsp.durum)中SHINE型ERF轉錄因子1(SHINE-type ERF transcription factors,TdSHN1)在提高酵母和轉基因煙草對重金屬(Cd、Cu和Zn)耐受性方面也顯示出顯著效果[65]。綜上所述,ERF轉錄因子在植物應對Cd脅迫中扮演著重要角色,這些研究成果為通過遺傳工程手段提高作物的Cd耐受性提供了潛在的分子靶點。
3.3 MTF家族
MTF-1(metal-responsive transcription factor-1)是一種在動物中發現的MRE結合轉錄因子,具有6個Cys2-His2型鋅指結構,MTF-1能夠感應細胞內鋅離子的變化,并調節一系列涉及金屬代謝的基因表達,如金屬硫蛋白(metallothioneins, MTs)基因。在鋅離子或氧化應激條件下,MTF-1的活性增加,進而增強其與MRE的結合能力,從而調控下游基因的表達[66]。隨著研究的深入,MTF-1在植物中也有被發現,并且顯示出類似的功能,即參與植物對金屬脅迫的響應和金屬離子的穩態調控。菜豆PvMTF-1雖與動物MTF-1序列相似性低,但功能上類似,具有鋅指結構,是一種新型的MRE結合轉錄因子,且有助于植物Cd耐受性[67]。Sun等[67]研究發現,PvMTF-1是一種特異性結合到豆類植物ASA2(a feedback- insensitive form of anthranilate synthase)啟動子MRE區域的核轉錄因子,能夠促進色氨酸的合成,從而增強植物對Cd的耐受性,并且在Cd脅迫下其表達水平上調。Yang等[68]的研究進一步揭示了PvMTF-1通過與MRE結合,增強PvSR2(phaseolus vulgaris stress-related gene 2)基因表達,形成正向調控回路的機制。Wang等[69]研究表明,ACE(AC-rich element)作為一種新型的乙烯響應因子結合元件(ethylene response factor,ERF),能夠促進PvMTF-1的表達,并在擬南芥中作為ET響應元件(ethylene-responsive elements,ERE)發揮作用,從而賦予最小啟動子對乙烯的響應能力。ACE的核心序列對于核蛋白的結合至關重要,菜豆中的PvERF15和PvMTF-1在ET誘導下受到ACE激活,提供了新的遺傳和生化證據。Lin等[51]的研究揭示了ACE在豆類植物中通過與PvERF15結合來增強PvMTF-1表達的機制,并在擬南芥中表現為功能性的ERE。MTF及其在植物中的同源物在響應金屬脅迫和調節金屬離子穩態中發揮著重要作用,增強植物對金屬脅迫的耐受性。
3.4 HSF家族
熱休克轉錄因子(heat shock transcription factor,HSF)家族在植物對多種非生物脅迫的響應中扮演著關鍵角色,通過調節熱休克蛋白(heat shock proteins,HSPs)等脅迫響應基因的表達來增強植物的適應性[70-71]。在擬南芥中,HSF家族成員根據其結構和功能特性被分為HsfA、HsfB和HsfC 3個亞家族[72]。HsfA1與HsfA2之間的相互作用對于HSPs基因家族,如HSP70和HSP90的表達調控至關重要[73]。在Cd脅迫條件下,HsfA1a-HsfA1亞家族的一個變體能夠激活COMT1(O-methyltransferase 1)基因,促進褪黑激素的合成。褪黑激素的產生有助于調控谷胱甘肽(GSH)和PC的合成,進而促使Cd被運輸至液泡中隔離,以減輕其毒性影響[70,73]。在小麥和水稻等其他植物中,HsfA4a通過調節下游靶基因的表達參與對Cd的應答。金屬硫蛋白(metallothioneins,MT)基因是HsfA4a的潛在靶標之一,由于金屬硫蛋白能夠有效地與Cd和Cu形成螯合物,而對其他重金屬如Pb和Hg的解毒作用相對有限[74]。因此,HsfA4a主要影響植物對Cd和Cu的耐受性,而對其他重金屬的耐受性影響較小。Chen等[75]發現,景天(Sedum alfredii)中的SaHsfA4c的過表達可在酵母中增強Cd耐受性,得益于其在細胞核的正確定位。這些發現揭示了HSF家族成員在植物重金屬解毒機制中的重要作用,并為通過基因工程手段提高作物對重金屬污染的耐受性提供了潛在的策略。
3.5 NAC家族
NAC轉錄因子家族(NAM、ATAF、CUC)是植物特有的一類多功能基因家族,其成員在植物發育和多種生物學過程中發揮關鍵作用。這些轉錄因子的N端包含一個約150氨基酸的高度保守的NAC DNA結合域以及核定位信號[73]。NAC基因最初在矮牽牛和擬南芥中的NAM、CUC1/2、ATAF1/2基因中被鑒定,它們主要參與調控花原基與子葉原基邊界的細胞分化[76]。在水稻中,OsNAC300基因在Cd脅迫下主要在根部和成熟韌皮部表達,而OsNAC300的敲除導致水稻對Cd的敏感性增加。此外,Zhan等[46]研究發現,OsNAC15的敲除降低了水稻的Zn耐受性和Cd耐受性,揭示了OsNAC15在調節水稻中Zn和Cd積累及其在根與莖間轉運中的重要作用。通過酵母單雜交技術發現,CATGTG序列并非OsNAC15的順式調控元件。實際上,OsNAC15能夠識別并結合到OsZIP7和OsZIP10啟動子中的Zn缺乏響應元件(zinc deficiency response element,ZDRE),從而調控植物對缺Zn和Cd脅迫的耐受性。進一步的研究表明,SNAC1轉錄因子在協調Cd耐受性方面發揮作用,與MAPK(mitogen-activated protein kina)信號傳導級聯中的關鍵基因OsMKK1、OsMKK6和OsMPK3相互作用,這些基因是SNAC1的下游靶標。在擬南芥中,AtNAC102轉錄因子通過調節WAKL11(walls are thin like 11)基因的表達和果膠降解過程,增強了植物對Cd的耐受性[13]。在小麥中,TaNAC22定位于細胞核,并通過增強抗氧化防御機制,其過表達顯著提升了小麥對Cd脅迫的耐受性,表明其為關鍵的正向調節因子[77]。這些研究成果凸顯了NAC轉錄因子家族在植物響應Cd脅迫中的重要性,并為通過基因工程手段提高作物對重金屬脅迫的耐受性提供了潛在的分子靶點。
3.6 MYB家族
MYB(myeloblastosis virus)轉錄因子家族在植物中扮演著重要角色,參與調控多種生物學過程,包括植物對環境脅迫的響應。根據MYB結構域中重復序列的數量,MYB蛋白被分為4類:1R-MYB/MYB相關、R2R3-MYB、R1R2R3-MYB和4R-MYB[78-79]。R2R3-MYB基因在植物中的數量尤為豐富,并在植物對環境脅迫的響應中發揮關鍵作用。在擬南芥中,R2R3-MYB亞家族成員MYB4的過表達能夠增強植物對Cd的耐受性,而atmyb4突變體則表現出對Cd的敏感性增加。AtMYB4能夠特異性地結合到PCS1和MT1C基因啟動子上的特定基序ACCAACCAA和GGTAGGT,調控這些基因的表達,從而增強對Cd的耐受性[80]。Yan等[81]的研究進一步發現,AtMYB4通過調控MAN3(cloned XCD1 gene)和增強GSH-PC途徑提高了擬南芥對Cd的耐受性,且AtMYB4影響MNB1(mannose-binding-lectin 1)功能,導致atmyb4-1對Pb更敏感,與其他金屬敏感性變化不大,顯示MYB4和MNB1在重金屬應答中的不同作用。
在水稻中,OsMYB45定位于細胞核,其突變會增加水稻對Cd脅迫的敏感性,并影響過氧化氫(H2O2)濃度和過氧化氫酶(CAT)活性。在突變體中回補OsMYB45基因則能夠修復這些突變體對Cd脅迫敏感的表型,凸顯了OsMYB45在Cd耐受性中的重要作用[78]。此外,在擬南芥中AtMYB49在調節Cd吸收和耐受性方面也發揮著間接作用。研究表明,MYB49可以通過2種途徑介導Cd的攝取和耐受性。第一條途徑是通過AP2/ERF轉錄因子家族調節ABA水平,進而影響MYB49的活性。ABA的作用使得MYB49能夠綁定并激活HIPP22(heavy-metal-associated isoprenylated plant protein 22)和HIPP44基因的啟動子,從而提高這些基因的表達水平,并顯著增加植物體內的Cd積累。第二條途徑是ABA直接誘導AtMYB49結合到bHLH38/bHLH101基因的啟動子上,激活這些基因,進而促進IRT1的表達[82]。這些研究成果揭示了MYB轉錄因子在植物對重金屬脅迫響應中的復雜調控網絡,并強調了MYB轉錄因子在調節植物對重金屬脅迫反應中的復雜作用。
3.7 其他轉錄因子
bHLH(basic helix-loop-helix)基因家族是真核生物轉錄因子(TFs)中最大的家族之一,廣泛參與生理、發育過程和應激反應[83]。一些bHLH蛋白與包含核心元素E-box(5′-ANNTG-3)的序列結合,最常見的形式是G-box(5′-CACGTG-3′)[84-85]。動物bHLH蛋白根據系統發育關系、DNA結合基序和功能特性可分為A~F六組群[85-86]。在植物中,許多已鑒定的bHLH蛋白屬于B組,主要特征是結合G-box[4,87]。在bHLH家族中,Solyc01g086870(SlbHLH076)在Cd脅迫期間高度表達,其在擬南芥中的直系同源基因(AT4G29100)與防御反應相關。同樣,Solyc08g062780(SlbHLH089)的直系同源基因AT2G43140(AtbHLH129)在Cd脅迫期間也高度表達。表明部分番茄bHLH家族參與Cd脅迫,在其他植物中可進行同源比對研究[88]。在擬南芥中,ZAT6轉錄因子的過表達能夠提高植株對Cd的耐受性,而ZAT6功能缺失的突變體則表現出降低的耐受性,但這種變化對其他重金屬的敏感性并沒有顯著影響[89]。轉錄因子AtZAT6和AtMYB4通過調節GSH和PC生物合成途徑的關鍵基因,提高了植物對Cd的耐受性[80,89]。
因此,探究這些轉錄因子與Cd相互作用的精確分子機制,以及其如何精確調控轉運蛋白的表達,對于全面理解植物體內Cd的吸收、運輸和積累過程,以及開發植物抗重金屬脅迫的策略具有重要的科學意義和應用價值。
4 植物激素和小分子效應物對植物Cd吸收和耐性的調控
轉錄因子在Cd脅迫下的轉錄調控中起核心作用,但植物對Cd的耐性涉及更復雜的多因素系統,包括植物激素和小分子效應物,它們協同調節植物的生長、根系發育和防御機制,提升Cd耐性[90]。生長素(auxin)通過促進細胞壁半纖維素合成,幫助擬南芥固定Cd,減少其毒性[91]。JA通過增強根部細胞壁的隔離作用,降低水稻幼苗的Cd含量,并減少氧化損傷[92]。甲基茉莉酸(methyl jasmonate,Me-JA)減輕Cd對豇豆(Cajanus cajan)的毒性,增強其抗氧化系統,調節信號傳導基因表達,降低金屬轉運蛋白表達,減少Cd吸收,對降低食物鏈中Cd風險具有潛在意義[93]。這些結果表明,生長素和JA能減輕Cd對擬南芥的毒性。ABA作為一種關鍵的植物激素,在植物發育和應對脅迫中發揮調節作用。在擬南芥中,ABI5與MYB49相互作用,通過ABA信號途徑抑制Cd吸收[82]。此外,ABA降低擬南芥(Col-0)Cd積累,需AIT1(ABA-importing transporter 1)介導的ABA輸入活性抑制AtIRT1表達,ABI4(abscisic acid insensitive 4)轉錄因子可能在ABA調控Cd脅迫反應中起關鍵作用,其突變體對Cd更敏感,且外源ABA無法緩解這一現象[94]。赤霉酸(GA)在植物對Cd脅迫的反應中發揮作用,能降低Cd依賴性的NO積累和Cd吸收相關基因AtIRT1的表達,從而減輕Cd毒性[95]。因此,AtIRT1可能與激素相互作用,參與Cd的吸收和積累過程。ABA還能通過增加GSH和PC的合成,促進Cd螯合至液泡以減輕毒性,并增強超氧化物歧化酶(SOD)、過氧化物酶(POD)、抗壞血酸過氧化物酶(APX)和谷胱甘肽還原酶(GR)的活性提高植物的耐受性[50]。水楊酸(SA)作為植物源酚類化合物,在植物對Cd脅迫的耐受性中起重要作用[96]。SA水平下降會增加擬南芥對Cd的敏感性,而SA在水稻中應用可增強耐受性,提升產量,降低Cd健康風險。研究發現,SA通過強化細胞壁結構,限制Cd進入細胞,NO作為信號分子參與SA誘導的細胞壁調節,減少Cd積累[97-98]。番茄中SlWRKY76可能調節多種生物和非生物脅迫反應。SlWRKY46抑制SA和JA基因表達,而SlWRKY3在Cd脅迫下表達下調,與SA含量減少一致。提高SA水平的擬南芥對Cd脅迫有不同響應,SA積累增加與特定基因表達正相關,揭示其在Cd耐受性中的調控作用。SA還通過促進果膠合成等過程,限制Cd進入細胞,減少積累。這些研究為減少作物Cd吸收提供了策略,也為理解SA在植物抵抗Cd脅迫中的作用提供了新視角[88,99]。
植物激素在植物適應脅迫環境中發揮關鍵作用,作為第一信使調節應激反應。除了激素,小分子代謝物如Ca2+、NO、H2O2、富氫水(hydrogen-rich water,HRW)和H2S等也作為第二信使,在植物生長和發育中迅速變化,影響對非生物脅迫的反應,并參與復雜生理過程的調控,顯示植物信號網絡的復雜性和精細調控機制[100-101]。Ca2+在植物體內扮演多種生理角色,包括信號傳遞和細胞壁穩定性維持。Cd2+因化學性質與Ca2+相似,可模仿其進入植物細胞,干擾生長和代謝。適量Ca2+可減輕Cd2+毒性,如增加Ca2+供應可降低小麥對Cd2+吸收,提高耐受性[102]。土壤Cd增加時,水稻中Cd與其他元素比例上升,Ca通道和谷氨酸受體通道(glutamate receptor channels,GLR)表達降低。fc8(fragile-culm mutant)突變體表現出更高的Ca、Fe、Zn含量及GLR表達,Cd比值低,說明Cd影響GLR功能,增加Cd吸收[101]。NO作為植物生理關鍵信號分子,影響種子萌發、生長和脅迫響應。NO能激活抗氧化系統,減輕Cd氧化應激,提高耐受性,但也可能增強Cd毒性[103]。外源性NO和H2S供體如SNP(sodium nitroprusside)和NaHS(sodium hydrosulfide)能提高植株生長和葉綠素含量,降低氧化應激,減少Cd吸收,提高必需礦物質營養素水平,增強植物對Cd毒性的抵抗力[103]。H2S作為SA信號下游,通過增強脯氨酸(proline)和MeJA(methyl jasmonate)產生,提升Cd抗性,改善CaM(calmodulin)表達,控制Ca2+信號,增強植物對脅迫的感應[104]。這些研究表明,植物通過內部信號網絡的復雜相互作用,精細調控對Cd脅迫的響應。
H2O2信號與植物Zn轉運蛋白和Cd耐受性相關。CaWRKY41可能通過調節Zn轉運和H2O2平衡,影響辣椒(Capsicum annuum L.)對Cd和病原體的反應[105]。此外,大豆GmNAC81的過表達增加了對Cd2+脅迫的敏感性,并加強了Cd2+介導的PCD(programmed cell death)特征,如增強了Cd2+誘導的H2O2產生、細胞死亡和DNA損傷的表達[104]。研究顯示,富氫水(hydrogen-rich water,HRW)在Cd脅迫下能夠促進抗氧化和Cd解毒相關的還原酶,如CATs、GSH-Pxs和GSTUs的生成,從而增強植物的防御能力[106]。HRW通過降低白菜(Brassica chinensis)BcIRT1和BcZIP2的表達,減少植物體內Cd的積累,其作用機制可能涉及調節氧化酶同源物、跨膜運輸Ca2+及產生H2O2等[20]。
5 含巰基分子在Cd解毒方面的作用
巰基分子如GSH、PCs和MTs含有巰基(—SH)基團,幫助植物解毒[107]。GSH是一種在植物細胞各區室廣泛分布的三肽(γ-Glu-Cys-Gly),對細胞抗氧化和金屬離子螯合至關重要。GSH不僅是PCs的前體,幫助植物抵御金屬脅迫,還參與了多種代謝途徑[69,107]。MTs是一類短鏈、低分子量的基因編碼多肽,其結構特征是含有豐富的半胱氨酸(Cys)。這些多肽通過Cys殘基的—SH與金屬離子結合,對植物中的金屬解毒和穩態維持起著關鍵作用[108-109]。 在植物對金屬Cd脅迫的響應中,GSH及其金屬絡合物可以通過酵母Cd因子1(YCF1)的作用被轉運入液泡中儲存,減輕Cd的毒害[110]。在擬南芥中,MYB4-MAN3-Mannose-MNB1信號級聯通過GSH依賴的PC合成途徑,增強了對Cd的耐受性[81]。AtZAT6轉錄因子通過激活與PC合成相關的基因(尤其是GSH1),正向調節Cd的積累和耐受性[89]。水稻品種D62B通過上調OsGST和OsPCS1基因,增強了對Cd的固定和在液泡中的儲存[111]。此外,TaWRKY74調控小麥對Cd脅迫下ASA-GSH系統基因的表達[58]。研究發現,硒(Se)的不同形態(硒半胱氨酸、亞硒酸鈉和硒酸鈉)能提高番茄植物對Cd脅迫的耐受性,通過增加GSH和PCs的水平及其基因表達,增強Cd解毒能力[112]。
PC的合成需要L-谷氨酸(Glu)、L-半胱氨酸(Cys)和甘氨酸(Gly),是細胞用來處理金屬離子的主要分子。其中第一步釋放Gly,第二步形成更長的PC鏈并需要金屬離子參與。這一機制不僅使植物能夠通過PCs螯合金屬離子以解毒,還促進了金屬離子的長距離運輸[113-114]。研究表明,PCS1和PCS2在擬南芥中通過固定Cd離子于液泡減輕毒性,AtMYB4的過表達增強了植物對Cd脅迫的抵抗力,而OsPCS1突變體對Cd和As敏感,TaPCS1在擬南芥中的表達則增強了Cd的耐受性并促進了其從根部到地上部的轉運,減少了根部Cd積累[80,115-116]。此外,MTs是胞質蛋白家族,具有獨特的金屬穩態和應激反應功能。MTs在維持必需金屬平衡和解毒有毒金屬中發揮作用,并具有抗氧化性質,有助于抵御氧化應激,通過清除活性氧(ROS)維持氧化還原平衡。這些低分子量蛋白含有高度保守的Cys基序,如CC、CXC和CXXC,使其能結合必需的Cu、Zn和有毒的Cd等金屬離子[71,81]。景天中的SaMT3通過C末端CXC基序結合Cd,N末端Cys殘基清除ROS,幫助植物適應Cd脅迫[109]。水稻的OsMT-I-Id有助于增強酵母細胞對Cd的耐受性和金屬積累。C-結構域的突變影響耐受性,N-結構域的突變增加敏感性,顯示Cys在Cd結合中的關鍵作用[117]。綜上所述,PCS、GSH和GST構成了植物內部一個復雜而有效的防御系統,它們協同作用以緩解Cd的毒性影響。
6 抗氧化
面對Cd脅迫時,植物細胞會產生過量的ROS,通過抗氧化酶系統如POD、SOD、APX和CAT來清除ROS,維持氧化還原平衡。在小麥中,ROS促進HSP70與HsfA1復合物解離,釋放TaHsfA1,參與細胞穩定性維護。ROS還作為信號分子,激活MAPKs信號通路,調控細胞活動[65,118]。該通路由三級激酶組成:MAPKKK(MAPK kinase)、MAPKK(MAPKK kinase)和MAPK(MAPKK kinase)。MAPKKK首先磷酸化MAPKK,后者再激活MAPK,最終激活的MAPK進入細胞核,磷酸化轉錄因子,調節基因表達以應對Cd脅迫。這一磷酸化級聯反應參與了細胞核內Cd信號的傳導[15,119]。研究發現,SbMYB15轉錄因子通過調節MAPK信號通路和ROS平衡,提高植物對Cd和Ni的耐受性[120]。植物通過調節金屬轉運蛋白和增強抗氧化酶活性來降低重金屬積累并保護自身免受氧化損傷。同樣,轉基因弗吉尼亞松(Pinus virginiana Mill.)中ERF/AP2辣椒轉錄因子(Capsicum annuum pathogenesis-related protein 1,CaPF1)的過表達提升了植物對Cd、Cu和Zn等和病原體的耐受性,并增強了抗氧化酶活性,減少了氧化損傷,同時促進了器官生長[121]。過表達TdSHN1的轉基因煙草在Cd(100 μmol/L)、Cu(250 μmol/L)和 Zn(10 mmol/L)脅迫下展現出更發達的根系、更豐富的生物量和較高的葉綠素含量,同時產生較少的ROS。TdSHN1可能是增強植物耐受性和修復重金屬污染土壤的有效基因[65]。
7 研究展望
Cd是一種廣泛存在的環境污染物,對植物的生理和生化功能產生負面影響,并且有可能通過食物鏈傳遞給人類,對公共健康構成潛在威脅。由于植物對鎘脅迫的響應機制涉及復雜的分子調控網絡,迄今為止,關于鎘脅迫下植物細胞內信號傳導途徑及其與抗鎘性關系的研究仍較為有限。未來的研究應聚焦于植物在不同生長階段和部位的基因調控差異,深入解析關鍵調控基因的特異性功能,以及其與激素信號、轉錄因子網絡、表觀遺傳修飾等分子調控系統的交互作用。通過系統研究這些調控機制,揭示植物如何動態響應內外環境變化,實現精準生長調控。這不僅有助于完善植物生長發育的理論體系,還將為培育適應性強、高產穩產的作物新品種提供重要的分子靶點和策略支持。
參考文獻
[1]
LI Z M,LIANG Y,HU H W,et al.Speciation,transportation,and pathways of cadmium in soil rice systems:A review on the environmental implications and remediation approaches for food safety[J].Environment international,2021,156:1-13.
[2] SHAHID M,DUMAT C,KHALID S,et al.Cadmium bioavailability,uptake,toxicity and detoxification in soil plant system[J].Reviews of environmental contamination and toxicology,2017,241:73-137.
[3] LIU C F,XIAO R B,DAI W J,et al.Cadmium accumulation and physiological response of Amaranthus tricolor L.under soil and atmospheric stresses[J].Environmental science and pollution research,2021,28(11):14041-14053.
[4] YANG G L,ZHENG M M,TAN A J,et al.Research on the mechanisms of plant enrichment and detoxification of cadmium[J].Biology,2021,10(6):1-19.
[5] 魏復盛,楊國治,蔣德珍,等.中國土壤元素背景值基本統計量及其特征[J].中國環境監測,1991,7(1):1-6.
[6] YUAN X H,XUE N D,HAN Z G.A meta analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years[J].Journal of environmental sciences,2021,101:217-226.
[7] NAWAZ M,SUN J F,SHABBIR S,et al.A review of plants strategies to resist biotic and abiotic environmental stressors[J].Science of the total environment,2023,900:1-11.
[8] LEI G J,FUJII KASHINO M,WU D Z,et al.Breeding for low cadmium barley by introgression of a Sukkula like transposable element[J].Nature food,2020,1(8):489-499.
[9] LIN A,ZHANG X,ZHU Y G,et al.Arsenate induced toxicity:Effects on antioxidative enzymes and DNA damage in Vicia faba[J].Environmental toxicology and chemistry,2008,27(2):413-419.
[10] TARHONSKA K,JANASIK B,ROSZAK J,et al.Environmental exposure to cadmium in breast cancer association with the Warburg effect and sensitivity to tamoxifen[J].Biomedicine amp; pharmacotherapy,2023,161:1-10.
[11] GWON M A,KIM M J,KANG H G,et al.Cadmium exposure impairs oocyte meiotic maturation by inducing endoplasmic reticulum stress in vitro maturation of porcine oocytes[J].Toxicology in vitro,2023,91:1-11.
[12] APRILE A,SABELLA E,FRANCIA E,et al.Combined effect of cadmium and lead on durum wheat[J].International journal of molecular sciences,2019,20(23):1-17.
[13] HAN G H,HUANG R N,HONG L H,et al.The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis[J].Journal of integrative plant biology,2023,65(10):2262-2278.
[14] SUN Y P,LIU X Y,LI W X,et al.The regulatory metabolic networks of the Brassica campestris L.hairy roots in response to cadmium stress revealed from proteome studies combined with a transcriptome analysis[J].Ecotoxicology and environmental safety,2023,263:1-12.
[15] DALCORSO G,FARINATI S,FURINI A.Regulatory networks of cadmium stress in plants[J].Plant signaling amp; behavior,2010,5(6):663-667.
[16] CAO H W,LI C,ZHANG B Q,et al.A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity[J].Agronomy,2022,12(2):1-16.
[17] ISMAEL M A,ELYAMINE A M,MOUSSA M G,et al.Cadmium in plants:Uptake,toxicity,and its interactions with selenium fertilizers[J].Metallomics,2019,11(2):255-277.
[18] LUO X S,BING H J,LUO Z X,et al.Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil plant system:A review[J].Environmental pollution,2019,255:1-11.
[19] LI L P,ZHANG Y Q,IPPOLITO J A,et al.Cadmium foliar application affects wheat Cd,Cu,Pb and Zn accumulation[J].Environmental pollution,2020,262:1-7.
[20] WU X,SU N N,YUE X M,et al.IRT1 and ZIP2 were involved in exogenous hydrogen rich water reduced cadmium accumulation in Brassica chinensis and Arabidopsis thaliana[J].Journal of hazardous materials,2021,407:1-11.
[21] SASAKI A,YAMAJI N,YOKOSHO K,et al.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J].The plant cell,2012,24(5):2155-2167.
[22] MIYADATE H,ADACHI S,HIRAIZUMI A,et al.OsHMA3,a P1B type of ATPase affects root to shoot cadmium translocation in rice by mediating efflux into vacuoles[J].The new phytologist,2011,189(1):190-199.
[23] TAKAHASHI R,ISHIMARU Y,SHIMO H,et al.The OsHMA2 transporter is involved in root to shoot translocation of Zn and Cd in rice[J].Plant,cell amp; environment,2012,35(11):1948-1957.
[24] ZHANG M,LIU X C,YUAN L Y,et al.Transcriptional profiling in cadmium treated rice seedling roots using suppressive subtractive hybridization[J].Plant physiology and biochemistry,2012,50:79-86.
[25] ISHIKAWA S,ISHIMARU Y,IGURA M,et al.Ion beam irradiation,gene identification,and marker assisted breeding in the development of low cadmium rice[J].Proceedings of the national academy of sciences,2012,109(47):19166-19171.
[26] TANG L,MAO B G,LI Y K,et al.Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd accumulating indica rice without compromising yield[J].Scientific reports,2017,7:1-12.
[27] YANG C H,ZHANG Y,HUANG C F.Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9 mediated editing of OsNRAMP5[J].Journal of integrative agriculture,2019,18(3):688-697.
[28] WU D,YAMAJI N,YAMANE M,et al.The HvNramp5 transporter mediates uptake of cadmium and manganese,but not iron[J].Plant physiology,2016,172(3):1899-1910.
[29] SUI F Q,CHANG J D,TANG Z,et al.Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J].Plant and soil,2018,433(1/2):377-389.
[30] LIU A L,ZHOU Z B,YI Y K,et al.Transcriptome analysis reveals the roles of stem nodes in cadmium transport to rice grain[J].BMC genomics,2020,21(1):1-16.
[31] TAKAHASHI R,BASHIR K,ISHIMARU Y,et al.The role of heavy metal ATPases,HMAs,in zinc and cadmium transport in rice[J].Plant signaling amp; behavior,2012,7(12):1605-1607.
[32] UENO D,KOYAMA E,KONO I,et al.Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice[J].Plant and cell physiology,2009,50(12):2223-2233.
[33] TAKAHASHI R,ITO M,KAWAMOTO T.The road to practical application of cadmium phytoremediation using rice[J].Plants,2021,10(9):1-10.
[34] LU C N,ZHANG L X,TANG Z,et al.Producing cadmium free Indica rice by overexpressing OsHMA3[J].Environment international,2019,126:619-626.
[35] LIU C L,GAO Z Y,SHANG L G,et al.Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice FA[J].Journal of integrative plant biology,2020,62(3):314-329.
[36] WANG K,YAN T Z,XU S L,et al.Validating a segment on chromosome 7 of japonica for establishing low cadmium accumulating indica rice variety[J].Scientific reports,2021,11(1):1-10.
[37] SUN C J,YANG M,LI Y,et al.Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3[J].Journal of experimental botany,2019,70(21):6389-6400.
[38] UENO D,YAMAJI N,KONO I,et al.Gene limiting cadmium accumulation in rice[J].Proceedings of the national academy of sciences of the United States of America,2010,107(38):16500-16505.
[39] MAGHREBI M,BALDONI E,LUCCHINI G,et al.Analysis of cadmium root retention for two contrasting rice accessions suggests an important role for OsHMA2[J].Plants,2021,10(4):1-12.
[40] YAMAJI N,XIA J,MITANI UENO N,et al.Preferential delivery of zinc to developing tissues in rice is mediated by P type heavy metal ATPase OsHMA2" [J].Plant physiology,2013,162(2):927-939.
[41] CHANG J D,HUANG S,YAMAJI N,et al.OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J].Plant,cell amp; environment,2020,43(10):2476-2491.
[42] CHANG J D,XIE Y,ZHANG H H,et al.The vacuolar transporter OsNRAMP2 mediates Fe remobilization during germination and affects Cd distribution to rice grain[J].Journal of experimental botany,2022,476:79-95.
[43] URAGUCHI S,KAMIYA T,SAKAMOTO T,et al.Low affinity cation transporter(OsLCT1)regulates cadmium transport into rice grains[J].Proceedings of the national academy of sciences of the United States of America,2011,108(52):20959-20964.
[44] LIU X S,FENG S J,ZHANG B Q,et al.OsZIP1 functions as a metal efflux transporter limiting excess zinc,copper and cadmium accumulation in rice[J].BMC plant biology,2019,19(1):1-16.
[45] MA Y M,WEN Y F,WANG C,et al.ZIP genes are involved in the retransfer of zinc ions during the senescence of zinc deficient rice leaves[J].International journal of molecular sciences,2023,24(18):1-18.
[46] ZHAN J H,ZOU W L,LI S Y Y,et al.OsNAC15 regulates tolerance to zinc deficiency and cadmium by binding to OsZIP7 and OsZIP10 in rice[J].International journal of molecular sciences,2022,23(19):1-19.
[47] SHIMO H,ISHIMARU Y,AN G,et al.Low cadmium(LCD),a novel gene related to cadmium tolerance and accumulation in rice[J].Journal of experimental botany,2011,62(15):5727-5734.
[48] CLEMENS S,AARTS M G M,THOMINE S,et al.Plant science:The key to preventing slow cadmium poisoning[J].Trends in plant science,2013,18(2):92-99.
[49] SHENG Y B,YAN X X,HUANG Y,et al.The WRKY transcription factor,WRKY13,activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J].Plant,cell amp; environment,2019,42(3):891-903.
[50]" TIAN W J,HUANG Y,LI D D,et al.Identification of StAP2/ERF genes of potato(Solanum tuberosum)and their multiple functions in detoxification and accumulation of cadmium in yest:Implication for Genetic based phytoremediation[J].Science of the total environment,2022,810:1-12.
[51] LIN T,YANG W,LU W,et al.Transcription factors PvERF15 and PvMTF 1 form a cadmium stress transcriptional pathway[J].Plant physiology,2017,173(3):1565-1573.
[52] EULGEM T,RUSHTON P J,ROBATZEK S,et al.The WRKY superfamily of plant transcription factors[J].Trends in plant science,2000,5(5):199-206.
[53] JAVED T,GAO S J.WRKY transcription factors in plant defense[J].Trends in genetics,2023,39(10):787-801.
[54] HAN Y Y,FAN T T,ZHU X Y,et al.WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis[J].Plant molecular biology,2019,99(1/2):149-159.
[55] ZHANG Q,CAI W,JI T T,et al.WRKY13 enhances cadmium tolerance by promoting D CYSTEINE DESULFHYDRASE and hydrogen sulfide production[J].Plant physiology,2020,183(1):345-357.
[56] ZHANG C,TONG C C,CAO L,et al.Regulatory module WRKY33 ATL31 IRT1 mediates cadmium tolerance in Arabidopsis[J].Plant,cell amp; environment,2023,46(5):1653-1670.
[57] LI F J,DENG Y R,LIU Y,et al.Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression[J].Journal of hazardous materials,2023,460:1-15.
[58] LI G Z,ZHENG Y X,LIU H T,et al.WRKY74 regulates cadmium tolerance through glutathione dependent pathway in wheat[J].Environmental science and pollution research,2022,29(45):68191-68201.
[59] FENG K,HOU X L,XING G M,et al.Advances in AP2/ERF super family transcription factors in plant[J].Critical reviews in biotechnology,2020,40(6):750-776.
[60] PENG X J,WU Q Q,TENG L H,et al.Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors[J].BMC plant biology,2015,15(1):1-14.
[61] XIE Q Q,YU Q,JOBE T O,et al.An amiRNA screen uncovers redundant CBF and ERF34/35 transcription factors that differentially regulate arsenite and cadmium responses[J].Plant,cell amp; environment,2021,44(5):1692-1706.
[62] WANG C Y,QIAO F,WANG M Q,et al.PvERF104 confers cadmium tolerance in Arabidopsis:Evidence for metal responsive element binding transcription factors[J].Environmental and experimental botany,2023,206:1-10.
[63] ZHANG G B,YI H Y,GONG J M.The Arabidopsis ethylene/jasmonic acid NRT signaling module coordinates nitrate reallocation and the trade off between growth and environmental adaptation[J].The plant cell,2014,26(10):3984-3998.
[64] ANWAR A,WANG Y D,CHEN M Q,et al.Zero valent iron(nZVI)nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato[J].Journal of hazardous materials,2024,468:1-14.
[65] DJEMAL R,KHOUDI H.The ethylene responsive transcription factor of durum wheat,TdSHN1,confers cadmium,copper,and zinc tolerance to yeast and transgenic tobacco plants[J].Protoplasma,2022,259(1):19-31.
[66] GIEDROC D P,CHEN X H,APUY J L.Metal response element (MRE) binding transcription factor 1 (MTF 1):Structure,function,and regulation[J].Antioxidants and redox signaling,2001,3(4):577-596.
[67] SUN N,LIU M,ZHANG W T,et al.Bean metal responsive element binding transcription factor confers cadmium resistance in tobacco[J].Plant physiology,2015,167(3):1136-1148.
[68] YANG W N,BEI X J,LIU M,et al.Intronic promoter mediated feedback loop regulates bean PvSR2 gene expression[J].Biochemical and biophysical research communications,2015,463(4):1097-1101.
[69] WANG C Y,LIN T T,WANG M Q,et al.An AC rich bean element serves as an ethylene responsive element in Arabidopsis[J].Plants,2020,9(8):1-8.
[70] CHAUHAN H,KHURANA N,AGARWAL P,et al.Heat shock factors in rice(Oryza sativa L.):Genome wide expression analysis during reproductive development and abiotic stress[J].Molecular genetics and genomics,2011,286(2):171-187.
[71] ANDRSI N,PETTK "SZANDTNER A,SZABADOS L.Diversity of plant heat shock factors:Regulation,interactions,and functions[J].Journal of experimental botany,2021,72(5):1558-1575.
[72] VON KOSKULL DRING P,SCHARF K D,NOVER L.The diversity of plant heat stress transcription factors[J].Trends in plant science,2007,12(10):452-457.
[73] CHEN S S,JIANG J,HAN X J,et al.Identification,expression analysis of the Hsf family,and characterization of class A4 in Sedum alfredii hance under cadmium stress[J].International journal of molecular sciences,2018,19(4):1-17.
[74] SHIM D,HWANG J U,LEE J,et al.Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J].The plant cell,2009,21(12):4031-4043.
[75] CHEN S S,YU M,LI H,et al.SaHsfA4c from Sedum alfredii hance enhances cadmium tolerance by regulating ROS scavenger activities and heat shock proteins expression[J].Frontiers in plant science,2020,11:1-14.
[76] SUN L J,HUANG L,HONG Y B,et al.Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses[J].International journal of molecular sciences,2015,16(2):4306-4326.
[77] YU Y A,ZHANG L.The wheat NAC transcription factor TaNAC22 enhances cadmium stress tolerance in wheat[J].Cereal research communications,2023,51(4):867-877.
[78] HU S B,YU Y,CHEN Q H,et al.OsMYB45 plays an important role in rice resistance to cadmium stress[J].Plant science,2017,264:1-8.
[79] LI C N,NG C K Y,FAN L M.MYB transcription factors,active players in abiotic stress signaling[J].Environmental and experimental botany,2015,114:80-91.
[80] AGARWAL P,MITRA M,BANERJEE S,et al.MYB4 transcription factor,a member of R2R3 subfamily of MYB domain protein,regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis[J].Plant science,2020,297:1-20.
[81] YAN X X,HUANG Y,SONG H,et al.A MYB4 MAN3 Mannose MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis[J].PLoS genetics,2021,17(6):1-23.
[82] ZHANG P,WANG R L,JU Q,et al.The R2R3 MYB transcription factor MYB49 regulates cadmium accumulation[J].Plant physiology,2019,180(1):529-542.
[83] LEDENT V,VERVOORT M.The basic helix loop helix protein family:Comparative genomics and phylogenetic analysis[J].Genome research,2001,11(5):754-770.
[84] FERR "D’AMAR "A R,POGNONEC P,ROEDER R G,et al.Structure and function of the b/HLH/Z domain of USF[J].The EMBO journal,1994,13(1):180-189.
[85] ATCHLEY W R,TERHALLE W,DRESS A.Positional dependence,cliques,and predictive motifs in the bHLH protein domain[J].Journal of molecular evolution,1999,48(5):501-516.
[86] SIMIONATO E,LEDENT V,RICHARDS G,et al.Origin and diversification of the basic helix loop helix gene family in metazoans:Insights from comparative genomics[J].BMC evolutionary biology,2007,7(1):1-18.
[87] BUCK M J,ATCHLEY W R.Phylogenetic analysis of plant basic helix loop helix proteins[J].Journal of molecular evolution,2003,56(6):742-750.
[88] KHAN I,ASAF S,JAN R,et al.Genome wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato(Solanum lycopersicum L.)[J].Frontiers in plant science,2023,14:1-14.
[89] CHEN J,YANG L B,YAN X X,et al.Zinc finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione dependent pathway in Arabidopsis[J].Plant physiology,2016,171(1):707-719.
[90] ZHU H H,CHEN L,XING W,et al.Phytohormones induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants:A novel strategy for strengthening of phytoremediation[J].Journal of hazardous materials,2020,388:1-11.
[91] ZHU X F,WANG Z W,DONG F,et al.Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls[J].Journal of hazardous materials,2013,263:398-403.
[92] LI Y,ZHANG S N,BAO Q L,et al.Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice(Oryza sativa L.)[J].Environmental pollution,2022,304:1-11.
[93] KAUSHIK S,RANJAN A,SINGH A K,et al.Methyl jasmonate reduces cadmium toxicity by enhancing phenol and flavonoid metabolism and activating the antioxidant defense system in pigeon pea(Cajanus cajan)[J].Chemosphere,2024,346:1-11.
[94] PAN W,YOU Y,SHENTU J L,et al.Abscisic acid(ABA) importing transporter 1(AIT1)contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis[J].Journal of hazardous materials,2020,391:1-10.
[95] ZHU X F,JIANG T,WANG Z W,et al.Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana[J].Journal of hazardous materials,2012,239/240:302-307.
[96] LIU Z P,DING Y F,WANG F J,et al.Role of salicylic acid in resistance to cadmium stress in plants[J].Plant cell reports,2016,35(4):719-731.
[97] WANG F J,TAN H F,ZHANG Y T,et al.Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice[J].Chemosphere,2021,263:1-10.
[98] WANG X,DU H X,MA M,et al.The dual role of nitric oxide(NO)in plant responses to cadmium exposure[J].Science of the total environment,2023,892:1-11.
[99] PAN J Y,GUAN M Y,XU P,et al.Salicylic acid reduces cadmium(Cd)accumulation in rice(Oryza sativa L.)by regulating root cell wall composition via nitric oxide signaling[J].Science of the total environment,2021,797:1-11.
[100] SINGH S,PARIHAR P,SINGH R,et al.Heavy metal tolerance in plants:Role of transcriptomics,proteomics,metabolomics,and ionomics[J].Frontiers in plant science,2016,6:1-36.
[101] ZHANG X,XUE W J,ZHANG C B,et al.Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca2+/Mn2+/Fe2+/Zn2+ over Cd2+ in rice plant[J].Journal of hazardous materials,2023,452:1-11.
[102] LI L Z,TU C,PEIJNENBURG W J G M,et al.Characteristics of cadmium uptake and membrane transport in roots of intact wheat(Triticum aestivum L.)seedlings[J].Environmental pollution,2017,221:351-358.
[103] KAYA C,ASHRAF M,ALYEMENI M N,et al.Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress[J].Physiologia plantarum,2020,168(2):345-360.
[104] GU Q,WANG C Y,XIAO Q Q,et al.Melatonin confers plant cadmium tolerance:An update[J].International journal of molecular sciences,2021,22(21):1-18.
[105] DANG F F,LIN J H,CHEN Y P,et al.A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper[J].Journal of experimental botany,2019,70(5):1581-1595.
[106] WU X,CHEN J H,YUE X M,et al.The zinc regulated protein(ZIP)family genes and glutathione s transferase(GST)family genes play roles in Cd resistance and accumulation of pak choi(Brassica campestris ssp.chinensis)[J].Ecotoxicology and environmental safety,2019,183:1-7.
[107] SETH C S,REMANS T,KEUNEN E,et al.Phytoextraction of toxic metals:A central role for glutathione[J].Plant,cell amp; environment,2012,35(2):334-346.
[108] MENDOZA C ZATL D G,JOBE T O,HAUSER F,et al.Long distance transport,vacuolar sequestration,tolerance,and transcriptional responses induced by cadmium and arsenic[J].Current opinion in plant biology,2011,14(5):554-562.
[109] ZHAO J Q,XIE R H,LIN J Y,et al.SaMT3 in Sedum alfredii drives Cd detoxification by chelation and ROS scavenging via Cys residues[J].Environmental pollution,2022,315:1-14.
[110] GUO J B,XU W Z,MA M.The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana[J].Journal of hazardous materials,2012,199:309-313.
[111] WANG K J,YU H Y,YE D H,et al.The critical role of the shoot base in inhibiting cadmium transport from root to shoot in a cadmium safe rice line(Oryza sativa L.)[J].Science of the total environment,2021,765:1-9.
[112] LI M Q,HASAN M K,LI C X,et al.Melatonin mediates selenium induced tolerance to cadmium stress in tomato plants[J].Journal of pineal research,2016,61(3):291-302.
[113] SEREGIN I V,KOZHEVNIKOVA A D.Phytochelatins:Sulfur containing metal(loid) chelating ligands in plants[J].International journal of molecular sciences,2023,24(3):1-38.
[114] SHUKLA D,TIWARI M,TRIPATHI R D,et al.Synthetic phytochelatins complement a phytochelatin deficient Arabidopsis mutant and enhance the accumulation of heavy metal (loid) s[J].Biochemical and biophysical research communications,2013,434(3):664-669.
[115] URAGUCHI S,TANAKA N,HOFMANN C,et al.Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains[J].Plant and cell physiology,2017,58(10):1730-1742.
[116] GONG J M,LEE D A,SCHROEDER J I.Long distance root to shoot transport of phytochelatins and cadmium in Arabidopsis[J].Proceedings of the national academy of sciences of the United States of America,2003,100(17):10118-10123.
[117] GAUTAM N,TIWARI M,KIDWAI M,et al.Functional characterization of rice metallothionein OsMT I Id:Insights into metal binding and heavy metal tolerance mechanisms[J].Journal of hazardous materials,2023,458:1-13.
[118] SONG G,YUAN S X,WEN X H,et al.Transcriptome analysis of Cd treated switchgrass root revealed novel transcripts and the importance of HSF/HSP network in switchgrass Cd tolerance[J].Plant cell reports,2018,37(11):1485-1497.
[119] JONAK C,KR SZ L,BGRE L,et al.Complexity,cross talk and integration of plant MAP kinase signalling[J].Current opinion in plant biology,2002,5(5):415-424.
[120] SAPARA K K,KHEDIA J,AGARWAL P,et al.SbMYB15 transcription factor mitigates cadmium and nickel stress in transgenic tobacco by limiting uptake and modulating antioxidative defence system[J].Functional plant biology,2019,46(8):702-714.
[121] TANG W,CHARLES T M,NEWTON R J.Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine(Pinus virginiana Mill.)confers multiple stress tolerance and enhances organ growth[J].Plant molecular biology,2005,59(4):603-617.