






摘要:設R是環,n是非負整數,GFB≤n(R)和PGFB≤n(R)分別表示Gorenstein B平坦維數不超過n的左R模類和投射余可解Gorenstein B平坦維數不超過n的左R模類,其中B是一個半可定義的右R模類.給出了GFB≤n(R)和PGFB≤n(R)的刻畫,利用這兩個模類構造了兩個遺傳阿貝爾模型結構的鏈,并證明了這些模型結構的同倫范疇均與PGFB(R)的穩定范疇三角等價.
關鍵詞:Gorenstein B平坦維數;投射余可解Gorenstein B平坦維數;余撓對;阿貝爾模型結構
中圖分類號:O 153.3文獻標志碼:A文章編號:1001988Ⅹ(2025)02005207
Abstract:Let R be a ring,n be a nonnegative integer,GFB≤n(R) and PGFB≤n(R) be the classes of left Rmodules with Gorenstein Bflat dimension at most n and the classes of left Rmodules with projectively coresolved Gorenstein Bflat dimension at most n,respectively,where B is a class of semidefinable right Rmodules.Some characterizations of GFB≤n(R) and PGFB≤n(R) are given respectively,and established two chains of hereditary Abelian model structures in terms of these two classes of left "Rmodules.It is showed that the homotopy categories of these model structures are all triangle equivalent to the stable category of PGFB(R).
DOI:10.16783/j.cnki.nwnuz.2025.02.010
收稿日期:2024-08-28;修改稿收到日期:2024-12-18
基金項目:國家自然科學基金資助項目(11861055)
作者簡介:趙仁育(1977—),男,甘肅景泰人,教授,博士,碩士研究生導師.主要研究方向為環的同調理論.
E-mail:zhaory@nwnu.edu.cn