








摘要:研究一類具有交叉擴(kuò)散項(xiàng)與MonodHaldane型功能反應(yīng)項(xiàng)的捕食食餌模型在Dirichlet條件下的平衡態(tài)局部分歧解與全局分歧解.首先,以食餌的內(nèi)稟增長(zhǎng)率為分歧參數(shù),利用特征值分歧定理證明兩個(gè)半平凡解鄰域的局部分歧解的存在性;其次,利用全局分歧定理將兩個(gè)局部分歧解延拓為全局分歧解,并利用特征值擾動(dòng)定理,證明了局部分歧解的穩(wěn)定性;最后,利用數(shù)值模擬方法驗(yàn)證了理論結(jié)果的準(zhǔn)確性,實(shí)現(xiàn)了模型的可視化.結(jié)果證明:當(dāng)參數(shù)滿足一定條件時(shí),系統(tǒng)的分歧正解存在,即兩物種可共存.
關(guān)鍵詞:捕食食餌模型;交叉擴(kuò)散;分歧解;穩(wěn)定性;數(shù)值模擬
中圖分類號(hào):O 715.26文獻(xiàn)標(biāo)志碼:A文章編號(hào):1001988Ⅹ(2025)02012510
Abstract:The local and global bifurcation solutions of a modified LeslieGower predatorprey model with crossdiffusion terms and MonodHaldane functional response terms are studied under Dirichlet condition.Firstly,taking the intrinsic growth rate of prey as the bifurcation parameter,the existence of local bifurcation solutions on two semitrivial solutions are established by the local bifurcation theorem.Secondly,the two local bifurcation solutions are extended into global bifurcation solutions by the global bifurcation theorem,and then,by the eigenvalue perturbation theorem,the stability of the local bifurcation solution is proved.Finally,the accuracy of the theoretical results and the visualization of the model are discussed by using numerical simulation.The results show that when the parameters meet certain conditions,the bifurcation positive solution of the system exists,that is,the two species can coexist.
DOI:10.16783/j.cnki.nwnuz.2025.02.021
收稿日期:2024-04-10;修改稿收到日期:2024-10-01
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(12326417);國(guó)家外國(guó)專家項(xiàng)目(G2023041033L);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2023YBGY016,2023WGZJZD08,2024JCYBMS072);陜西省教育廳科研計(jì)劃項(xiàng)目(23JSY044);陜西省教育教學(xué)改革項(xiàng)目(23BY078);西安工業(yè)大學(xué)研究生教育改革重點(diǎn)項(xiàng)目(XAGDYJ220106)
作者簡(jiǎn)介:劉夢(mèng)妍(1998—),女,陜西咸陽(yáng)人,博士研究生.主要研究方向非線性微分動(dòng)力系統(tǒng).
E-mail:lmymy715@163.com
*通信聯(lián)系人,男,陜西寶雞人,教授,博士,博士研究生導(dǎo)師.主要研究方向非線性微分動(dòng)力系統(tǒng).
E-mail:fengxz@xatu.edu.cn