999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

海參多肽的生物活性及其在神經系統疾病中的應用

2025-04-07 00:00:00龔正余華軍張海濤
新醫學 2025年3期

通信作者簡介:教授,博士生導師,廣東醫科大學生物學學科帶頭人,廣東醫科大學生物多肽與蛋白質研究應用重點實驗室主任。研究方向為生物化學與分子生物學技術,研究領域為生物化學與分子生物學、天然藥物生化藥理研究。學術兼職:中國生物化學與分子生物學教學委員會委員,廣東省生物化學與分子生物學學會理事,廣東省醫學教育協會生物化學與分子生物學專業委員會副主任委員。國家自然科學基金項目評審專家,廣東、江蘇、江西和四川省科技項目評審專家,廣東省職稱評審專家,國務院學位委員會學位論文評審專家。近5年主持國家自然科學基金面上項目1項,省部級課題1項,廳局級課題3項,發表SCI論文15篇。獲國家發明專利10項,國際發明專利3項,廣東醫學科技獎1項。E-mail: zhanghaitao@gdmu.edu.cn。

【摘要】 海參多肽因其獨特的結構和多樣的生物活性,在神經系統疾病的治療潛力方面引起廣泛關注。研究表明,海參多肽具有抗氧化、抗炎和免疫調節等生物活性,可有效減輕神經炎癥及氧化應激對神經細胞的損傷,進而保護神經元。近年來,海參多肽在阿爾茨海默病、帕金森病及腦卒中等神經系統疾病中的作用機制成為研究熱點。研究結果顯示,海參多肽可通過抑制炎癥反應、調節神經遞質水平和促進神經再生等途徑對神經退行性病變產生積極影響。然而,目前相關研究多集中于體外和動物實驗階段,臨床研究證據相對不足,仍需進一步探索其安全性和有效性。文章綜述了海參多肽的主要生物活性及其在神經系統疾病應用的最新進展,為其后續研究和臨床應用提供參考。

【關鍵詞】 海參多肽;生物活性;神經保護;抗氧化;神經系統疾病

Research progress on the biological activity of sea cucumber polypeptides and their application in

neurological diseases

GONG Zheng1,2, YU Huajun1,2, ZHANG Haitao1

(1. Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China;

2. Experimental Animal Center of Guangdong Medical University, Zhanjiang 524023, China)

Corresponding author: ZHANG Haitao, E-mail: zhanghaitao@gdmu.edu.cn

【Abstract】 Sea cucumber polypeptides have garnered significant attention in the treatment of neurological diseases due to their unique structure and diverse biological activities. Recent studies have shown that sea cucumber polypeptides possess biological activities such as antioxidant, anti-inflammatory, and immune modulation, effectively reducing neural inflammation and oxidative stress on nerve cells, thereby protecting neurons. Specifically, the mechanisms by which sea cucumber polypeptides act in neurological diseases, including Alzheimer’s disease, Parkinson’s disease, and stroke, have become focal points of research in recent years. These polypeptides can positively impact neurodegenerative changes by suppressing inflammatory responses, modulating neurotransmitter levels, and promoting neuroregeneration. Despite promising findings, current studies are mainly focused on in vitro and animal experiments, with relatively limited clinical research evidence; thus, further exploration of their safety and efficacy is required. This paper reviews the primary biological activities of sea cucumber polypeptides and their recent advancements in applications to neurological diseases, providing references for future research and clinical application.

【Key words】 Sea cucumber polypeptides; Biological activity; Neuroprotection; Antioxidant; Neurological diseases

海參多肽因其多樣的生物活性,在食品和醫藥領域展現出巨大潛力。海參作為富含多肽、皂苷和多糖等活性成分的海洋生物,近年來因其獨特的生物活性備受關注。研究表明,海參多肽具有抗氧化、抗炎、免疫調節和抗腫瘤等作用,特別在阿爾茨海默?。ˋlzheimer’s disease,AD)和帕金森病(Parkinson’s disease,PD)等神經系統疾病的防治中具有應用潛力[1-2]。海參多肽因其小分子量(分子量lt; 2 kDa)具備良好的滲透性和生物利用度,易于被人體吸收,進一步提升了其在功能性食品和藥物開發中的潛力[3]。神經系統疾病的發病機制復雜,涉及氧化應激、炎癥反應和細胞凋亡等病理過程。海參多肽通過清除自由基及增強抗氧化酶活性減少氧化損傷,保護神經元,降低神經細胞的氧化損傷[4]。此外,海參多肽還能通過抑制促炎因子和上調抗炎因子緩解神經炎癥[5]。這些機制為海參肽在神經系統疾病中的應用提供了科學依據。盡管已有研究驗證了其潛力,但其具體機制、最優劑量和安全性仍需進一步探究。本文系統總結了海參多肽的生物活性及其在神經系統疾病中的研究進展,重點討論了其抗氧化、抗炎和抗細胞凋亡的作用機制,旨在為未來海參多肽在臨床的應用提供參考。

1 海參多肽的來源

1.1 海參品種

不同海參品種因其遺傳背景和生態環境的差異,在多肽種類和含量上存在明顯區別,例如東亞常見的仿刺參(Apostichopus japonicus)體內含有豐富的神經肽和抗氧化肽[6]。此外,尖塔海參(Holothuria spinifera)作為另一研究熱點,其通過酶解工藝分離出的β分泌酶(β-secretase)抑制多肽已顯示出在神經退行性疾病治療的潛在價值[7]。北歐海參(Parastichopus tremulus)的多肽通過自組裝形成功能性水凝膠[8],也為生物醫用材料的開發提供了新思路。

1.2 組織來源

海參多肽的提取不僅依賴于品種,其組織部位也對所含多肽的種類與活性具有決定性影響。海參體壁作為主要的結構組織,富含膠原蛋白及其他功能蛋白。Sun等[9]研究發現,從刺參體壁中分離純化出的多肽發揮傷口愈合作用。海參的腸道中含有獨特的多肽成分,其在調節腸道屏障和促進組織修復方面顯示出獨特作用[10-11]。此外,海參生殖組織也被證明是多肽的重要來源[12-13]。還有部分研究關注海參生殖腺中活性多肽的提?。?4]。不同品種海參中不同組織所含的多肽在氨基酸組成、序列及三維結構上各具特色,這種多樣性為其在醫藥、營養及功能食品中的應用奠定了堅實基礎。

2 海參多肽的生物活性

海參多肽作為富含活性成分的生物資源,展現出多種生理功能和應用潛力。通過酶解海參膠原蛋白得到的多肽,具備良好的安全性和獨特的生物活性。研究表明,這些活性肽具有抗氧化、降血壓、降尿酸、金屬螯合、神經保護、促進傷口愈合、抗腫瘤、抗疲勞、降血糖、促進骨骼健康、增強膠原蛋白合成、抗炎及免疫調節等多種作用[2]。海參作為蛋白質豐富的活性肽來源,在功能性食品、醫藥和護膚品等領域具有廣闊應用前景。

2.1 海參多肽的抗氧化作用

氧化代謝是人體能量供給和細胞存活的基礎。在能量代謝中會產生活性氧(reactive oxygen species,ROS),正常生理條件下,ROS通過抗氧化酶系統維持動態平衡,對生理功能無不良影響。然而,當平衡被打破,過量ROS會導致氧化應激,引發蛋白質修飾、DNA損傷及細胞信號紊亂等生理功能障礙。海參多肽的抗氧化活性主要通過清除自由基和提升抗氧化酶活性,減輕細胞氧化損傷來實現[15-16]。研究表明,海參肽不僅可在體外清除1, 1-二苯基-2-三硝基苯肼(DPPH)自由基,還能有效減少細胞內ROS積累,降低氧化應激損傷[17]。此外,海參肽通過上調超氧化物歧化酶(superoxide dismutase,SOD)和谷胱甘肽過氧化物酶的活性,增強機體抗氧化防御能力[18]。在機制上,海參多肽的抗氧化作用與核因子NF-E2相關因子(nuclear factor erythroid 2-related factor2,Nrf2)/

抗氧化反應元件(antioxidant reaction element,ARE)

信號通路的激活密切相關。Nrf2/ARE是關鍵的抗氧化應激途徑,海參多肽通過上調Nrf2表達,激活血紅素加氧酶1(heme oxygenase 1,HO-1)等抗氧化基因,減少細胞氧化損傷[19]。Nrf2通路還提升了細胞內抗氧化酶活性,抑制過氧化物生成,對預防神經系統疾病具有重要意義。例如特定海參肽在神經細胞中表現出顯著的抗氧化作用,減少氧化損傷并提高細胞存活率,展現出神經保護劑的潛力[18]。海參多肽通過自由基清除、抗氧化酶調節及Nrf2/ARE信號通路的激活,能夠有效減輕氧化應激引起的細胞損傷,這一特性為抗氧化治療提供了新的潛在途徑。

2.2 海參多肽的降壓作用

血管緊張素轉換酶(angiotensin-converting enzyme,ACE)是高血壓治療的重要靶點,而海參多肽中的ACE抑制肽因其顯著的降壓活性備受關注。ACE抑制劑通過阻斷血管緊張素Ⅱ的生成來降低血壓,海參肽在此方面展現出強大的抗高血壓特性。研究表明,從海參提取的多肽具有較強的ACE抑制活性,主要通過結合ACE活性位點,阻止血管緊張素生成,從而達到降壓效果[20-21]。這些多肽的活性主要由其氨基酸序列、疏水性及電荷分布決定,尤其是某些氨基酸殘基(如丙氨酸、賴氨酸和谷氨酸)在與ACE活性位點結合中發揮關鍵作用[22]。具體研究顯示,從海參提取的ACE抑制多肽(如NAPHMR和PNVA)表現出顯著的ACE抑制效果,且IC50值較低,顯示其高生物活性[23]。這些多肽通過氫鍵和靜電作用與ACE活性中心形成穩定結合,從而抑制其活性。此外,分子模擬研究進一步驗證了這些多肽在ACE抑制中的分子機制,表明其可作為潛在降壓劑應用于功能性食品和醫藥領域[24]。海參多肽通過有效抑制ACE顯著降低血壓,深入研究其結構特性與活性機制,可為降壓功能性食品和藥物的開發提供了重要支持。以上研究發現進一步拓展了海洋生物活性肽的應用前景,為高血壓的非藥物干預提供了新的可能性。

2.3 海參多肽的神經保護作用

隨著全球人口老齡化,認知能力下降和記憶力減退相關的神經退行性疾病發病率不斷增加,海參多肽因其顯著的神經保護作用,特別是在緩解神經退行性疾病方面的作用而備受關注。研究表明,海參多肽通過改善抗氧化狀態、增強神經元存活及調節神經遞質水平發揮神經保護作用。例如,特定海參多肽可通過調控去乙?;?(sirtuin 3,Sirt3)/

SOD/ROS信號通路,降低神經細胞中ROS水平,減少氧化損傷,進而提高神經細胞活力[25]。此外,海參多肽還能提高腦源性神經營養因子(brain-derived neurotrophic factor,BDNF)和神經生長因子(nerve growth factor,NGF)的表達,促進神經修復和功能維持[26]。在AD等神經退行性疾病模型中,海參多肽展現出顯著的改善效果。研究顯示,海參多肽通過調控膽堿能系統,減少神經元損傷,并在動物實驗中顯著改善記憶與學習能力[27]。分子模擬分析還表明,海參多肽與膽堿酯酶具有較強結合活性,可有效抑制其活性,保護神經元免受毒性損傷[28]。這些結果表明,海參多肽在抑制氧化應激和維持神經系統平衡方面具有潛在優勢。海參多肽通過調控抗氧化和神經營養因子通路、維持神經遞質平衡以及抑制炎癥反應等多種途徑,發揮神經保護作用。

2.4 海參多肽的抗腫瘤作用

以往海參抗腫瘤活性的研究多聚焦于非蛋白類活性成分。海參多肽作為一種關鍵的生物活性物質,可有效抑制腫瘤細胞的細胞活性,對腫瘤的形成和轉移有明顯的抑制作用。研究表明,海參多肽通過多種途徑發揮抗癌作用,包括誘導細胞凋亡、抑制細胞增殖、阻斷腫瘤轉移以及調節細胞周期等機制[29]。在特定的分子機制上,海參多肽能夠通過抑制磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase b,pKB或AKT)信號通路來誘導乳腺癌細胞(如MCF-7細胞)的凋亡,并有效減少腫瘤細胞的遷移和侵襲[30]。此外,海參提取物中的某些活性成分還能通過增強ROS生成,激活線粒體依賴的凋亡通路,從而進一步抑制腫瘤細胞生長[31]。在體外研究中,玉足海參(Holothuria leucospilota)等海參種類的多肽顯示出顯著的抗癌效果。例如,通過抑制腫瘤細胞周期并誘導凋亡,該多肽可降低多種癌癥細胞的增殖能力。研究顯示,海參多肽不僅對肺癌細胞(如A549細胞)具有顯著的抑制作用,同時在乳腺癌和肝癌等模型中也表現出良好的抗癌活性,尤其是通過阻斷細胞周期進程來阻止癌細胞的增殖[32-33]。此外,研究表明,經過特殊制備的海參多肽能夠抑制Lewis肺癌細胞的黏附和遷移,進一步支持其作為潛在抗腫瘤制劑的可能性[34]。因此,海參多肽通過多途徑、多靶點的抗腫瘤活性展現出在惡性治療中的巨大應用潛力。其獨特的抗腫瘤機制不僅為功能性食品及天然抗癌藥物的開發奠定了基礎,同時也為抗腫瘤研究開辟了新的方向。

2.5 海參多肽的抗炎作用

炎癥是機體對感染的典型反應,但過度炎癥可能導致或加重自身免疫性炎癥性疾病,因此開發具有抗炎活性的物質對預防此類疾病至關重要。海參多肽因其顯著的抗炎活性在緩解慢性炎癥中表現出良好效果,特別是在調節炎癥相關細胞因子和信號通路方面發揮關鍵作用。例如,從Apostichopus japonicus提取的低分子量多肽AJH-1顯著抑制了炎癥反應中的白細胞遷移,并減少了白介素-6(interleukin-6,IL-6)和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)等促炎因子的表達[35]。在斑馬魚炎癥模型中,該多肽有效阻止了CuSO4誘導的白細胞遷移,進一步驗證了其抗炎效果。此外,海參多肽在高尿酸誘導的腎臟炎癥模型中同樣表現出顯著作用。研究表明,海參水解物通過抑制Toll樣受體4(toll-like receptor 4,TLR4)/

核因子κB(nuclear factor kappa-B,NF-κB)信號通路減少尿酸生成,并改善腸道菌群結構,增加益生菌數量,有效緩解腎臟炎癥[36]。北大西洋海參(Cucumaria frondosa)來源的多肽還顯示出對ACE、α-淀粉酶和脂肪酶等慢性疾病相關酶的抑制作用,顯示其在慢性炎癥綜合管理中的應用潛力[37]。此外,海參低分子量寡肽在糖尿病創面愈合中表現出顯著的抗炎效果,其通過降低C反應蛋白(C-reactive protein,CRP)、IL-6等炎癥標志物水平,加速傷口愈合并提高修復效果[38]。鋅螯合多肽也在抑制由氧化應激引起的慢性炎癥中展現出良好效果,顯示其作為功能性食品添加劑的潛力[39]。海參多肽通過多種抗炎機制在緩解慢性炎癥和促進組織修復方面展現出重要應用潛力,其多途徑調控特性使其成為抗炎功能性食品和藥物開發的理想候選。

2.6 海參多肽的免疫調節作用

天然活性物質在增強免疫功能和抗病能力方面具有顯著作用,尤其是免疫調節多肽。免疫系統通過免疫防御、監視和自穩等機制,在特異性和非特異性免疫反應中識別并清除抗原,發揮保護作用。海參多肽在免疫調節中的生物活性研究表明,它們可有效增強機體先天免疫力。例如,海參中的關鍵免疫調節蛋白Akirin2在抵抗細菌感染中發揮重要作用。研究表明,在刺參感染燦爛弧菌(Vibrio splendidus)時,Akirin2通過與14-3-3ζ蛋白相互作用,顯著增強免疫細胞的抗菌能力,并調控NF-κB信號通路及炎癥因子的表達[40]。這一機制表明,海參多肽不僅參與免疫調控,還在宿主對病原體的防御中起關鍵作用。同樣,免疫相關蛋白Ras相關的C3肉毒素底物1(Ras-related C3 botulinum toxin substrate 1,Rac1)在海參的免疫調節中具有重要作用。Rac1作為小GTP結合蛋白家族成員,在感染后免疫應答中表現出高度表達,尤其在燦爛弧菌感染時,Rac1顯著上調,顯示出其在海參免疫防御中的關鍵作用[41]。此外,研究表明,Toll受體和補體系統等免疫因子在海參感染病原菌時變化顯著,構成復雜的免疫應答網絡,有助于海參抵御感染[42]。關于高溫對海參免疫系統的影響,研究表明,高溫環境顯著改變了海參先天免疫基因的表達,尤其是與炎癥、抗氧化應激和細胞凋亡相關的基因,揭示了環境因素對海參免疫應答的深遠影響[43]。這些研究顯示,海參多肽在免疫調節中具有顯著潛力,可作為靶向免疫抑制的功能性食品補充劑。然而,其作用機制復雜,仍需進一步探討免疫調節靶點及活性成分間的相互作用,通過分子修飾等手段,有望提升海參多肽的免疫調節活性。

2.7 海參多肽的其他活性作用

海參多肽除上述活性外,還具備抗疲勞、促進骨骼生長、金屬螯合、降尿酸及促進膠原蛋白合成、抗腫瘤等多種作用,為其在營養補充和保健領域的應用提供了廣闊前景。例如,在抗疲勞方面,海參腸道提取的低分子量多肽通過調節Ca2+/鈣調磷酸酶(Calcineurin)信號通路,有效延緩運動疲勞,增強肌肉耐疲勞性[44]。在骨骼健康方面,海參腸道來源的多肽通過激活整合素相關的轉分化信號通路,促進生長板軟骨細胞向成骨細胞的轉化,顯著增強骨骼生長[45]。此外,海參多肽因其良好的金屬螯合能力,尤其對鐵離子的螯合能力,具有增加鐵吸收和提供抗氧化保護的雙重效果[46]。在代謝調控方面,研究表明,海參多肽對高尿酸血癥有顯著降解作用,通過抑制黃嘌呤氧化酶活性和調節腸道菌群平衡,有效減少尿酸生成并促進排泄[36]。在皮膚健康方面,Stichopus japonicus黏液中的海參多肽通過上調ERK信號通路,促進膠原蛋白合成,并抑制黑色素生成,有助于抗衰老和美白[47]。此外,海參多肽通過加速細胞增殖和遷移,尤其通過激活ERK/AKT信號通路,提高細胞能量代謝,促進傷口愈合及組織修復[48]。盡管關于海參多肽的功能活性已有廣泛研究,但其具體作用機制及在人體健康中的活性評價仍需進一步探討。

3 海參多肽在神經系統疾病中的應用

3.1 海參多肽在阿爾茨海默病中的應用

AD是一種常見的神經退行性疾病,表現為認知和記憶功能逐漸退化。海參多肽在AD的預防和治療中展現出多重潛力,通過抗氧化、抗炎、抑制乙酰膽堿酯酶(acetylcholinesterase,AChE)活性及抗凋亡等機制實現神經保護。AD的病理機制與氧化應激導致的神經元損傷密切相關,研究表明,海參多肽可激活抗氧化通路,降低氧化應激損傷。低分子量海參多肽通過上調Nrf2及其下游抗氧化基因的表達,增強細胞抗氧化能力,顯著減少AD模型中的神經元損傷[26]。此外,海參多肽還能提高SOD和谷胱甘肽過氧化物酶等抗氧化酶的活性,通過清除自由基保護神經細胞免受氧化損害[16]。神經炎癥是AD進程中的重要因素,特定海參多肽通過抑制小膠質細胞中白細胞介素-1β(interleukin-1β,IL-1β)和TNF-α等促炎因子的表達,降低NF-κB通路活性,從而減少神經炎癥反應[25]。這一抗炎作用有效阻斷了神經損傷的炎癥通路,為AD神經保護提供了重要基礎。認知功能下降是AD的核心癥狀,AChE的活性調控在改善認知中起關鍵作用。研究表明,海參卵肽衍生的NDEELNK通過提高乙酰膽堿水平、抑制AChE活性及增加SOD活性來發揮抗AD作用[26]。NDEELNK通過與AChE形成疏水鍵和氫鍵,并降低ROS水平,增強線粒體功能。同時,上調p-PKA、BDNF和NGF等信號蛋白的表達,改善膽堿能系統和能量代謝,對AD樣PC12細胞損傷展現神經保護潛力。此外研究者發現,海參多肽通過上調長時程增強(long-term potentiation,LTP)通路和增加不飽和脂質水平,緩解東莨菪堿誘導的記憶障礙,并通過修復海馬體內受損神經元、增加尼氏體數量和調節膽堿能系統失衡等機制改善認知功能,顯示出作為神經功能恢復候選物的潛力[49]。海參多肽在AD防治中展現多途徑作用,初步證實其作為天然抗AD藥物劑的潛力。盡管體外和動物模型研究顯示了積極效果,但仍需臨床試驗證實其在人類中的安全性和療效。

3.2 海參多肽在帕金森病中的應用

PD是一種以中腦黑質多巴胺能神經元退化和α-突觸核蛋白積聚為特征的神經退行性疾病,現有治療多側重于癥狀緩解,缺乏有效的修復手段。近年來,海參中的生物活性成分在PD模型中展現出神經保護潛力,尤其在抗氧化、抑制突觸核蛋白聚集及緩解神經炎癥方面,對減緩疾病進程產生了積極影響。氧化應激是PD的核心病理特征之一,研究表明,從Holothuria leucospilota中提取的棕櫚酸和癸酸能顯著抑制氧化應激,在秀麗隱桿線蟲模型中有效延長壽命并保護多巴胺能神經

元[50-51],其中,癸酸通過激活DAF-16/FOXO信號通路,上調抗氧化基因SOD-3和熱休克蛋白-16.2(heat shock protein-16.2,HSP-16.2),增強神經元的抗氧化能力。這些研究為海參多肽在緩解腸腦軸失調相關神經炎癥及PD防治中的應用潛力提供了理論支持。

3.3 海參多肽在缺血性腦卒中的應用

缺血性腦卒中是由血栓引起的嚴重神經系統疾病,導致腦組織損傷和神經功能喪失。目前治療主要依賴抗凝和溶栓,但存在出血風險和時間窗口的限制。海參多肽因其抗凝、抗炎及神經保護等生物活性,在缺血性腦卒中的治療中展現出潛力[5, 52]。海參多肽還通過激活抗氧化酶系統,提高SOD和過氧化氫酶活性,增強腦組織抗氧化能力,保護神經元免受氧化損害[53]。另外,海參多肽通過促進神經元增殖和突觸可塑性,支持腦卒中后的神經修復。研究者發現,海參多肽可激活細胞增殖和分化信號通路,促進神經元再生和突觸連接恢復,從而改善卒中后的神經功能[54]。進一步的機制研究指出,海參多肽中的ACE(抑制活性也在改善血管內皮功能方面發揮著重要作用,這對于預防和控制引發腦卒中的高血壓因素具有積極意義[14]。海參多肽通過抗凝、抗炎、神經保護及促進神經再生等多重機制,在缺血性腦卒中治療中展現出作為天然替代治療策略的潛力。

4 結語與展望

海參多肽作為一種來源廣泛、功能多樣的生物活性分子,其研究已從單一活性展示向多功能復合調控發展。不同品種海參中不同組織(體壁、腸道、卵巢/卵子及生殖腺)所含的多肽在氨基酸組成、序列及三維結構上各具特色,這種多樣性為其在醫藥、營養及功能食品中的應用奠定了堅實基礎?,F有的酶促水解、微波輔助技術及色譜分離等制備工藝,已初步實現功能性多肽的高效提取與純化,而計算機輔助篩選和分子對接技術的引入,則為精準設計及結構優化提供了有力工具。盡管面臨工藝放大與產品穩定性等方面的挑戰,但隨著多學科技術的不斷融合,海參多肽的開發與應用必將迎來更為廣闊的發展前景。

海參多肽在多項神經系統疾病的研究中展現出顯著的應用潛力。其通過抗氧化、抗炎、調控神經遞質及促進神經再生等多重機制,為現有治療提供了新的視角與補充。在AD、PD和缺血性腦卒中等神經退行性疾病中,海參多肽不僅能夠保護神經細胞,還能通過調節神經炎癥和氧化應激來促進神經修復。此外,海參多肽的低毒性和良好生物相容性為其臨床應用奠定了基礎。盡管實驗和動物模型中的結果令人鼓舞,臨床應用仍面臨挑戰:現有研究多為體外和動物實驗,缺乏系統的臨床試驗數據;分子結構復雜及提取純化過程中的限制可能導致生物活性成分不穩定,從而影響藥物開發中的一致性;在劑型開發上,提高海參多肽的生物利用度也是亟須解決的問題。未來研究應加強臨床試驗,以獲取療效和安全性數據;通過現代技術優化提取與純化工藝,提升成分穩定性和產量;開發多種劑型以提高吸收效率;并深入探討多靶點機制,為個性化治療提供支持。未來,研究者需進一步整合高通量分離技術、分子模擬及網絡藥理學等多學科方法,優化制備工藝,提高多肽純度和活性,推動其向臨床及產業化應用轉化。總體來看,海參多肽在神經系統疾病中的應用前景廣闊,有望成為未來功能性食品和藥物開發的重要方向。

利益沖突聲明:本研究未受到企業、公司等第三方資助,不存在潛在利益沖突。

參 考 文 獻

[1] PANGESTUTI R, ARIFIN Z. Medicinal and health benefit effects of functional sea cucumbers[J]. J Tradit Complementary Med, 2018, 8(3): 341-351. DOI: 10.1016/j.jtcme.2017.06.007.

[2] SHOU Y, FENG C, LU Q, et al. Research progress on the chemical components and biological activities of sea cucumber polypeptides[J]. Front Pharmacol, 2023, 14: 1290175. DOI: 10.3389/fphar.2023.1290175.

[3] KHOTIMCHENKO Y. Pharmacological potential of sea cucumbers[J]. Int J Mol Sci, 2018, 19(5): 1342. DOI: 10.3390/ijms19051342.

[4] ZHAO Y, LU Z, XU X, et al. Sea cucumber-derived peptide attenuates scopolamine-induced cognitive impairment by preventing hippocampal cholinergic dysfunction and neuronal cell death[J]. J Agric Food Chem, 2022, 70(2): 567-576. DOI: 10.1021/acs.jafc.1c07232.

[5] LU Z, YANG J, XU X, et al. Regulation mechanisms of sea cucumber peptides against scopolamine-induced memory disorder and novel memory-improving peptides identification[J]. Eur J Pharmacol, 2024, 968: 176430. DOI: 10.1016/j.ejphar.

2024.176430.

[6] LI C, ZHENG Y, CONG X, et al. Molecular and functional characterization of the luqin-type neuropeptide signaling system in the sea cucumber Apostichopus japonicus[J]. Peptides, 2022, 155: 170839. DOI: 10.1016/j.peptides.2022.170839.

[7] RATHNAYAKE A U, ABUINE R, PALANISAMY S, et al. Characterization and purification of β–secretase inhibitory peptides fraction from sea cucumber (Holothuria spinifera) enzymatic hydrolysates[J]. Process Biochem, 2021, 111: 86-96. DOI: 10.1016/j.procbio.2021.10.007.

[8] MILDENBERGER J, REMM M, ATANASSOVA M. Self-assembly potential of bioactive peptides from Norwegian sea cucumber Parastichopus tremulus for development of functional hydrogels[J]. LWT, 2021, 148: 111678. DOI: 10.1016/j.lwt.2021.111678.

[9] SUN J H, SONG S, YANG J F. Oral administration of sea cucumber (Stichopus japonicus) protein exerts wound healing effects via the PI3K/AKT/mTOR signaling pathway[J]. Food Funct, 2022, 13(19): 9796-9809. DOI: 10.1039/d2fo01372j.

[10] YIN H, YUE H, WANG M, et al. Preparation of novel sea cucumber intestinal peptides to promote tibial fracture healing in mice by inducing differentiation of hypertrophic chondrocytes to the osteoblast lineage[J]. Mol Nutr Food Res, 2024, 68(2): e2300344. DOI: 10.1002/mnfr.202300344.

[11] ZHENG Z, SHEN S, SUN A, et al. Potential mechanism of sea cucumber gut peptides in protecting ethanol-induced gastric mucosal injury[J]. Food Biosci, 2024, 61: 104594. DOI: 10.

1016/j.fbio.2024.104594.

[12] HAN L, LI Y, HU B, et al. Enhancement of calcium chelating activity in peptides from sea cucumber ovum through phosphorylation modification[J]. Foods, 2024, 13(12): 1943.

DOI: 10.3390/foods13121943.

[13] YAN X, FAN F, QIN Z, et al. Preparation and characterization of calcium-chelated sea cucumber ovum hydrolysate and the inhibitory effect on α-amylase[J]. Foods, 2024, 13(24): 4119. DOI: 10.3390/foods13244119.

[14] WANG Y, CHEN S, SHI W, et al. Targeted affinity purification and mechanism of action of angiotensin-converting enzyme (ACE) inhibitory peptides from sea cucumber gonads[J]. Mar Drugs, 2024, 22(2): 90. DOI: 10.3390/md22020090.

[15] GUO K, SU L, WANG Y, et al. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides[J]. Food Funct, 2020, 11(6): 5004-5016. DOI: 10.1039/d0fo00560f.

[16] DONG Y, SUN L, MA C, et al. Characterization of a synergistic antioxidant synthetic peptide from sea cucumber and pine nut[J]. J Food Sci Technol, 2022, 59(6): 2306-2317. DOI: 10.1007/s13197-021-05245-8.

[17] JIN H, LI Y, SHEN K, et al. Regulation of H2O2-induced cells injury through Nrf2 signaling pathway: an introduction of a novel cysteic acid-modified peptide[J]. Bioorg Chem, 2021, 110: 104811. DOI: 10.1016/j.bioorg.2021.104811.

[18] LU M, MISHRA A, BOSCHETTI C, et al. Sea cucumber-derived peptides alleviate oxidative stress in neuroblastoma cells and improve survival in C. elegans exposed to neurotoxic paraquat[J]. Oxid Med Cell Longev, 2021, 2021: 8842926. DOI: 10.1155/2021/8842926.

[19] ZHANG Y, HE S, BONNEIL é, et al. Generation of antioxidative peptides from Atlantic sea cucumber using alcalase versus trypsin: in vitro activity, de novo sequencing, and in silico docking for in vivo function prediction[J]. Food Chem, 2020, 306: 125581. DOI: 10.1016/j.foodchem.2019.125581.

[20] JO D M, KHAN F, PARK S K, et al. From sea to lab: angiotensin I-converting enzyme inhibition by marine peptides-mechanisms and applications[J]. Mar Drugs, 2024, 22(10): 449. DOI: 10.3390/md22100449.

[21] AUWAL S M, ZAINAL ABIDIN N, ZAREI M, et al. Identification, structure-activity relationship and in silico molecular docking analyses of five novel angiotensin I-converting enzyme (ACE)-inhibitory peptides from stone fish (Actinopyga lecanora) hydrolysates[J]. PLoS One, 2019, 14(5): e0197644. DOI: 10.1371/journal.pone.0197644.

[22] LI J, LIU Z, ZHAO Y, et al. Novel natural angiotensin converting enzyme (ACE)-inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline and a study of their structure-activity relationship[J]. Mar Drugs, 2018, 16(8): 271. DOI: 10.3390/md16080271.

[23] ZHONG C, SUN L C, YAN L J, et al. Production, optimisation and characterisation of angiotensin converting enzyme inhibitory peptides from sea cucumber (Stichopus japonicus) gonad[J]. Food Funct, 2018, 9(1): 594-603. DOI: 10.1039/c7fo01388d.

[24] LU Z, SUN N, DONG L, et al. Production of bioactive peptides from sea cucumber and its potential health benefits: a comprehensive review[J]. J Agric Food Chem, 2022, 70(25): 7607-7625. DOI: 10.1021/acs.jafc.2c02696.

[25] LU Z, SHEN S, LIN S. The neuroprotective effects of SFGDI on sirtuin 3-related oxidative stress by regulating the Sirt3/SOD/ROS pathway and energy metabolism in BV2 cells[J]. Food Funct, 2024, 15(12): 6692-6704. DOI: 10.1039/d4fo01512f.

[26] ZHAO Y, DONG Y, GE Q, et al. Neuroprotective effects of NDEELNK from sea cucumber ovum against scopolamine-induced PC12 cell damage through enhancing energy metabolism and upregulation of the PKA/BDNF/NGF signaling pathway[J]. Food Funct, 2021, 12(17): 7676-7687. DOI: 10.1039/d1fo00631b.

[27] CHALORAK P, SORNKAEW N, MANOHONG P, et al.

Diterpene glycosides from Holothuria scabra exert the α-synuclein degradation and neuroprotection against α-synuclein-Mediated neurodegeneration in C. elegans model[J].

J Ethnopharmacol, 2021, 279: 114347. DOI: 10.1016/j.jep.

2021.114347.

[28] CUI P, LIN S, JIN Z, et al. In vitro digestion profile and calcium absorption studies of a sea cucumber ovum derived heptapeptide-calcium complex[J]. Food Funct, 2018, 9(9): 4582-4592. DOI: 10.1039/c8fo00910d.

[29] LIU G, ZHANG S, LIN R, et al. Anti-tumor target screening of sea cucumber saponin Frondoside A: a bioinformatics and molecular docking analysis[J]. Front Oncol, 2023, 13: 1307838. DOI: 10.3389/fonc.2023.1307838.

[30] WEI W, FAN X M, JIA S H, et al. Sea cucumber intestinal peptide induces the apoptosis of MCF-7 cells by inhibiting PI3K/AKT pathway[J]. Front Nutr, 2021, 8: 763692. DOI: 10.3389/fnut.2021.763692.

[31] MENCHINSKAYA E S, CHINGIZOVA E A, PISLYAGIN E A, et al. Mechanisms of action of sea cucumber triterpene glycosides cucumarioside A0-1 and djakonovioside A against human triple-negative breast cancer[J]. Mar Drugs, 2024, 22(10): 474. DOI: 10.3390/md22100474.

[32] RU R, GUO Y, MAO J, et al. Cancer cell inhibiting sea cucumber (Holothuria leucospilota) protein as a novel anti-cancer drug[J]. Nutrients, 2022, 14(4): 786. DOI: 10.3390/nu14040786.

[33] PIRI-GHARAGHIE T, GHAJARI G, HASSANPOOR M, et al.

Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts[J]. Heliyon, 2023, 9(3): e14149. DOI: 10.1016/j.heliyon.2023.e14149.

[34] QIAO R, XIAO R, CHEN Z, et al. Cloning, expression and inhibitory effects on lewis lung carcinoma cells of rAj-tspin from sea cucumber (Apostichopus japonicus)[J]. Molecules, 2021, 27(1): 229. DOI: 10.3390/molecules27010229.

[35] ZHANG X, LI H, WANG L, et al. Anti-inflammatory peptides and metabolomics-driven biomarkers discovery from sea cucumber protein hydrolysates[J]. J Food Sci, 2021, 86(8): 3540-3549. DOI: 10.1111/1750-3841.15834.

[36] WAN H, HAN J, TANG S, et al. Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice[J]. Food Funct, 2020, 11(1): 1074-1086. DOI: 10.1039/c9fo02425e.

[37] ZHANG Y, HE S, RUI X, et al. Interactions of C. frondosa-derived inhibitory peptides against angiotensin I-converting enzyme (ACE), α-amylase and lipase[J]. Food Chem, 2022, 367: 130695. DOI: 10.1016/j.foodchem.2021.130695.

[38] LI D, LI L, XU T, et al. Effect of low molecular weight oligopeptides isolated from sea cucumber on diabetic wound healing in db/db mice[J]. Mar Drugs, 2018, 16(1): 16. DOI:

10.3390/md16010016.

[39] LIU X, WANG Z, ZHANG J, et al. Isolation and identification of zinc-chelating peptides from sea cucumber (Stichopus japonicus) protein hydrolysate[J]. J Sci Food Agric, 2019,

99(14): 6400-6407. DOI: 10.1002/jsfa.9919.

[40] TAO W, LI X, FU X, et al. Akirin2 enhances antibacterial ability via interacting with 14-3-3ζ in V. splendidus-challenged Apostichopus japonicus[J]. Fish Shellfish Immunol, 2024, 149: 109592. DOI: 10.1016/j.fsi.2024.109592.

[41] LI K, LIU L, SHANG S, et al. cDNA cloning, expression and immune function analysis of a novel Rac1 gene (AjRac1) in the sea cucumber Apostichopus japonicus[J]. Fish Shellfish Immunol, 2017, 69: 218-226. DOI: 10.1016/j.fsi.2017.08.027.

[42] JIANG J, ZHOU Z, DONG Y, et al. Comparative expression analysis of immune-related factors in the sea cucumber Apostichopus japonicus[J]. Fish Shellfish Immunol, 2018, 72: 342-347. DOI: 10.1016/j.fsi.2017.11.005.

[43] LI C, FANG H, XU D. Effect of seasonal high temperature on the immune response in Apostichopus japonicus by transcriptome analysis[J]. Fish Shellfish Immunol, 2019, 92: 765-771. DOI: 10.1016/j.fsi.2019.07.012.

[44] LU X, WANG M, YUE H, et al. Novel peptides from sea cucumber intestines hydrolyzed by neutral protease alleviate exercise-induced fatigue via upregulating the glutaminemediated Ca2+/Calcineurin signaling pathway in mice[J]. J Food Sci, 2024, 89(3): 1727-1738. DOI: 10.1111/1750-3841.16934.

[45] YUE H, TIAN Y, FENG X, et al. Novel peptides derived from sea cucumber intestine promotes osteogenesis by upregulating integrin-mediated transdifferentiation of growth plate chondrocytes to osteoblasts[J]. J Agric Food Chem, 2022, 70(41):

13212-13222. DOI: 10.1021/acs.jafc.2c03458.

[46] FAN C, GE X, HAO J, et al. Identification of high iron-chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode[J]. Food Chem, 2023, 399: 133912. DOI: 10.1016/j.foodchem.2022.133912.

[47] KWON T R, OH C T, BAK D H, et al. Effects on skin of Stichopus japonicus viscera extracts detected with saponin including Holothurin A: down-regulation of melanin synthesis and up-regulation of neocollagenesis mediated by ERK signaling pathway[J]. J Ethnopharmacol, 2018, 226: 73-81. DOI: 10.1016/j.jep.2018.08.007.

[48] ZHENG Z, LI M, JIANG P, et al. Peptides derived from sea cucumber accelerate cells proliferation and migration for wound healing by promoting energy metabolism and upregulating the ERK/AKT pathway[J]. Eur J Pharmacol, 2022, 921: 174885. DOI: 10.1016/j.ejphar.2022.174885.

[49] LU Z, XU X, LI D, et al. Sea cucumber peptides attenuated the scopolamine-induced memory impairment in mice and rats and the underlying mechanism[J]. J Agric Food Chem, 2022,

70(1): 157-170. DOI: 10.1021/acs.jafc.1c06475.

[50] SANGUANPHUN T, PROMTANG S, SORNKAEW N, et al. Anti-parkinson effects of Holothuria leucospilota-derived palmitic acid in Caenorhabditis elegans model of Parkinson’s disease[J]. Mar Drugs, 2023, 21(3): 141. DOI: 10.3390/md21030141.

[51] SANGUANPHUN T, SORNKAEW N, MALAIWONG N, et al. Neuroprotective effects of a medium chain fatty acid, decanoic acid, isolated from H. leucospilota against Parkinsonism in C. elegans PD model[J]. Front Pharmacol, 2022, 13: 1004568. DOI: 10.3389/fphar.2022.1004568.

[52] LU Z, LV R, DONG L, et al. Sea cucumber peptides protect against memory impairment by regulating dopamine/serotonin metabolization and synapse plasticity of mice hippocampus[J].

J Funct Foods, 2023, 108: 105732. DOI: 10.1016/j.jff.2023.

105732.

[53] LIN L, LI S, GAO N, et al. The toxicology of native fucosylated glycosaminoglycans and the safety of their depolymerized products as anticoagulants[J]. Mar Drugs, 2021, 19(9): 487. DOI: 10.3390/md19090487.

[54] DOSHI G, NAILWAL N. A review on molecular mechanisms and patents of marine-derived anti-thrombotic agents[J]. Curr Drug Targets, 2021, 22(3): 318-335. DOI: 10.2174/1389450121666201020151927.

(責任編輯:林燕薇)

主站蜘蛛池模板: 91成人在线免费观看| 久久精品人人做人人爽电影蜜月| 色婷婷视频在线| 久久天天躁狠狠躁夜夜躁| 亚洲一级色| 一级毛片免费的| 欧美视频在线播放观看免费福利资源| 国产精品99久久久久久董美香 | 999精品视频在线| 国产拍揄自揄精品视频网站| 男女精品视频| 午夜福利网址| 中文字幕无码av专区久久| 久久国产精品无码hdav| 72种姿势欧美久久久大黄蕉| AV天堂资源福利在线观看| 久久久久88色偷偷| 欧美人与性动交a欧美精品| 亚洲女同一区二区| 在线永久免费观看的毛片| 毛片久久久| 亚洲中文制服丝袜欧美精品| 欧美第二区| 成人综合网址| 国产无人区一区二区三区| a天堂视频| 99在线免费播放| 亚洲成人精品| 在线精品亚洲一区二区古装| 久热中文字幕在线| 国产精品冒白浆免费视频| 精品国产一区91在线| 久久精品中文字幕少妇| 亚洲男人的天堂久久香蕉| 亚洲久悠悠色悠在线播放| 久久精品国产电影| 毛片网站免费在线观看| 国产迷奸在线看| 久久这里只精品热免费99| 国产黑人在线| 亚洲天堂自拍| 免费一级无码在线网站| 亚洲电影天堂在线国语对白| av在线手机播放| 日本久久网站| 在线国产三级| 成人亚洲天堂| 91外围女在线观看| 成人精品在线观看| 青青草国产一区二区三区| 香蕉色综合| 久久国产精品无码hdav| 免费看久久精品99| 乱人伦视频中文字幕在线| 尤物特级无码毛片免费| 高h视频在线| 噜噜噜久久| 青草娱乐极品免费视频| 亚洲欧美日韩成人高清在线一区| 在线另类稀缺国产呦| 99re热精品视频中文字幕不卡| 欧美在线三级| 国产一在线| 谁有在线观看日韩亚洲最新视频| 国产一区在线观看无码| 久久青草视频| 亚洲视频a| 国产又黄又硬又粗| 久久香蕉国产线| 伊人激情久久综合中文字幕| а∨天堂一区中文字幕| 综合色在线| 免费看a级毛片| 国产精女同一区二区三区久| 久久久噜噜噜久久中文字幕色伊伊 | 国产成人亚洲精品蜜芽影院| 一本色道久久88综合日韩精品| 91年精品国产福利线观看久久| 玖玖精品视频在线观看| 日韩av高清无码一区二区三区| 欧美a在线视频| 婷婷五月在线视频|