[摘要]"危重癥患者常因血容量不足、心功能不全或血管舒縮功能改變而存在血流動力學不穩定風險或出現血流動力學不穩定的情況,引發器官功能障礙,并惡化為多器官衰竭,最終導致患者死亡。血流動力學監測通過評估灌注充分性指導個體血流動力學治療。本文綜述無創血流動力學監測方法的原理、臨床意義及其在危重癥患者中的應用現狀,以期為危重癥患者的血流動力學監測、臨床診療與護理提供參考。
[關鍵詞]"鼻煙壺阻力指數;灌注指數;毛細血管再充盈時間;舌下微循環
[中圖分類號]"R459.7""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.14.031
危重癥患者通常存在器官衰竭風險,特別是接受某些大手術和(或)遭受嚴重創傷的患者,其發生器官衰竭的主要促成因素往往是氧氣輸送和需求不匹配所致的血流動力學不穩定[1]。有效循環容積、心臟功能和(或)血管張力的改變是血流動力學不穩定的基礎[2]。通過加強血流動力學監測識別組織灌注不足可防止危重癥患者器官功能障礙甚至死亡的發生。準確評估血容量不足、心肌功能障礙和血管張力改變對選擇最合適的治療方案至關重要[3]。本文綜述無創血流動力學監測方法的原理、臨床意義及其在危重癥患者中的應用現狀,以期為危重癥患者的血流動力學監測、臨床診療與護理提供參考。
1""鼻煙壺阻力指數
全身血管阻力指數的計算需要利用中心靜脈壓或平均右心房壓測量值[4]。阻力指數是評價動脈波形的常用參數,既往研究表明阻力指數與血管阻力相關性強[5]。血流方向與超聲聲束之間的角度影響多普勒獲得的波形。入射角在血流多普勒分析中至關重要,其lt;60°才能將誤差降低到20%以下;當角度接近0°時,可獲得更準確的信號。超聲束與橈動脈血流方向的入射角最小,選擇鼻煙壺橈動脈作為靶動脈可降低誤差[6]。鼻煙壺阻力指數(snuff-box"resistive"index,SBRI)=(收縮峰值速度–舒張末期速度)/收縮峰值速度[7]。SBRI已被證明是評價血管阻力和血管順應性的可行且準確的參數之一[8]。Lee等[9]研究證實SBRI和全身血管阻力指數之間存在很強的相關性。SBRI值大小主要由舒張末期速度決定。舒張末期速度高時,SBRI低,波形為三項波或雙向波,提示遠端血管阻力正常狀態或低阻力狀態與收縮峰值速度/舒張末期速度不同,其可反映舒張末期是否有血流,血流方向是正向還是反向。當SBRIgt;1時,提示舒張末期出現反向血流。既往研究表明在生理應激情況下乳酸是疾病嚴重程度的標志[10]。研究證實SBRI與組織灌注參數相關,SBRI異常較灌注指數更能提示乳酸清除障礙,SBRI是比心臟指數更好的異常組織灌注指標[11]。綜上,SBRI具有無創、無輻射、可重復、實時、廉價的優點,其對評估血流動力學具有一定的優越性,缺點是對操作者要求高,依賴性強。
2""毛細血管再充盈時間
毛細血管再充盈時間(capillary"refilling"time,CRT)是指執行檢查人員對患者手指或腳趾遠端指骨的腹面手動施加壓力,直到指甲床變白,壓力持續5s釋放皮膚恢復到基線顏色所需的時間[12-14]。CRT已被納入不同指南中,但研究對其在不同臨床環境中的準確性仍存在爭議[15-16]。不同年齡和性別患者的CRT臨界值不同[17-18]。在非危重癥成人患者中,CRTgt;4.5s與患者較差的結局相關,同時CRTgt;5s與腹部大手術后的圍手術期并發癥和死亡有關[19]。CRT存在一定的局限性,包括環境條件差異及患者的年齡、皮膚色素沉著等[20-21]。研究表明內臟器官血管張力與CRT和斑點評分相關,但與體表溫度無關[22]。綜上,CRT可提供關于外周灌注狀態快速和實用的信息。
3""外周灌注指數
外周灌注指數(perfusion"index,PI)是指脈沖部分的脈搏波與非脈沖部分的脈搏波的比值,由監測外周動脈搏動波形后進行計算測量得出[23]。PI的原理為脈搏血氧儀探頭產生超紅光光束,其透射強度在穿過組織后由光電探測器轉換成電流,光電探測器接收到的信號被分成脈沖信號和非脈沖信號。脈沖信號表示血管在動脈壓變化下搏動而引起的光吸收變化,是心臟周期中對動脈容量變化的間接測量。非脈沖信號是非脈動性毛細血管、靜脈血管、皮膚、軟組織和骨骼連續吸收的光。PI變化可反映周圍血管舒縮性張力的變化[24]。可從手指、腳趾、前額、耳垂等處獲得PI。中指是臨床試驗中最常用的PI監測部位。研究發現PI可為休克復蘇、液體管理、血管加壓治療、結局預測、風險分層和疼痛評估提供有用信息[25]。不同測量設備和人群可解釋PI參考范圍不同的原因。與健康成人相比,危重癥患者的PI值較低。不同疾病的危重癥患者PI的參考范圍也不同。研究表明預測組織灌注不良的最佳臨界值是PIlt;1.4[26]。在膿毒癥患者的研究中,PIlt;0.2與不良結局相關[27]。PI作為一種無創、客觀的外周組織灌注指標,在危重癥患者中已被證實是有用的。PI監控的主要優點是易于使用和價格低廉,缺點是外周灌注監測的信息僅限于所研究的區域。
4""視頻顯微鏡
視頻顯微鏡是廣為人知的技術之一,其通常在舌下區域進行[28]。舌下微循環異常包括灌注血管比例降低、微血管總密度和微血管血流指數及微灌注異質性增加。這些改變與高乳酸血癥、血管加壓藥依賴、器官功能障礙和患者死亡率有關[29]。復蘇和正性肌力藥物已被證明可使舌下微循環異常正常化[30];灌注血管比例和微血管血流指數的正常范圍仍在討論中,且部分相互矛盾[31]。手動和自動測量舌下微循環結果的一致性不佳[32]。健康志愿者灌注血管比例和微血管血流指數的巨大變化與手持式視頻顯微鏡誘導的壓縮偽影有關。雖然視頻顯微技術已被用作監測微循環改變的工具,效果已被廣泛報道,但其對微循環床邊評估是困難的,且尚未納入常規臨床實踐[33]。
5""生物阻抗法
生物阻抗是一種新型的非侵入性技術,用于測定瞬間小電流通過機體傳導時的電導變化。使用不同算法校正機體成分常數,計算瞬時動脈血容量和心輸出量的變化。傳統意義上,生物阻抗心輸出量根據發送和接收小電流的電極位置,使用胸腔或全身技術確定。近年來,生物阻抗法測定心輸出量取得重大進展。使用胸腔和全身生物阻抗的新算法與有創心輸出量測定有更強的相關性[34]。在一些初步研究中發現,生物阻抗法測定心輸出量在某些心血管疾病的診斷、危險分層和治療滴定中有很好應用。使用生物阻抗法進行無創血流動力學監測有助于指導和改善高血壓的治療[35]。生物阻抗法也有其局限性,其在主動脈瓣功能不全、主動脈擴張、動脈瘤縮窄、心內和心包膜分流、室性心律失常、肺水腫等治療過程中的指導意義不大[36]。
6""小結與展望
綜上,危重癥患者病情進展與血流動力學改變有關,而這些改變又與器官衰竭和預后不良有關。早期發現血流動力學改變對制定治療方案、避免進一步器官損傷和預后不良具有重要意義。無創血流動力學監測在未來危重癥患者治療中有顯著優勢及廣闊發展前景。針對具體問題選擇合適監測手段對危重癥患者的大循環和微循環進行評估,不僅能反映危重癥患者循環狀況及容量狀態,還可準確預測危重癥患者的容量反應,為危重癥患者進一步治療提供參數指導。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] HUYGH"J,"PEETERS"Y,"BERNARDS"J,"et"al."Hemod-"ynamic"monitoring"in"the"critically"ill:"An"overview"of"current"cardiac"output"monitoring"methods[J]."F1000Res,"2016,"5:"F1000"Faculty"Rev–2855.
[2] TEBOUL"J"L,"SAUGEL"B,"CECCONI"M,"et"al."Less"invasive"hemodynamic"monitoring"in"critically"ill"patients[J]."Intensive"Care"Med,"2016,"42(9):"1350–1359.
[3] PEREL"A,"SAUGEL"B,"TEBOUL"J"L,"et"al."The"effects"of"advanced"monitoring"on"hemodynamic"management"in"critically"ill"patients:"A"pre"and"post"questionnaire"study[J]."J"Clin"Monit"Comput,"2016,"30(5):"511–518.
[4] ICHIHARA"Y,"OHNO"J,"SUZUKI"M,"et"al."Blunt"circulatory"response"to"exercise"in"coronary"high-risk"subjects"among"apparently"healthy"Japanese[J]."Circ"J,"2004,"68(4):"286–293.
[5] HALPERN"E"J,"MERTON"D"A,"FORSBERG"F."Effect"of"distal"resistance"on"Doppler"US"flow"patterns[J]."Radiology,"1998,"206(3):"761–766.
[6] BAN"K,"KOCHI"K,"IMAI"K,"et"al."Novel"Doppler"technique"to"assess"systemic"vascular"resistance:"The"snuffbox"technique[J]."Circ"J,"2005,"69(6):"688–694.
[7] KIM"E"S,"SHARMA"A"M,"SCISSONS"R,"et"al."Interpretation"of"peripheral"arterial"and"venous"Doppler"waveforms:"A"consensus"statement"from"the"Society"for"Vascular"Medicine"and"Society"for"Vascular"Ultrasound[J]."Vasc"Med,"2020,"25(5):"484–506.
[8] BUDE"R"O,"RUBIN"J"M.nbsp;Relationship"between"the"resistive"index"and"vascular"compliance"and"resistance[J]."Radiology,"1999,"211(2):"411–417.
[9] LEE"E"P,"HSIA"S"H,"HUANG"C"C,"et"al."Strong"correlation"between"Doppler"snuffbox"resistive"index"and"systemic"vascular"resistance"in"septic"patients[J]."J"Crit"Care,"2019,"49:"45–49.
[10] HERNANDEZ"G,"BELLOMO"R,"BAKKER"J."The"ten"pitfalls"of"lactate"clearance"in"sepsis[J]."Intensive"Care"Med,"2019,"45(1):"82–85.
[11] WANG"C,"WANG"X,"ZHANG"H,"et"al."Association"between"Doppler"snuffbox"resistive"index"and"tissue"perfusion"in"septic"patients[J]."Shock,"2020,"54(6):"723–730.
[12] SCHRIGER"D"L,"BARAFF"L."Defining"normal"capillary"refill:"Variation"with"age,"sex,"and"temperature[J]."Ann"Emerg"Med,"1988,"17(9):"932–935.
[13] AIT-OUFELLA"H,"BAKKER"J."Understanding"clinical"signs"of"poor"tissue"perfusion"during"septic"shock[J]."Intensive"Care"Med,"2016,"42(12):"2070–2072.
[14] TAFNERPF"D"A,"CHEN"F"K,"RABELLO"R"FI,"et"al."Recent"advances"in"bedside"microcirculation"assessment"in"critically"ill"patients[J]."Rev"Bras"Ter"Intensiva,"2017,"29(2):"238–247.
[15] TIBBY"S"M,"HATHERILL"M,"MURDOCH"I"A."Capillary"refill"and"core-peripheral"temperature"gap"as"indicators"of"haemodynamic"status"in"paediatric"intensive"care"patients[J]."Arch"Dis"Child,"1999,"80(2):"163–166.
[16] HERNANDEZ"G,"LUENGO"C,"BRUHN"A,"et"al."When"to"stop"septic"shock"resuscitation:"Clues"from"a"dynamic"perfusion"monitoring[J]."Ann"Intensive"Care,"2014,"4:"30.
[17] HERNANDEZ"G,"PEDREROS"C,"VEAS"E,"et"al."Evolution"of"peripheral"vs"metabolic"perfusion"parameters"during"septic"shock"resuscitation."A"clinical-physiologic"study[J]."J"Crit"Care,"2012,"27(3):"283–288.
[18] LARA"B,"ENBERG"L,"ORTEGA"M,"et"al."Capillary"refill"time"during"fluid"resuscitation"in"patients"with"sepsis-related"hyperlactatemia"at"the"emergency"department"is"related"to"mortality[J]."PLoS"One,"2017,"12(11):"e0188548.
[19] VAN"GENDEREN"M"E,"PAAUWE"J,"DE"JONGE"J,"""et"al."Clinical"assessment"of"peripheral"perfusion"tonbsp;predict"postoperative"complications"after"major"abdominal"surgery"early:"A"prospective"observational"study"in"adults[J]."Crit"Care,"2014,"18(3):"R114.
[20] ESPINOZA"E"D,"WELSH"S,"DUBIN"A."Lack"of"agreement"between"different"observers"and"methods"in"the"measurement"of"capillary"refill"time"in"healthy"volunteers:"An"observational"study[J]."Rev"Bras"Ter"Intensiva,"2014,"26(3):"269–276.
[21] ALSMA"J,"VAN"SAASE"J"L"C"M,"NANAYAKKARA"P"W"B,"et"al."The"power"of"flash"mob"research:"Conducting"a"nationwide"observational"clinical"study"on"capillary"refill"time"in"a"single"day[J]."Chest,"2017,"151(5):"1106–1113.
[22] BRUNAUER"A,"KOK?FER"A,"BATAAR"O,"et"al."Changes"in"peripheral"perfusion"relate"to"visceral"organ"perfusion"in"early"septic"shock:"A"pilot"study[J]."J"Crit"Care,"2016,"35:"105–109.
[23] LIMA"A"P,"BEELEN"P,"BAKKER"J."Use"of"a"peripheral"perfusion"index"derived"from"the"pulse"oximetry"signal"as"a"noninvasive"indicator"of"perfusion[J]."Crit"Care"Med,"2002,"30(6):"1210–1213.
[24] VAN"GENDEREN"M"E,"VAN"BOMMEL"J,"LIMA"A."Monitoring"peripheral"perfusion"in"critically"illnbsp;patients"at"the"bedside[J]."Curr"Opin"Crit"Care,"2012,"18(3):"273–279.
[25] SUN"X,"HE"H,"XU"M,"et"al."Peripheral"perfusion"index"of"pulse"oximetry"in"adult"patients:"A"narrative"review[J]."Eur"J"Med"Res,"2024,"29(1):"457.
[26] DUGGAPPA"D"R,"LOKESH"M,"DIXIT"A,"et"al."Perfusion"index"as"a"predictor"of"hypotension"following"spinal"anaesthesia"in"lower"segment"caesarean"section[J]."Indian"J"Anaesth,"2017,"61(8):"649–654.
[27] HE"H"W,"LIU"D"W,"LONG"Y,"et"al."The"peripheral"perfusion"index"and"transcutaneous"oxygen"challenge"test"are"predictive"of"mortality"in"septic"patients"after"resuscitation[J]."Crit"Care,"2013,"17(3):"R116.
[28] INCE"C,"BOERMA"E"C,"CECCONI"M,"et"al."Second"consensus"on"the"assessment"of"sublingual"microcirculation"in"critically"ill"patients:"Results"from"a"Task"Force"of"the"European"Society"of"Intensive"Care"Medicine[J]."Intensive"Care"Med,"2018,"44(3):"281–299.
[29] HERNANDEZ"G,"BOERMA"E"C,"DUBIN"A,"et"al."Severe"abnormalities"in"microvascular"perfused"vessel"density"are"associated"to"organ"dysfunctions"and"mortality"and"can"be"predicted"by"hyperlactatemia"and"norepinephrine"requirements"in"septic"shock"patients[J]."J"Crit"Care,"2013,"28(4):"538.
[30] KANOORE"EDUL"V"S,"INCE"C,"DUBIN"A."Whatnbsp;is"microcirculatory"shock?[J]."Curr"Opin"Crit"Care,"2015,"21(3):"245–252.
[31] KANOORE"EDUL"V"S,"INCE"C,"ESTENSSORO"E,""et"al."The"effects"of"arterial"hypertension"and"age"on"the"sublingual"microcirculation"of"healthy"volunteers"and"outpatients"with"cardiovascular"risk"factors[J]."Microcirculation,"2015,"22(6):"485–492.
[32] ARNEMANN"P"H,"HESSLER"M,"KAMPMEIER"T,"""et"al."Comparison"of"an"automatic"analysis"and"a"manual"analysis"of"conjunctival"microcirculation"in"a"sheep"model"of"haemorrhagic"shock[J]."Intensive"Care"Med"Exp,"2016,"4(1):"37.
[33] NAUMANN"D"N,"LIMA"A."Could"resuscitation"be"based"on"microcirculation"data?"No[J]."Intensive"Care"Med,"2018,"44(6):"947–949.
[34] RAAIJMAKERS"E,"FAES"T"J,"SCHOLTEN"R"J,"et"al."A"Meta-analysis"of"published"studies"concerning"the"validity"of"thoracic"impedance"cardiography[J]."Ann"N"Y"Acad"Sci,"1999,"873:"121–127.
[35] K??BI"T,"KAUKINEN"S,"TURJANMAA"V"M,"et"al."Whole-body"impedance"cardiography"in"the"measurement"of"cardiac"output[J]."Crit"Care"Med,"1997,"25(5):"779–785.
[36] MOSHKOVITZ"Y,"KALUSKI"E,"MILO"O,"et"al."Recent"developments"in"cardiac"output"determination"by"bioimpedance:"Comparison"with"invasive"cardiac"output"and"potential"cardiovascular"applications[J]."Curr"Opin"Cardiol,"2004,"19(3):"229–237.
(收稿日期:2024–12–10)
(修回日期:2025–02–07)
(上接第117頁)
[16] LI"M"X,"HU"S,"LEI"H"H,"et"al."Tumor-derived"miR-9-"5p-loaded"EVs"regulate"cholesterol"homeostasis"to"promote"breast"cancer"liver"metastasis"in"mice[J]."Nat"Commun,"2024,"15(1):"10539.
[17] YANG"F,"KOU"J,"LIU"Z,"et"al."MYC"enhances"cholesterol"biosynthesis"and"supports"cell"proliferation"through"SQLE[J]."Front"Cell"Dev"Biol,"2021,"9:"655889.
[18] KOSAKA"S,"MIYASHITA"M,"MCNAMALA"K,"et"al."Bird’s"eye"view"analysis"of"in"situ"cholesterol"metabolic"pathways"in"breast"cancer"patients"andnbsp;its"clinicopathological"significance"in"their"subtypes[J]."J"Steroid"Biochem"Mol"Biol,"2022,"221:"106103.
[19] TAROENO-HARIADI"K"W,"PUTRA"Y"R,"CHORIDAH"L,"et"al."Fatty"liver"in"hormone"receptor-positive"breast"cancer"and"its"impact"on"patient's"survival[J]."J"Breast"Cancer,"2021,"24(5):"417–427.
[20] BRINDISI"M,"FIORILLO"M,"FRATTARUOLO"L,"et"al."Cholesterol"and"mevalonate:"Two"metabolites"involved"in"breast"cancer"progression"and"drug"resistance"through"the"ERRα"pathway[J]."Cells,"2020,"9(8):"1819.
[21] XU"R,"SONG"J,"RUZE"R,"et"al."SQLE"promotes"pancreatic"cancer"growth"by"attenuating"ER"stress"and"activating"lipid"rafts-regulated"Src/PI3K/Akt"signaling"pathway[J]."Cell"Death"Dis,"2023,"14(8):"497.
[22] HE"J,"SIU"M"K"Y,"NGAN"H"Y"S,"et"al."Aberrant"cholesterol"metabolism"in"ovarian"cancer:"Identification"of"novel"therapeutic"targets[J]."Front"Oncol,"2021,"11:"738177.
[23] WANG"T,"CAO"Y,"ZHANG"H,"et"al."COVID-19"metabolism:"Mechanisms"and"therapeutic"targets[J]."MedComm"(2020),"2022,"3(3):"e157.
(收稿日期:2025–01–14)
(修回日期:2025–01–22)