[摘要]"免疫檢查點抑制劑通過靶向調節激活患者自身T細胞對抗腫瘤細胞,其在多種類型惡性腫瘤治療中效果顯著。然而,這種激活也可能失控,進而使機體的正常組織和器官受到攻擊,引發不同程度的免疫相關疾病和/或其他并發癥,即免疫相關不良反應。本文探討免疫檢查點抑制劑相關不良反應的臨床表現與發生機制。
[關鍵詞]"免疫相關不良事件;免疫檢查點抑制劑;腫瘤;免疫治療
[中圖分類號]"R730.51""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.16.027
傳統腫瘤治療方法包括外科手術切除、化學治療和放射治療等。上述治療方法雖可在一定程度上控制腫瘤細胞的生長與擴散,但也存在不足。如化學治療和放射治療可對健康組織和細胞造成損傷;手術若無法完全切除腫瘤組織,則有復發風險。免疫系統與腫瘤微環境之間存在復雜的相互影響。腫瘤細胞可通過多種途徑逃避免疫系統的攻擊,被稱作免疫逃逸機制。免疫治療是以調動或改善免疫系統對腫瘤細胞的反應來識別和殺死腫瘤細胞的治療手段。近年來,免疫治療已成為一種重要的惡性腫瘤治療模式,其中最重要的免疫治療發展方向之一即免疫檢查點抑制劑(immune"checkpoint"inhibitor,ICI)。ICI并非靶向腫瘤細胞,而是靶向T細胞相關因子以激活T細胞,進而識別并攻擊腫瘤細胞,臨床應用效果優異[1]。
ICI包括程序性死亡受體1(programmed"death-1,PD-1)/程序性死亡受體配體1(programmed"death-"ligand"1,PD-L1)、細胞毒性T淋巴細胞相關抗原4(cytotoxic"T"lymphocyte-associated"antigen-4,CTLA-4)抑制劑,其通過阻斷腫瘤細胞利用某些分子信號逃避免疫系統監視策略增強機體對腫瘤細胞的自我防御能力,最終達到治療腫瘤的目的[2-4]。ICI已成為高風險、晚期或轉移性黑色素瘤患者的一線治療選擇[5]。對某些高表達PD-L1的非小細胞肺癌患者,PD-1/PD-L1抑制劑已成為一線治療的標準選擇[6]。
ICI可過度激活免疫反應攻擊正常組織,使患者出現一系列與自身免疫性疾病相似的不良反應,導致患者出現嚴重影響其生活質量和治療效果的免疫相關不良事件(immune-related"adverse"event,irAE)。irAE可表現為輕微癥狀(如皮疹、輕度胃腸道癥狀)和嚴重病變(如間質性肺炎、肝炎、心肌炎、嚴重結腸炎)。irAE的發生時間各不相同,從開始使用ICI的幾周至數月,甚至發生在治療完成后。預防和管理irAE的關鍵在于早期識別和干預。
1""ICI相關不良反應的臨床表現
1.1""皮膚
皮膚毒性反應是最常見的ICI相關不良反應。超過1/3的患者接受ICI治療后出現皮膚反應。該不良反應可出現在機體任何部位,主要表現為丘疹性斑塊伴瘙癢、蕁麻疹樣反應等,多數患者的癥狀表現為輕中度;其他皮膚不良反應包括白癜風樣病變、自身免疫性皮膚病、肉芽腫和口腔黏膜變化等[7-8]。聯合使用CTLA-4和PD-1抑制劑可導致更頻繁、更嚴重的皮膚irAE[9]。盡管大多數皮膚irAE是自限性的,但重度患者可能出現中毒性表皮壞死松解癥,危及生命[10]。
1.2""胃腸道
胃腸道不良反應是第2大常見ICI相關不良反應類型。20%~30%的患者在ICI治療后出現腹瀉,不超過5%的患者發展為結腸炎[11]。CTLA-4抑制劑相關結腸炎的發生率顯著高于PD-1/PD-L1抑制劑[12]。胃腸道不良反應的臨床癥狀包括腹瀉、腹痛、便血、發熱、嘔吐、惡心和食欲不振等,嚴重者可并發腸穿孔[13-14]。胃腸道irAE可顯著影響患者生活質量,且患者病情惡化速度非常快,需及時干預。
1.3""肺部
免疫檢查點抑制劑相關肺炎(immune"checkpoint"inhibitor-related"pneumonitis,CIP)表現為呼吸困難、咳嗽、胸悶、發熱等,部分患者可無明顯癥狀[15]。CIP的影像學表現多樣,常見磨玻璃影、隱源性機化性肺炎和間質性肺炎等[16]。診斷CIP時需排除感染、腫瘤復發等可能性,其管理通常包括暫停ICI治療和使用類固醇。現有文獻對CIP長期預后和復發風險的研究較少,未來需加強該方面的探索。
1.4""肝臟
肝臟相關不良反應主要表現為肝酶水平升高,患者可能出現疲乏、腹痛、惡心等癥狀,嚴重者可能發展為肝衰竭[17]。肝臟相關不良反應的影像學檢查可見肝臟輕微腫大、門靜脈周圍水腫和淋巴結腫大[18]。盡管現有文獻對肝臟irAE的臨床表現和影像學特征進行詳細描述,但其發生機制尚未完全闡明。此外,關于肝臟irAE的管理策略,文獻推薦的治療方案存在一定差異,需進一步優化。
1.5""內分泌系統
內分泌系統irAE可影響甲狀腺、垂體、胰腺和腎上腺等器官,導致甲狀腺功能減退、甲狀腺功能亢進、垂體炎和糖尿病等內分泌疾病[19]。
1.6""神經系統
神經系統irAE罕見但多樣,可對中樞神經和外周神經造成影響,臨床表現包括但不限于周圍神經病變、肌無力、肌炎、腦炎、脊髓炎、腦膜炎、吉蘭-巴雷綜合征、自主神經病變等,癥狀可能從麻木、肌無力到行為改變和癲癇發作等[20-21]。
1.7""心血管系統
心血管系統irAE較罕見,但常較為嚴重甚至致命,因為這些不良事件在臨床上可無預警出現,包括心肌炎、心包炎、心力衰竭和血栓栓塞等[22-23]。當發生心血管系統irAE時需緊急干預,包括具體的心血管治療、停用ICI及高劑量類固醇管理。
2""ICI相關不良反應的發生機制
機體免疫系統調節機制復雜,既能啟動免疫反應抵御感染和腫瘤,又能通過“免疫檢查點”避免過度激活。免疫檢查點是一種抑制性信號通路,通過限制免疫細胞維持自我耐受及避免自身免疫反應,但一些腫瘤細胞卻利用這些檢查點信號逃避免疫監視和攻擊。ICI通過阻斷抑制性信號恢復T細胞抗腫瘤活性,但也可能打破免疫穩態,影響免疫治療應答及導致irAE發生。
2.1""T細胞異常活化
T細胞的激活需要額外的共刺激信號,由T細胞表面的CD28與抗原呈遞細胞上的B7分子(CD80和CD86)結合而激發。CTLA-4與免疫應答中的共刺激分子CD28爭奪B7配體(CD80和CD86),抑制T細胞的活化和增殖[24]。PD-1及其配體PD-L1是CD28和B7家族成員,其在T細胞周圍組織反應階段起作用。當T細胞表面的PD-1與腫瘤細胞表面或其他細胞表面的PD-L1結合時,可抑制T細胞活化和增殖,避免過度免疫應答和自身免疫病的發生[25-26]。ICI通過阻斷CTLA-4、PD-1或PD-L1,去除這一“剎車機制”,增強T細胞活性,增強對腫瘤細胞的免疫反應[27]。PD-1/PD-L1和CTLA-4抑制劑通過阻斷抑制T細胞活性相關信號通路顯著增強免疫系統對抗腫瘤的能力,但這種增強有可能超出控制,不局限于腫瘤微環境轉而泛化到全身,使免疫耐受失衡,導致類似自身免疫反應的不良反應。
T細胞異常活化是ICI治療irAE發生的核心驅動因素。T細胞有不同亞型,包括輔助性T細胞(helper"T"cell,Th細胞)和調節性T細胞(regulatory"T"cell,Treg細胞)等。在健康免疫系統中,這些T細胞亞型之間保持平衡,從而確保有效的防御機制,且防止過激反應對宿主組織的損傷。Th17是一種可分泌細胞因子白細胞介素(interleukin,IL)-17的促炎性T細胞,IL-17可增強免疫反應,對抗病原體和腫瘤細胞[28]。Treg細胞通過接觸抑制、產生抑制類細胞因子抑制其他免疫細胞的活性,加強免疫系統的抑制環境。單細胞測序發現Ikaros家族蛋白可介導Th17細胞向Treg細胞轉化[29]。但該機制僅在類風濕關節炎模型中被證實,是否適用于irAE仍需驗證。ICI可通過抑制Treg細胞功能強化Th17細胞活化,打破免疫穩態,導致自身免疫攻擊,但二者的因果關系尚未明確[30]。
2.2""細胞因子風暴
細胞因子是免疫細胞經刺激而合成、分泌的一類小分子蛋白,其通過與細胞表面受體結合調節免疫系統和炎癥反應,如腫瘤壞死因子-α(tumor"necrosis"factor-α,TNF-α)、IL-6、和γ干擾素(interferon-γ,IFN-γ)[31]。在ICI治療中,T細胞活化并釋放大量細胞因子用于細胞通訊,使其他免疫細胞進入激活狀態。大量TNF-α、IL-6、IFN-γ和其他細胞因子被迅速釋放到血液中,引發炎癥級聯反應,甚至引起細胞因子風暴[32]。IL-6在細胞因子風暴中起核心作用,促進炎癥反應,增加血管通透性;TNF-α則誘導內皮細胞活化和組織損傷[33]。IFN-γ通過激活巨噬細胞和自然殺傷細胞進一步釋放細胞因子,形成正反饋循環,加劇炎癥反應[34]。巨噬細胞通過釋放IL-1β和IL-6等細胞因子,進一步放大炎癥反應[35]。這種過度免疫反應可導致血管通透性增加、組織水腫和多器官損傷[36]。細胞因子風暴還可通過正反饋循環持續激活更多的免疫細胞,破壞免疫耐受,導致免疫系統對自身組織的攻擊進一步加劇[37]。但目前研究通常聚焦于單一細胞因子的作用,忽略了細胞因子之間的相互作用和協同效應。
2.3""腸道菌群
腸道菌群的平衡狀態對維持宿主免疫穩態和免疫耐受有重要作用。越來越多的證據表明,腸道微生物群組成可影響ICI療效和irAE進展,菌群失調則與irAE風險呈正相關[38]。
腸道微生物代謝產物是介導菌群免疫的核心媒介,短鏈脂肪酸(short"chain"fatty"acid,SCFA)如丁酸、乙酸和丙酸等不僅為腸上皮細胞提供能量、促進黏膜修復,還影響全身免疫應答[38-39]。Zhang等[39]在非小細胞肺癌患者中觀察到SCFA水平與外周血Treg細胞呈正相關,靶向調節腸道菌群已被視為增強ICI療效、減少irAE發生的潛在策略。Liu等[40]研究證實在肺癌患者治療中,補充益生菌或糞便微生物移植可幫助重塑腸道菌群代謝譜,降低irAE的發生率。
3""總結與展望
irAE作為免疫療法的常見伴隨現象,其復雜多樣的臨床表現和潛在的危害備受學者關注。深入了解irAE的臨床表現、探索irAE的分子機制、揭示新的生物標志物、幫助預測和早期識別高風險患者具有重要意義。未來研究需關注新型免疫治療藥物所帶來的不良反應及不同藥物聯合治療時irAE的特點及應對策略,制定更加精準的治療方案和免疫調節策略,這將有助于降低irAE的發生率和嚴重程度,優化患者的治療體驗。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] DONNE"R,"LUJAMBIO"A."The"liver"cancer"immune"microenvironment:"Therapeutic"implications"for"hepatocellular"carcinoma[J]."Hepatology,"2023,"77(5):"1773–1796.
[2] LI"X,"SHAO"C,"SHI"Y,"et"al."Lessons"learned"from"the"blockade"of"immune"checkpoints"in"cancer"immunotherapy[J]."J"Hematol"Oncol,"2018,"11(1):"31.
[3] BHATLAPENUMARTHI"V,"PATWARI"A,"HARB"A"J."Immune-related"adverse"events"and"immune"checkpoint"inhibitor"tolerance"on"rechallenge"in"patients"with"irAEs:"A"single-center"experience[J]."J"Cancer"Res"Clin"Oncol,"2021,"147(9):"2789–2800.
[4] ARAFAT"HOSSAIN"M."A"comprehensive"review"of"immune"checkpoint"inhibitors"for"cancer"treatment[J]."Int"Immunopharmacol,"2024,"143(Pt"2):"113365.
[5] MAJIDOVA"N,"ARAK"H,"OZALP"F"R,"et"al."Prognostic"factors"and"outcomes"of"adjuvant"and"first-line"metastatic"treatments"in"melanoma"a"Turkish"oncology"group"study[J]."Sci"Rep,"2025,"15(1):"3200.
[6] MILLER"M,"HANNA"N."Advances"in"systemic"therapy"for"non-small"cell"lung"cancer[J]."BMJ,"2021,"375:"n2363.
[7] MUNTYANU"A,"NETCHIPOROUK"E,"GERSTEIN"W,"et"al."Cutaneous"immune-related"adverse"events"(irAEs)"to"immune"checkpoint"inhibitors:"A"dermatology"perspective"on"management[J]."J"Cutan"Med"Surg,"2021,"25(1):"59–76.
[8] CHEN"C"H,"YU"H"S,"YU"S."Cutaneous"adverse"events"associated"with"immune"checkpoint"inhibitors:"A"review"article[J]."Curr"Oncol,"2022,"29(4):"2871–2886.
[9] ELLIS"S"R,"VIERRA"A"T,"MILLSOP"J"W,"et"al."Dermatologic"toxicities"to"immune"checkpoint"inhibitor"therapy:"A"review"of"histopathologic"features[J]."J"Am"Acad"Dermatol,"2020,"83(4):"1130–1143.
[10] BHARDWAJ"M,"CHIU"M"N,"PILKHWAL"SAH"S."Adverse"cutaneous"toxicities"by"PD-1/PD-L1"immune"checkpoint"inhibitors:"Pathogenesis,"treatment,"and"surveillance[J]."Cutan"Ocul"Toxicol,"2022,"41(1):"73–90.
[11] TANG"L,"WANG"J,"LIN"N,"et"al."Immune"checkpoint"inhibitor-associated"colitis:"From"mechanism"to"mana-"gement[J]."Front"Immunol,"2021,"12:"800879.
[12] SOULARUE"E,"LEPAGE"P,"COLOMBEL"J"F,"et"al."Enterocolitis"due"to"immune"checkpoint"inhibitors:"A"systematic"review[J]."Gut,"2018,"67(11):"2056–2067.
[13] DOUGAN"M,"NGUYEN"L"H,"BUCHBINDER"E"I,"""et"al."Sargramostim"for"prophylactic"management"of"gastrointestinal"immune-related"adverse"events"of"immune"checkpoint"inhibitor"therapy"for"cancer[J]."Cancers"(Basel),"2024,"16(3):"501.
[14] MARTINS"F,"SOFIYA"L,"SYKIOTIS"G"P,"et"al."Adverse"effects"of"immune-checkpoint"inhibitors:"Epidemiology,"management"and"surveillance[J]."Nat"Rev"Clin"Oncol,"2019,"16(9):"563–580.
[15] SHANNON"V"R,"ANDERSON"R,"BLIDNER"A,"et"al."Multinational"Association"of"Supportive"Care"in"Cancer"(MASCC)"2020"clinical"practice"recommendations"""for"the"management"of"immune-related"adverse"events:"Pulmonary"toxicity[J]."Support"Care"Cancer,"2020,"28(12):"6145–6157.
[16] FENG"X,"LI"G,"LI"C."Recent"advances"in"the"study"of"immune"checkpoint"inhibitor-associated"pneumonia[J]."Crit"Rev"Oncol"Hematol,"2025,"206:"104591.
[17] TAHERIAN"M,"CHATTERJEE"D,"WANG"H."Immune"checkpoint"inhibitor-induced"hepatic"injury:"A"clinicop-"athologic"review[J]."J"Clin"Transl"Pathol,"2022,"2(3):"83–90.
[18] MASUOKA"S,"HIYAMA"T,"KUNO"H,"et"al."Computed"tomography"findings"of"hepatobiliary"systemsnbsp;in"patients"with"immune"checkpoint"inhibitor-induced"liver"injury[J]."Abdom"Radiol"(NY),"2023,"48(9):"3012–3021.
[19] QUAN"L,"LIU"J,"WANG"Y,"et"al."Exploring"risk"factors"for"endocrine-related"immune-related"adverse"events:"Insights"from"Meta-analysis"and"Mendelian"randomization[J]."Hum"Vaccin"Immunother,"2024,"20(1):"2410557.
[20] PAN"P"C,"HAGGIAGI"A."Neurologic"immune-related"adverse"events"associated"with"immune"checkpoint"inhibition[J]."Curr"Oncol"Rep,"2019,"21(12):"108.
[21] MIKAMI"T,"LIAW"B,"ASADA"M,"et"al."Neuroim-"munological"adverse"events"associated"with"immune"checkpoint"inhibitor:"A"retrospective,"pharmacovigilance"study"using"FAERS"database[J]."J"Neurooncol,"2021,"152(1):"135–144.
[22] AWADALLA"M,"MAHMOOD"S"S,"GROARKE"J"D,"et"al."Global"longitudinal"strain"and"cardiac"events"in"patients"with"immune"checkpoint"inhibitor-related"myocarditis[J]."J"Am"Coll"Cardiol,"2020,"75(5):"467–478.
[23] DOLLADILLE"C,"EDERHY"S,"ALLOUCHE"S,"et"al."Late"cardiac"adverse"events"in"patients"with"cancer"treated"with"immune"checkpoint"inhibitors[J]."J"Immunother"Cancer,"2020,"8(1):"e000261.
[24] ROWSHANRAVAN"B,"HALLIDAY"N,"SANSOM"D"M."CTLA-4:"A"moving"target"in"immunotherapy[J]."Blood,"2018,"131(1):"58–67.
[25] ZHULAI"G,"OLEINIK"E."Targeting"regulatory"T"cells"in"anti-PD-1/PD-L1"cancer"immunotherapy[J]."Scand"J"Immunol,"2022,"95(3):"e13129.
[26] FRANCISCO"L"M,"SAGE"P"T,"SHARPE"A"H."The"PD-1"pathway"in"tolerance"and"autoimmunity[J]."Immunol"Rev,"2010,"236:"219–242.
[27] LIU"Y,"ZHENG"P."Preserving"the"CTLA-4"checkpoint"for"safer"and"more"effective"cancer"immunotherapy[J]."Trends"Pharmacol"Sci,"2020,"41(1):"4–12.
[28] MIOSSEC"P,"KOLLS"J"K."Targeting"IL-17"and"Th17"cells"in"chronic"inflammation[J]."Nat"Rev"Drug"Discov,"2012,"11(10):"763–776.
[29] RAMóN-VáZQUEZ"A,"FLOOD"P,"CASHMAN"T"L,""et"al."T"lymphocyte"plasticity"in"chronic"inflammatory"diseases:"The"emerging"role"of"the"Ikaros"family"as"a"key"Th17-Treg"switch[J]."Autoimmun"Rev,"2024,"24(3):"103735.
[30] SILVA"G"S,"KIM"E"J,"BARTA"S"K,"et"al."Immune-"related"adverse"events"associated"with"mogamulizumab:"A"comprehensive"review"of"the"literature[J]."Expert"Rev"Anticancer"Ther,"2024,"24(9):"819–827.
[31] ALTAN-BONNET"G,"MUKHERJEE"R."Cytokine-"mediated"communication:"A"quantitative"appraisal"of"immune"complexity[J]."Nat"Rev"Immunol,"2019,"19(4):"205–217.
[32] LIU"L"L,"SKRIBEK"M,"HARMENBERG"U,"et"al."Systemic"inflammatory"syndromes"as"life-threatening"side"effects"of"immune"checkpoint"inhibitors:"Case"report"and"systematic"review"of"the"literature[J]."J"Immunother"Cancer,"2023,"11(3):"e005841.
[33] SHIMABUKURO-VORNHAGEN"A,"G?DEL"P,"SUBKLEWE"M,"et"al."Cytokine"release"syndrome[J]."J"Immunother"Cancer,"2018,"6(1):"56.
[34] ESFAHANI"K,"ELKRIEF"A,"CALABRESE"C,"et"al."Moving"towards"personalized"treatments"of"immune-"related"adverse"events[J]."Nat"Rev"Clin"Oncol,"2020,"17(8):"504–515.
[35] GIAVRIDIS"T,"VAN"DER"STEGEN"S"J"C,"EYQUEM"J,"et"al."CAR"T"cell-induced"cytokine"release"syndrome"is"mediated"by"macrophages"and"abated"by"IL-1"blockade[J]."Nat"Med,"2018,"24(6):"731–738.
[36] WANG"D"Y,"SALEM"J"E,"COHEN"J"V,"et"al."Fatal"toxic"effects"associated"with"immune"checkpoint"inhibitors:"A"systematic"review"and"Meta-analysis[J]."JAMA"Oncol,"2018,"4(12):"1721–1728.
[37] KENNEDY"L"B,"SALAMA"A"K"S."A"review"of"immune-mediated"adverse"events"in"melanoma[J]."Oncol"Ther,"2019,"7(2):"101–120.
[38] GUVEN"D"C,"AKTAS"B"Y,"SIMSEK"C,"et"al."Gut"microbiota"and"cancer"immunotherapy:"Prognostic"and"therapeutic"implications[J]."Future"Oncol,"2020,"16(9):"497–506.
[39] ZHANG"F,"FERRERO"M,"DONG"N,"et"al."Analysis"of"the"gut"microbiota:"An"emerging"source"of"biomarkers"for"immune"checkpoint"blockade"therapy"in"non-small"cell"lung"cancer[J]."Cancers"(Basel),"2021,"13(11):"2514.
[40] LIU"X,"LU"B,"TANG"H,"et"al."Gut"microbiome"metabolites,"molecular"mimicry,"and"species-level"variation"drive"long-term"efficacy"and"adverse"event"outcomes"in"lung"cancer"survivors[J]."EBioMedicine,"2024,"109:"105427.
(收稿日期:2025–01–09)
(修回日期:2025–04–23)