中圖分類號(hào):R75 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-3851(2025)07-0580-08
引用格式:,等.自組裝多肽及其抗菌作用研究進(jìn)展[J.浙江理工大學(xué)學(xué)報(bào)(自然科學(xué)),2025,53(4):580-587.
Abstract: Bacterial infections constitute a common public health challenge, as the escalating antimicrobial resistance significantly compromises the therapeutic eficacy of conventional antibiotics. Distinct from conventional antibiotics and chemical agents,self-assembling peptides can achieve broadspectrum antibacterial efects through bacterial membrane disruption and synergistic enhancement of other antimicrobial components,demonstrating advantages including rapid bactericidal action and low resistance induction potential. Furthermore,these peptides demonstrate exceptional molecular design flexibility, targeting specificity,and environmental responsiveness, positioning them as promising candidates for Overcoming current antimicrobial resistance challenges. Recent research advancements have focused on molecular structure optimization, development of stimuli-responsive materials,and engineering of in vivo delivery systems, achieving important progress in wound dressng applications and targeted drug delivery. This review systematically examines the antimicrobial mechanisms,molecular design principles,and clinical translation progress of self-assembling peptides,while discussing future research directions and challenges.The analysis provides both theoretical frameworks and practical reference for developing nextgeneration antimicrobial self-assembling peptide-based therapeutics.
Key words:biomaterials;self-assembling peptides;bacterial infections;antimicrobial mechanisms drug delivery; molecular design
0 引言
細(xì)菌感染對(duì)公共衛(wèi)生安全構(gòu)成重大威脅,其引發(fā)的疾病可累及全身各器官系統(tǒng),嚴(yán)重危害人類健康[]。抗生素可以通過(guò)靶向抑制細(xì)菌關(guān)鍵生理過(guò)程來(lái)實(shí)現(xiàn)高效殺菌,但其長(zhǎng)期濫用導(dǎo)致細(xì)菌基因突變與適應(yīng)性進(jìn)化,形成耐藥機(jī)制。隨著多重耐藥菌的不斷迭代及細(xì)菌耐藥性的快速擴(kuò)散,傳統(tǒng)抗菌療法對(duì)耐藥細(xì)菌感染的治療效果有明顯下降,這已成為全球范圍的嚴(yán)重公共衛(wèi)生危機(jī)[2-4]。細(xì)菌生物膜,也稱為生物被膜(Bacterialbiofilm,BF),是指細(xì)菌黏附于接觸表面后,分泌胞外多糖(Exopolvsaccharides,EPS)蛋白質(zhì)等物質(zhì)所形成的復(fù)雜結(jié)構(gòu)。生物被膜構(gòu)成了細(xì)菌生長(zhǎng)的直接環(huán)境,細(xì)菌可以通過(guò)調(diào)節(jié)生物被膜的結(jié)構(gòu)阻礙藥物滲透、誘導(dǎo)細(xì)菌進(jìn)入代謝休眠狀態(tài),從而提高其在惡劣環(huán)境下的生存能力[5-7]。有研究表明,世界上約有 65% 的人體細(xì)菌感染與細(xì)菌生物膜的形成有關(guān)8,生物被膜內(nèi)細(xì)菌對(duì)抗生素的抗性比浮游狀態(tài)的細(xì)菌高1000倍以上9。傳統(tǒng)的抗生素療法難以徹底消除生物被膜中的細(xì)菌,亟須開發(fā)新型抗菌策略。
抗菌肽(Antimicrobialpeptides,AMPs),也稱為宿主防御肽,是以陽(yáng)離子和兩親性結(jié)構(gòu)為特征、通常由 12~50 個(gè)氨基酸構(gòu)成的多肽分子,可通過(guò)靜電相互作用與帶負(fù)電荷的病原微生物的表面結(jié)合,選擇性地靶向細(xì)菌生物膜、細(xì)菌細(xì)胞膜或細(xì)胞壁,穿透細(xì)胞壁,進(jìn)而使細(xì)胞膜極化、細(xì)胞質(zhì)內(nèi)容物泄漏并造成細(xì)菌死亡。抗菌肽對(duì)細(xì)菌、真菌、病毒和寄生蟲具有廣譜抗微生物活性,因其具有區(qū)別于傳統(tǒng)抗生素殺滅病原體機(jī)制、不易誘發(fā)耐藥性等特點(diǎn)而備受關(guān)注,成為抗生素替代品的重要候選材料[10-12]。天然抗菌肽存在穩(wěn)定性差、體內(nèi)半衰期短及毒性較高等局限性,限制了其臨床轉(zhuǎn)化[10,13] O
分子自組裝是指無(wú)序分子在沒(méi)有外部指導(dǎo)的情況下,通過(guò)非共價(jià)相互作用(如疏水相互作用、氫鍵、范德華力、離子鍵、 π-π 堆積等)自發(fā)地形成有序納米結(jié)構(gòu)的過(guò)程[14]。多肽分子可自組裝為納米球、納米棒、納米管、納米纖維等多種形態(tài),并通過(guò)功能化設(shè)計(jì)賦予其抗菌活性[15-16]:a)天然抗菌肽通過(guò)自組裝形成結(jié)構(gòu)穩(wěn)定的活性物質(zhì);b)人工合成多肽通過(guò)引入含有天然抗菌肽活性片段實(shí)現(xiàn)自組裝;c)構(gòu)建多肽—聚合物復(fù)合自組裝體系增強(qiáng)材料穩(wěn)定性;d)設(shè)計(jì)整合抗菌活性成分的多肽雜化材料實(shí)現(xiàn)多功能化。上述策略不僅顯著提升了材料的穩(wěn)定性與生物利用度,還有效降低了潛在的毒副作用。目前,脂化肽、超短肽等具有抗菌活性的自組裝多肽已進(jìn)入臨床前研究階段,在多重耐藥菌感染治療中展現(xiàn)出較大潛力[17]
本文較為全面地總結(jié)了自組裝多肽的抗菌機(jī)制、分子工程設(shè)計(jì)策略和在抗菌領(lǐng)域的最新研究進(jìn)展,以期為開發(fā)新一代智能抗菌材料提供理論框架與實(shí)踐參考。
1自組裝多肽抗菌作用機(jī)制
自組裝多肽抗菌作用機(jī)制可大致分為:a)直接作用于細(xì)胞膜的裂解作用;b)對(duì)抗生物被膜的殺菌作用;c)與其他抗菌活性成分的協(xié)同殺傷作用[18]
1. 1 直接作用于細(xì)菌細(xì)胞膜
1. 1. 1 通過(guò)膜插入與結(jié)構(gòu)破壞機(jī)制裂解細(xì)菌細(xì)胞膜
細(xì)菌表面的負(fù)電荷是多肽納米材料對(duì)其具有選擇性的重要因素,自組裝多肽通過(guò)分子間作用力(如疏水相互作用、靜電吸附)形成納米纖維或顆粒,其表面正電荷可靶向結(jié)合帶負(fù)電的細(xì)菌細(xì)胞膜的脂質(zhì)雙分子層,通過(guò)膜嵌入機(jī)制破壞膜完整性,引發(fā)細(xì)菌胞內(nèi)成分泄漏及離子失衡,殺滅細(xì)菌。為增強(qiáng)自組裝多肽的膜裂解效能,研究者采取調(diào)控多肽疏水域序列、設(shè)計(jì)環(huán)境響應(yīng)型多肽等策略制備新型抗菌自組裝多肽。Gong等[19]設(shè)計(jì)的脂肽類自組裝體系Cx-G(IIKK)yJH2 可通過(guò)改變疏水鏈長(zhǎng)度( σx= 4~12) 來(lái)調(diào)控臨界聚集濃度,進(jìn)而增強(qiáng)膜穿透性和殺菌能力。Tan等[20]開發(fā)的 pH 值敏感型嵌合肽,在生理環(huán)境(pH值7.4)下自組裝成納米纖維,在細(xì)菌感染的酸性微環(huán)境( Δ?pH 值5.0)中轉(zhuǎn)變?yōu)榧{米顆粒,尺寸減小和電荷增加協(xié)同提高了自組裝多肽對(duì)細(xì)菌細(xì)胞膜的穿透能力,通過(guò)膜切割作用使細(xì)胞內(nèi)溶物泄露,殺死耐藥細(xì)菌。
1. 1. 2 通過(guò)靶向特定成分的結(jié)構(gòu)變形裂解細(xì)胞膜
革蘭氏陰性菌和陽(yáng)性菌的細(xì)胞壁中分別含有脂多糖(Lipopolysaccharide,LPS)和脂磷壁酸(LipoteichoicAcid,LTA)成分,兩者的分子骨架均含有磷酸基團(tuán)而帶負(fù)電,成為抗菌材料結(jié)合的理想靶點(diǎn)。兩親性多肽(Peptideamphiphiles,PAs)憑借其陽(yáng)離子特性能夠優(yōu)先與LPS和LTA結(jié)合,插入到細(xì)菌細(xì)胞膜中,破壞磷脂酰甘油(Phosphatidylglycerol,PG)等中性磷脂的排列,引發(fā)膜通透性顯著增加和細(xì)菌死亡。Cai等[13]通過(guò)兩親性多肽的不完全自組裝設(shè)計(jì)了核殼納米顆粒GV2,該顆粒通過(guò)靶向LPS、LTA和PG膜組分誘導(dǎo)多價(jià)相互作用,形成纖維或?qū)訝罱Y(jié)構(gòu)來(lái)裂解細(xì)菌細(xì)胞膜。Engelberg等21利用抗菌肽LL-37的活性核心(殘基 17~29 )自組裝形成密集排列的螺旋蛋白質(zhì)原纖維,通過(guò)該肽表面的交替分布的疏水和帶正電荷的鋸齒形帶能夠與細(xì)菌的脂質(zhì)雙層發(fā)生強(qiáng)烈的相互作用,引發(fā)細(xì)菌細(xì)胞膜破裂。Sha等[22]設(shè)計(jì)了一種細(xì)菌胞外捕獲(Bacterial extracellular trap,BET)肽,該多肽由特異性靶向LPS序列、自組裝序列和具有聚集誘導(dǎo)發(fā)光(Aggregationinducedemission,AIE)的疏水序列3部分組成,可原位從納來(lái)顆粒結(jié)構(gòu)轉(zhuǎn)化為納米纖維。納米纖維的高表面積增加了抗菌多肽與細(xì)菌細(xì)胞膜的接觸機(jī)會(huì),直接破壞細(xì)菌細(xì)胞膜的完整性,該肽還限制細(xì)菌的移動(dòng)和代謝活動(dòng),實(shí)現(xiàn)對(duì)細(xì)菌的聚集和捕獲。
1. 1. 3 多重機(jī)制協(xié)同破壞膜通透性
自組裝多肽還可以通過(guò)多重機(jī)制的協(xié)同作用增強(qiáng)膜裂解。 Yu 等[23]設(shè)計(jì)了一種基于“bola\"結(jié)構(gòu)的多結(jié)構(gòu)域自組裝多肽FW2,除了能夠破壞細(xì)菌細(xì)胞膜的通透性外,F(xiàn)W2還可以通過(guò)與細(xì)菌脂膜結(jié)合,激活細(xì)菌體內(nèi)活性氧(Reactive oxygen species,ROS)的累積,共同誘導(dǎo)細(xì)菌凋亡。Zhu等[24]開發(fā)的模塊化自組裝肽(F3FT和N3FT)同樣將膜破壞的物理裂解與ROS介導(dǎo)的氧化應(yīng)激2種機(jī)制結(jié)合起來(lái),協(xié)同殺滅細(xì)菌。
1.2 對(duì)抗細(xì)菌生物被膜
細(xì)菌生物被膜的形成可以保護(hù)細(xì)菌免受抗菌劑的殺傷作用,靶向破壞生物被膜結(jié)構(gòu),可恢復(fù)藥物擴(kuò)散梯度,實(shí)現(xiàn)頑固感染的高效治療。生物被膜中的微生物含量約占干重的 10% ,但是其胞外基質(zhì)中EPS的含量可達(dá) 90% ,EPS的致密結(jié)構(gòu)是阻礙抗菌藥物滲透的生理屏障,可以利用抗菌肽靶向EPS組分,通過(guò)清除或破壞作用,發(fā)揮抗生物被膜功能,進(jìn)而殺死細(xì)菌。Ansari等[25]發(fā)現(xiàn),源自蜱蟲抗凍蛋白的多肽P1能夠降解變異鏈球菌所形成的EPS分子支架,進(jìn)而破壞其生物被膜結(jié)構(gòu)。通過(guò)結(jié)晶紫微孔板試驗(yàn)及體外牙模型實(shí)驗(yàn),他們觀察到生物被膜的生成量減少了約 75% ,且該多肽P1顯著降低了生物被膜中細(xì)菌的存活率。此外,細(xì)菌生物被膜的形成不僅依賴于EPS的物理屏障作用,更受群體感應(yīng)信號(hào)分子調(diào)控的代謝網(wǎng)絡(luò)驅(qū)動(dòng),除了靶向EPS相關(guān)結(jié)構(gòu),還可以通過(guò)抑制生物被膜中信號(hào)分子的傳導(dǎo)過(guò)程破壞生物被膜的形成。Castelletto 等[26]則利用精氨酸富集的三肽(RXR,X可為W、F或非天然氨基酸)作為抗菌劑,靶向細(xì)菌生物被膜中的信號(hào)分子c-di-GMP,通過(guò)影響其信號(hào)傳遞和破壞膜結(jié)構(gòu)雙重機(jī)制協(xié)同抑制生物被膜形成來(lái)殺死細(xì)菌。
表1總結(jié)了直接作用于細(xì)菌細(xì)胞膜、細(xì)胞壁和生物被膜的自組裝肽類生物材料。

1.3 與其他抗菌活性成分的協(xié)同殺傷作用
自組裝多肽自身的殺菌機(jī)制,還可通過(guò)結(jié)合其他抗菌活性成分(如金屬納米顆粒、抗生素或光熱/化學(xué)動(dòng)力學(xué)試劑等)實(shí)現(xiàn)對(duì)細(xì)菌的協(xié)同殺傷作用,研究表明該協(xié)同作用可顯著提升抗菌效率并降低耐藥風(fēng)險(xiǎn)。例如,Rajchakit等[33]開發(fā)的金納米顆粒—多肽共組裝的復(fù)合水凝膠,金納米顆粒在近紅外光照射下觸發(fā)光熱效應(yīng)產(chǎn)生ROS,協(xié)同多肽的膜靶向破壞作用,使得對(duì)金黃色葡萄球菌和銅綠假單胞菌的抗菌活性較單一組分提升1O倍以上;Bosso 等[34]報(bào)道了人源宿主防御肽GVF27和環(huán)丙沙星的聯(lián)合使用研究結(jié)果。研究表明,GVF27可以引起EPS的解構(gòu),并導(dǎo)致生物膜基質(zhì)中的蛋白質(zhì)暴露量增加。通過(guò)GVF27和環(huán)丙沙星1:1聯(lián)合使用,該組合對(duì)銅綠假單胞菌復(fù)合體展現(xiàn)出抗細(xì)菌生物膜作用,并且生物被膜中死亡細(xì)胞數(shù)量亦有所增加。
2自組裝多肽的分子設(shè)計(jì)策略
抗菌自組裝多肽的分子設(shè)計(jì)需兼顧超分子組裝機(jī)制與抗菌功能需求,其核心在于利用可逆和弱非共價(jià)相互作用來(lái)驅(qū)動(dòng)分子自組裝,構(gòu)建納米管、納米帶、納米纖維、納米囊泡和納米籠等多樣化超分子納米結(jié)構(gòu),以破壞細(xì)菌生物被膜和細(xì)菌細(xì)胞膜的完整性,干擾細(xì)菌關(guān)鍵生物學(xué)功能[35]。本文總結(jié)了基于多肽序列與構(gòu)效關(guān)系的自組裝抗菌生物分子優(yōu)化策略,需強(qiáng)調(diào)的是,高性能抗菌肽設(shè)計(jì)往往通過(guò)整合多種策略來(lái)協(xié)同增強(qiáng)抗菌效能[36] 。
2.1多肽截短和氨基酸替代
短肽因其易于設(shè)計(jì)合成以及功能化可編程性、高生物相容性和生物可降解性等優(yōu)勢(shì),成為抗菌材料開發(fā)的理想選擇[37]。苯丙氨酸(Phenylalanine,F(xiàn))-苯丙氨酸二肽(FF)作為自前已知分子量最小的自組裝肽,其自組裝行為最早由Reches和Gazit于2003年在 β -淀粉樣蛋白識(shí)別基序中發(fā)現(xiàn)[38J,該肽的納米管結(jié)構(gòu)形成主要依賴分子間氫鍵和芳香族殘基 π-π 堆積作用。研究表明,F(xiàn)F自組裝所形成的納米管的形貌與尺寸受pH值動(dòng)態(tài)調(diào)控,Kumaraswamy 等[39]發(fā)現(xiàn) pH 值升高可誘導(dǎo)納米管的直徑增大并形成中空短管結(jié)構(gòu)。除FF外,含 I3K (IIIK)序列的短肽可通過(guò) β -折疊形成納米纖維。Hou 等[40]設(shè)計(jì)了 IK1(Nap-FIIIKKK)和 IK4(NapFIIIHKK),其中:IK1憑借N 端萘基(Naphthyl,Nap)的 π-π 相互作用自組裝為疏水表面結(jié)構(gòu),對(duì)革蘭氏陽(yáng)性菌(如金黃色葡萄球菌)表現(xiàn)出選擇性抗菌活性;IK4通過(guò)組氨酸(Histidine,H)替換賴氨酸(Lysine,K)降低了靜電相互作用,轉(zhuǎn)而靶向革蘭氏陰性菌(如大腸埃希氏菌)。本文課題組前期研究Fmoc- ?KnF 抗菌短肽時(shí)也發(fā)現(xiàn)了K組分的數(shù)量( (1~ 4)會(huì)影響其抗菌性能。將 L -型氨基酸替換為 D -型氨基酸能顯著提升抗菌肽對(duì)蛋白酶的抗性,增強(qiáng)多肽在血清中的穩(wěn)定性。以雞鈣粒蛋白-2為例,將其中的 L -氨基酸替換為 D -氨基酸后,血清穩(wěn)定性得到增強(qiáng)且細(xì)胞毒性降低[41-42]。
2.2 環(huán)化和仿生末端修飾
環(huán)狀肽因其獨(dú)特的 β -折疊構(gòu)象對(duì)細(xì)菌細(xì)胞膜表現(xiàn)出顯著的親和力,閉環(huán)結(jié)構(gòu)通過(guò)頭尾、側(cè)鏈一尾端或側(cè)鏈一側(cè)鏈等環(huán)化策略形成穩(wěn)定空間拓?fù)浣Y(jié)構(gòu),相較于線性肽具有更高的受體結(jié)合活性、蛋白酶抗性及表面積/親和力優(yōu)勢(shì)[43-45]。Riahifard 等[46]評(píng)估了20種環(huán)狀肽的抗菌活性,發(fā)現(xiàn)色氨酸(Tryptophan,W)的存在對(duì)于抗菌活性的維持至關(guān)重要,與相應(yīng)的線性肽相比,環(huán)狀肽通常顯示出更高的抗菌活性。針對(duì)自組裝肽的溶解度挑戰(zhàn),仿生末端修飾策略可有效改善其水溶性,其中脂化修飾較為常見,親水肽和疏水脂肪酸在肽鏈末端通過(guò)酰胺鍵鏈接形成脂肽,脂肽將部分肽尾插入細(xì)菌細(xì)胞膜中,促進(jìn)脂肽二級(jí)結(jié)構(gòu)形成并增強(qiáng)疏水性和膜裂解能力。Kamysz等47將KRl2肽與系列烷基脂肪酸和芳香酸結(jié)合,通過(guò)脂肪酸作為酯化修飾疏水的尾部,在增強(qiáng)了抗菌活性的同時(shí)也增強(qiáng)了其抗生物被膜活性。
2.3 計(jì)算機(jī)輔助設(shè)計(jì)
隨著人工智能的發(fā)展,計(jì)算工具的應(yīng)用顯著提升了短肽自組裝特征的預(yù)測(cè)與篩選效率。Guc等[48]拓展了分子動(dòng)力學(xué)模擬(Moleculardynamics,MD)方案,揭示了苯丙氨酸三肽FFF濃度依賴的自組裝路徑,高濃度 Ω80mg/mL 驅(qū)動(dòng)納米管或致密納米顆粒形成,而低濃度 (45mg/mL) 則誘導(dǎo)生成納米囊或穩(wěn)定的棒,這為設(shè)計(jì)新型納米短肽抗菌材料提供了理論基礎(chǔ)。Waghu等[49]建立了抗菌肽家族cathelicidins的定量構(gòu)效關(guān)系(Quantitativestructure-activityrelationship,QSAR)模型,并用該模型準(zhǔn)確設(shè)計(jì)對(duì)大腸埃希氏菌ATCC25922菌株有活性的新肽—C肽(C-peptide,CP,序列為GGLRRLGRKILRAVKKYG),CP預(yù)測(cè)的抗菌活性與體外測(cè)試抗菌活性的最小抑菌濃度均為6.25~12.5μmol/L 。總之,計(jì)算機(jī)輔助的人工智能應(yīng)用大大擴(kuò)展了自組裝多肽序列篩選的范圍,并顯著減少了篩選時(shí)間[50]。利用計(jì)算機(jī)輔助設(shè)計(jì)還使人們可以通過(guò)算法探究抗菌肽的構(gòu)效關(guān)系,更深層次地理解多肽的抗菌機(jī)理,篩選得到的抗菌肽庫(kù)也可以提供數(shù)據(jù)或模板,以優(yōu)化多肽序列。
2.4 構(gòu)建混合系統(tǒng)
混合系統(tǒng)通過(guò)整合多肽之間的結(jié)合或多肽一非多肽組分的共組裝策略,構(gòu)建對(duì)抗細(xì)菌感染的體系,實(shí)現(xiàn)對(duì)耐藥菌感染的強(qiáng)效抑制。多肽之間的混合雜化,例如靶向肽的引入,可以使得其抗菌特異性更為明顯。Fan等[51]設(shè)計(jì)了一種人防御素-6模擬肽(Human defensin-6 mimic peptide,HDMP),其結(jié)構(gòu)整合了配體-受體相互作用模塊與自組裝肽序列,可通過(guò)配體-受體相互作用捕獲細(xì)菌,并在原位自組裝形成含有 β -折疊結(jié)構(gòu)的納米纖維網(wǎng)絡(luò)。HDMP-bis-pyrenee-KLVFF-RLYLRIGRR由3個(gè)模塊組成:a)芳香族雙吡啶(Bipyridine,BP)模塊,通過(guò)誘導(dǎo)納米顆粒聚集實(shí)現(xiàn)靜脈注射遞送,并利用BP的聚集誘導(dǎo)發(fā)射熒光功能,監(jiān)測(cè)體內(nèi)HDMP的分布;b)肽序列RLYLRIGRR,賦予HDMP靶向識(shí)別革蘭氏陽(yáng)性細(xì)菌的能力,與天然HD6相比有著更好的識(shí)別能力;c)序列KLVFF,模擬HD6的 β? 折疊骨架,驅(qū)動(dòng)自組裝動(dòng)態(tài)過(guò)程。HDMP自組裝成納米顆粒,通過(guò)RLYLRIGRR與金黃色葡萄球菌細(xì)胞壁受體的特異性結(jié)合觸發(fā)構(gòu)象轉(zhuǎn)變,隨后交聯(lián)為 β 折疊納米纖維網(wǎng)絡(luò),依賴氫鍵與疏水作用穩(wěn)定,實(shí)現(xiàn)對(duì)細(xì)菌的物理捕獲及對(duì)宿主細(xì)胞侵襲的有效抑制。該結(jié)構(gòu)準(zhǔn)確模擬了HD6的過(guò)程,實(shí)現(xiàn)了從靜脈注射運(yùn)輸?shù)皆徊东@細(xì)菌的可編程自組裝過(guò)程,并在4種動(dòng)物感染模型中驗(yàn)證了其安全高效的革蘭氏陽(yáng)性菌感染防治效果[51]
多肽與非多肽組分(如抗生素、聚合物或金屬離子)的共組裝策略可拓展抗菌應(yīng)用:多肽一抗生素的聯(lián)用可以更加有效地殺死細(xì)菌,多肽-聚合物組裝用于藥物遞送和抗菌涂層等領(lǐng)域,多肽和金屬離子的螯合作用配位自組裝可以成像和殺滅細(xì)菌等[35,52]相關(guān)研究總結(jié)見表2。

因此,研究人員可采用分子設(shè)計(jì)策略(包括多肽序列縮短、氨基酸替代、結(jié)構(gòu)修飾、計(jì)算機(jī)輔助設(shè)計(jì)和混合系統(tǒng)構(gòu)建),結(jié)合多種自組裝驅(qū)動(dòng)力方法構(gòu)建各種超分子結(jié)構(gòu)體系,從而達(dá)到抗菌效果,相關(guān)示意圖如圖1所示。
3 應(yīng)用進(jìn)展
3.1基于環(huán)境響應(yīng)型自組裝多肽的智能抗菌設(shè)計(jì)——pH/酶觸發(fā)與診療一體化
針對(duì)細(xì)菌感染微環(huán)境的動(dòng)態(tài)復(fù)雜性,環(huán)境響應(yīng)性自組裝多肽可通過(guò)感知pH值、酶等信號(hào)觸發(fā)精準(zhǔn)抗菌,并減少對(duì)宿主細(xì)胞的毒性。Shen 等[60]設(shè)計(jì)了一種新型的抗菌肽KRRFFRRK(FF8),在感染部位酸性微環(huán)境或帶負(fù)電菌膜誘導(dǎo)下自組裝為納米纖維,破壞膜脂質(zhì)排列,降低細(xì)菌生物膜流動(dòng)性,胞內(nèi)成分不可逆泄漏,增強(qiáng)抗菌性能。Teng 等[61]開發(fā)的酪氨酸酶響應(yīng)肽WRWRWY在皮膚酪氨酸酶氧化下可自組裝為類黑色素納米顆粒(mWRWRWY),mWRWRWY納米顆粒通過(guò)破壞細(xì)菌膜的完整性來(lái)殺死細(xì)菌,并表現(xiàn)出高效的ROS清除能力,減輕了感染傷口部位的炎癥反應(yīng),提高了傷口愈合效果。mWRWRWY納米顆粒還提供了熒光成像的能力,其可視化熒光特性(氧化后紫外一可見光轉(zhuǎn)換)為實(shí)時(shí)監(jiān)測(cè)療效提供了新的解決方案[61]
3.2AI驅(qū)動(dòng)的自組裝抗菌肽從頭設(shè)計(jì)—物理破壞機(jī)制與跨領(lǐng)域應(yīng)用潛力
Liu等[6]開發(fā)了深度學(xué)習(xí)模型TransSAFP,該模型旨在設(shè)計(jì)和預(yù)測(cè)含非天然氨基酸修飾自組裝肽的抗菌活性。研究團(tuán)隊(duì)從頭設(shè)計(jì)并篩選出140個(gè)候選多肽,其中121個(gè)展現(xiàn)出了抗菌活性,成功率達(dá)到約 86% 。值得注意的是,其中的 p45 肽表現(xiàn)出廣譜抗菌活性,對(duì)多種耐藥菌株有效,這包括耐甲氧西林金黃色葡萄球菌和多重耐藥大腸埃希氏菌等。該研究首次實(shí)現(xiàn)了AI對(duì)自組裝肽功能的全鏈條設(shè)計(jì)(序列-組裝功能),篩選效率提升明顯。此外,TransSAFP模型的遷移能力為其他生物醫(yī)學(xué)應(yīng)用(如抗病毒多肽和抗癌多肽的設(shè)計(jì))提供了新的可能。

4總結(jié)與展望
自組裝多肽憑借其多種殺菌作用機(jī)制和可編程特性,具有廣譜抗微生物活性和不易產(chǎn)生耐藥性等優(yōu)勢(shì),在細(xì)菌感染治療領(lǐng)域展現(xiàn)出巨大潛力。自組裝多肽作為新型抗菌材料也面臨著一些挑戰(zhàn):a)規(guī)模化生產(chǎn)瓶頸及自組裝多肽的組裝過(guò)程需精確控制疏水相互作用和表面電荷平衡[63],放大生產(chǎn)時(shí)易受溫度、pH值及離子強(qiáng)度波動(dòng)影響;b)臨床轉(zhuǎn)化障礙,臨床轉(zhuǎn)化需滿足嚴(yán)格的監(jiān)管要求并通過(guò)臨床前驗(yàn)證以證明安全性和有效性[64;c)生物膜滲透限制,通過(guò)尺寸一電荷協(xié)同效應(yīng)可提升自組裝多肽對(duì)細(xì)菌生物膜的滲透率,但針對(duì)深層生物膜或胞內(nèi)菌的靶向效率仍然偏低[20];d)構(gòu)效關(guān)系解析不足,自組裝動(dòng)力學(xué)如臨界聚集濃度與抗菌活性的定量關(guān)系尚未建立,需借助冷凍電鏡[65]與固態(tài)核磁[66]解析納米結(jié)構(gòu)與膜作用界面的原子級(jí)細(xì)節(jié)。
鑒于自組裝肽的合成及轉(zhuǎn)化應(yīng)用中存在關(guān)鍵瓶頸,未來(lái)研究可聚焦于以下方面:a)多功能集成設(shè)計(jì),如開發(fā)可整合輔助性T細(xì)胞(HelperTcell,Th1)極化免疫調(diào)節(jié)或促組織再生功能的自組裝多肽以增強(qiáng)治療綜合效益[6];b)聯(lián)合療法探索,將自組裝肽與其他抗菌療法相結(jié)合,以期實(shí)現(xiàn)時(shí)空精準(zhǔn)殺菌,突破現(xiàn)有治療瓶頸;c)計(jì)算驅(qū)動(dòng)多肽序列設(shè)計(jì),利用分子動(dòng)力學(xué)、人工智能機(jī)器學(xué)習(xí)模擬預(yù)測(cè)自組裝行為與抗菌活性的構(gòu)效關(guān)系,加速多肽序列設(shè)計(jì)進(jìn)程[68]。這些研究方向有助于深人探明更深層次的抗菌機(jī)理,拓展自組裝多肽的應(yīng)用范圍,增強(qiáng)對(duì)多種耐藥菌的抗菌療效,進(jìn)而促進(jìn)自組裝多肽從基礎(chǔ)研究向臨床應(yīng)用的轉(zhuǎn)化,為多重耐藥菌感染和慢性創(chuàng)傷治療提供新一代精準(zhǔn)治療方案。
參考文獻(xiàn):
[1]Sokolow S H,Nova N,Jones I J,et al. Ecological and socioeconomic factors associated with the human burden of environmentally mediated pathogens:A global analysis[J]. The Lancet Planetary Health,2022,6(11):e870-e879.
[2]Bellavita R,F(xiàn)alanga A,Buommino E,et al. Novel temporin L antimicrobial peptides: Promoting self-assembling by lipidic tags to tackle superbugs[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2020,35(1):1751-1764.
[3]Duin D,Paterson D L. Multidrug-resistant bacteria in the community:An update[J]. Infectious Disease Clinics of North America,2020,34(4):709-722.
[4] Monroe S,Polk R. Antimicrobial use and bacterial resistance [J].Current Opinion in Microbiology,200o,3(5):496-501.
[5]Blenkinsopp S A,Costerton J W. Understanding bacterial biofilms[J].Trends in Biotechnology,1991,9(1):138-143.
[6]陳小楠,申元娜,李彭宇,等.細(xì)菌生物膜的特征及抗細(xì)菌生物 膜策略[J].藥學(xué)學(xué)報(bào),2018,53(12):2040-2049.
[7]Flemming H C,Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology,2010,8(9):623-633.
[8]Foreman A,Boase S,Psaltis A,et al. Role of bacterial and fungal biofilms in chronicrhinosinusitis[J].Current Allergyand Asthma Reports,2012,12:127-135.
[9]Mahmoudi P,Akbarpour MR,Lakeh H B,et al. Antibacterial Ti-Cu implants:A critical review on mechanisms of action[J]. Materials Today Bio,2022,17:100447.
[10] Tan P, Tang Q,Xu S,et al. Designing self-assembling chimeric peptide nanoparticles with high stability for combating piglet bacterial infections[J]. Advanced Science,2O22,9(14): 2105955.
[11]Glossop H D,De Zoysa G H,Hemar Y,et al. Battacininspiredultrashort peptides: Nanostructure analysisand antimicrobial activity[J]. Biomacromolecules,2019,20(7): 2515-2529.
[12] Jenssen H,Hamill P,Hancock RE W. Peptide antimicrobial agents[J]. Clinical Microbiology Reviews,2006,19(3):491- 511.
[13] Cai Y,Zhang T,Wang X,et al. Self-assembling lauroylated stability,and selectivity LJ」.ACS Applied Materials Interfaces,2025,17(9):13646-13659.
[14]張峻愷,汪健.自組裝多肽在醫(yī)學(xué)領(lǐng)域應(yīng)用研究進(jìn)展[J].疑難 病雜志,2021,20(7):749-754.
[15]張若男,吳迪,高藝恬.抗菌肽的設(shè)計(jì)與優(yōu)化研究進(jìn)展[J].生物 醫(yī)學(xué)工程學(xué)雜志,2022,39(6):1247-1253.
[16]陳雯雯,李國(guó)雨,來(lái)振衡,等.自組裝納米抗菌肽的設(shè)計(jì)策略及 應(yīng)用[J].科學(xué)通報(bào),2024,69(Z2):4267-4280.
[17] Carratala JV,Serna N,Villaverde A,et al. Nanostructured antimicrobial peptides: The last push towards clinics [J]. Biotechnology Advances,2020,44:107603.
[18]汪慶,張瑞芬,王亞楠,等.抗菌肽結(jié)構(gòu)改造與人工智能研發(fā) 策略[J].微生物學(xué)報(bào),2022,62(11):4353-4366.
[19]Gong H,Sani M A,Hu X,et al. How do self-assembling antimicrobial lipopeptides kill bacteria?[J]. ACS Applied Materialsamp;.Interfaces,2020,12(50):55675-55687.
[20] Tan P,Wu C,Tang Q,et al. Ph-triggered size-transformable and bioactivity-switchable self-assembling chimeric peptide nanoassemblies for combating drug-resistant bacteriaand biofilms[J].Advanced Materials,2023,35(29):2210766.
[21]Engelberg Y,Landau M. The Human LL-37(17-29) antimicrobial peptide reveals afunctional supramolecular structure[J]. Nature Communications,202o,11:3894.
[22] Sha X L,Lv G T,Chen Q H,et al.A peptide selectively recognizes Gram-negative bacteria and forms a bacterial extracellular trap(BET) through interfacial self-assembly[J]. Journal of Materials Chemistry B,2024,12(15):3676-3685.
[23] Yu W,Guo X,Li X,et al. Novel multidomain peptide selfassembly biomaterials based on bola structure and terminal anchoring:Nanotechnology meets antimicrobial therapy[J]. Materials Today Bio,2024,28:101183.
[24] Zhu Y,Xu W,Chen W,et al. Self-assembling peptide with dual function of cell penetration and antibacterial as a nano weapon to combat intracellular bacteria[J]. Science Advances, 2025,11(6):eads3844.
[25] Ansari J M,Abraham N M,Massaro J,et al. Anti-biofilm activity of a self-aggregating peptide against Streptococcus mutans[J]. Frontiers in Microbiology,2017,8: 488.
[26] Castelletto V,Edwards-Gayle C JC,Hamley I W,et al. Model self-assembling arginine-based tripeptides show selective activity against Pseudomonasbacteria [J]. Chemical Communications,2020,56(4):615-618.
[27]Ma L,Ye X,Sun P,et al.Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption[J]. Ebiomedicine,2020,55:102775.
[28]Chen C,Chen J,Yu Q,et al. Effects of salts on the selfassembly behavior and antibacterial activity of a surfactant-like peptide[J]. Soft Matter,2020,16(42):9758-9768.
[29]Ye Z, Zhu X,Acosta S,et al. Self-assembly dynamics and antimicrobial activity of all1- and d-amino acid enantiomers of a designer peptidel Il. Nanoscale,2019,11: 266-275. of an antimicrobial designer peptide by single amino acid substitution: implications on peptide activity[J]. Nanoscale Advances,2019,1(12):4679-4682.
[31] Xie Y Y,Qin X T, Zhang J,et al. Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity[J]. Journal of Colloid and Interface Science,2022,622:135-146.
[32] Gong X,Han Y,Wang T,et al. Cell-penetrating peptide induced superstructures triggering highly eficient antibacterial activity[J]. Advanced Materials,2025,37(4): 2414357.
[33] Rajchakit U,Glossop H D,Wang K,et al. Rational design of self-assembling ultrashort peptides for the shape- and sizetunable synthesis of metal nanostructures[J]. Journal of Peptide Science,2025,31(1):e3651.
[34] Bosso A,Gaglione R,Di Girolamo R,et al. Human cryptic host defence peptide GVF27 exhibits anti-infective properties against biofilm forming members of the burkholderia cepacia complex[J]. Pharmaceuticals,2022,15(2):260.
[35] Wang Y, Zhang Y, Su R,et al. Antimicrobial therapy based on self-assembling peptides[J]. Journal of Materials Chemistry B,2024,12(21):5061-5075.
[36]Min KH,Kim KH,Ki MR,et al.Antimicrobial peptides and their biomedical applications:A review[J]. Antibiotics, 2024,13(9):794.
[37] Yang S,Wang M,Wang T,et al. Self-assembled short peptides: Recent advances and strategies forpotential pharmaceutical applications[J]. Materials Today Bio,2023, 20:100644.
[38] Reches M,Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes[J]. Science,2Oo3,300 (5619): 625-627.
[39] Kumaraswamy P,Lakshmanan R,Sethuraman S,et al. Selfassembly of peptides: Influence of substrate,pH and medium onthe formation of supramolecular assemblies[J]. Soft Matter,2011,7(6):2744-2754.
[40] Hou Y,Tan T,Guo Z,et al. Gram-selective antibacterial peptide hydrogels [J]. Biomaterials Science,2O22,10(14): 3831-3844.
[41] Xu S,Tan P,Tang Q,et al. Enhancing the stability of antimicrobial peptides: From design strategies to applications [J].Chemical Engineering Journal,2023,475:145923.
[42] Hilchie A L,Haney E F, Pinto DM, et al. Enhanced killing of breast cancer cells by a d-amino acid analog of the winter flounder-derived pleurocidin NRC-03[J]. Experimental and Molecular Pathology,2015,99(3): 426-434.
[43] Zeng P,Wang H, Zhang P,et al. Unearthing naturallyoccurring cyclic antibacterial peptides and their structural optimization strategies [J]. Biotechnology Advances, 2024, 73:108371.
[44]Ma X,Wang Q,Ren K,et al. A review of antimicrobial peptides: Structure, mechanism of action, and molecular nn
[45]Falanga A,Nigro E, De Biasi MG,et al. Cyclic peptides as novel therapeutic microbicides:Engineering of human defensin mimetics[J]. Molecules,2017,22(7):1217.
[46]Riahifard N,Mozaffari S,Aldakhil T,et al.Design, synthesis, and evaluation of amphiphilic cyclic and linear peptides composed of hydrophobic and positively-charged amino acids as antibacterial agents[J]. Molecules, 2018,23(10): 2722.
[47]Kamysz E, Sikorska E,Jaskiewicz M,et al. Lipidated analogs of the LL-37-derived peptide fragment KRl2: Structural analysis, surface-active properties and antimicrobial activity[J]. International Journal of Molecular Sciences,2020,21(3):887.
[48]Guo C,Luo Y,Zhou R,et al. Triphenylalanine peptides selfassemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides[J].Nanoscale,2014,6(5):2800-2811.
[49] Waghu F H, Gawde U, Gomatam A, et al. A QSAR modeling approach for predicting myeloid antimicrobial peptides with high sequence similarity[J]. Chemical Biology amp;. Drug Design, 2020,96(6):1408-1417.
[50]Min J,Rong X, Zhang J,et al. Computational design of peptide assemblies [J]. Journal of Chemical Theory and Computation,2024,20(2):532-550.
[51] Fan Y, Li X D,He P P,et al. A biomimetic peptide recognizes and traps bacteria in vivo as human defensin-6[J]. Science Advances,2020,6(19):eaaz4767.
[52] Song B L,Zhang X H,Qiao Z Y,et al. Peptide-based AIEgens: From molecular design, stimuli responsiveness to biomedical application[J]. CCS Chemistry,2022,4(2):437- 455.
[53] Lei R,Hou J,Chen Q,et al. Self-assembling myristoylated human α -defensin 5 as a next-generation nanobiotics potentiates therapeutic efficacy in bacterial infection[J]. ACS Nano, 2018, 12(6): 5284-5296.
[54]Gao M, Chang R,Wang D, et al. Short communication: Fructose-enhanced antibacterial activity of self-assembled nanopeptide amphiphiles for treating antibiotic-resistant bacteria [J].International Journal of Nanomedicine,202o,15:513- 519.
[55]McCloskey AP,Draper ER,Gilmore B F,et al. Ultrashort self-assemblingFmoc-peptidegelatorsforanti-infective biomaterial applications[J]. Journal of Peptide Science,2017, 23(2):131-140.
[56] Laverty G,McCloskey A P,Gilmore B F,et al. Ultrashort cationicnaphthalene-derivedself-assembledpeptidesas antimicrobial nanomaterials[J]. Biomacromolecules,2o14,15 (9):3429-3439.
[57]于偉康,張珊珊,楊占一,等.超分子多肽自組裝在生物醫(yī)學(xué) 中的應(yīng)用[J].生物工程學(xué)報(bào),2021,37(7):2240-2255.
[58] Song J,Yuan C,Jiao T,et al. Multifunctional antimicrobial biometallohydrogels based on amino acid coordinated selfassembly[J].Small,2020,16(8):1907309.
[59] Zhao X Q,Wahid F,Zhao X J,et al. Fabrication of amino acid-based supramolecular hydrogel with silverionsfor improved antibacterial properties[J]. Materials Letters,2021, 300:130161.
[60] Shen Z,Guo Z, Zhou L,et al. Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity [J].Biomaterials Science,2020,8(7):2031-2039.
[61] Teng R,Yang Y, Zhang Z,et al. In situ enzyme-induced selfassembly of antimicrobial-antioxidative peptides to promote wound healing[J]. Advanced Functional Materials,2O23,33 (23):2214454.
[62] Liu H,Song Z, Zhang Y,et al. De novo design of selfassembling peptides with antimicrobial activity guided by deep learning[J/OL]. Nature Materials. (2025-03-14)[2025-05- 08]. https://doi. org/10. 1038/s41563-025-02164-3.
[63] Pilz M, Cavelius P, Qoura F,et al. Lipopeptides development in cosmetics and pharmaceutical applications:A comprehensive review[J]. Biotechnology Advances,2023,67:108210.
[64] Costa B, Martinez-de-Tejada G,Gomes P A C,et al. Antimicrobial peptides in the battle against orthopedic implantrelated infections:A review[J]. Pharmaceutics,2021,13 (11):1918.
[65] Laguera B,Golden M M,Wang F,et al. Amphipathic antimicrobial peptides illuminate a reciprocal relationship between self-assemblyandcytolyticactivity [J/OL] : Angewandte Chemie International Edition. (2O25-03-12) [2025-05-08]. https://doi.org/10.1002/anie. 202500040.
[66]Jeon J,Yau WM,Tycko R. Early events in amyloid β selfassembly probed by time-resolved solid state NMR and light scattering[J]. Nature Communications,2O23,14:2964.
[67] Zhang J,Yang J,Li Q,et al. T cell activating thermostable self-assemblynanoscaffold tailoredforcellularimmunity antigen delivery[J]. Advanced Science,2023,10(26): 2303049.
[68] Sainsbury F. Emergence by design in self-assembling protein shells[J]. ACS Nano,2020,14(3):2565-2568.
(責(zé)任編輯:廖乾生)