999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

果實硬度影響因素研究進展

2025-07-30 00:00:00薛智展冉江林馮琛段續偉王晶鄭寶江
落葉果樹 2025年3期
關鍵詞:細胞壁果膠軟化

中圖分類號:S66 文獻標志碼:A 文章編號:1002-2910(2025)03-0040-08

Progress in the study of factors affecting fruit firmness

XUE Zhizhan 1,2 ,RAN Jianglin 1,2 ,FENG Chen2,3,4,DUANXuwei2.3,4,WANGJing2,3,4,ZHENGBaojiangl

(1.Collegeofifeiences,NortheastForestyUniversityHarbin,Helongjiang6,hina;iuteof ForestryandPomology/BeijingAcademyofAgricultureandForestrySciences,Beijing10oo93,China;3.College ofLandscape Architecture,Beijing University ofAgriculture/National Forestry Grassland Cherry Engineering TechnologyCenter,BeijingOo93,China;4.NortheastAsiaBiodiversityResearchCenter,Harbin,Heilongjang 150040,China)

Abstract:Fruit firmness is acritical indicatoroffruit maturity,directly influencing fruit quality, transportationcosts,and shelf life,thereby determining the fruit'scommercial value.Consequently,itis essentialto elucidate andcontrol the factors thataffect fruit firmness.This paper reviewed the physiological and biochemical processes,geneticbasis,phytohormones (IAA,ABA,GA,ETHandBR),ndtransription factors (NAC,MADS,MYB)associated with fruit firmness.The various factors that regulate fruit firmness were summarized.

Key words:fruit firmness;physiology and biochemistry;phytohormones;transcription factors; genetic breeding

果實硬度是決定鮮食果實商品價值的重要因素。果實硬度的下降導致其不耐貯存和運輸,保質" 期縮短,從而增加了經濟損失和浪費[1]。

果實硬度的變化受到多種因素的影響。隨著生物技術的發展,科學家們通過基因組組裝、數量性狀定位(QTL)和全基因組關聯分析(GWAS),揭示了控制果實硬度性狀的遺傳位點,這為發現控制果實硬度的分子標記提供了幫助[2]。多組學分析進一步識別了調控果實硬度和軟化的關鍵基因,闡述了調控果實硬度軟化的過程[34]。基因編輯技術已在多種水果中應用于品種改良[5]。筆者總結果實硬度的研究進展,以期為為生產提供參考。

1影響果實硬度的生理基礎

果實的外層果皮包括角質層和表皮層,起到支撐和保護果實的作用。中層或內層果皮是主要的可食用部分,主要有薄壁細胞和維管組織構成,結構變化會影響果實硬度[6,7]。

1.1角質層對果實硬度的影響

角質層結構和組成是果實硬度研究的關鍵。研究表明甜櫻桃和蘋果中特定基因PaCER5、PaLACS9、PaLTPG1、PaWBC11和MdOSC1參與了角質層的合成,延緩果實的軟化[8]。藍莓果實角質層的厚度影響果實的軟化[9]。

1.2中層或內層對果實硬度的影響

研究發現桃果實中毛細維管束腔體擴大,內含物多糖增加,導致果實硬度下降[10]。葡萄果實維管束木質部導管壁的瓦解,水分運輸速率下降,導致果實硬度下降[1]。藍莓果實中央維管束和心皮主維管束周圍的薄壁細胞和果肉細胞的破裂,導致水分運輸速率和果肉硬度下降[12]。蘋果和弼猴桃發育后期木質部的瓦解與果實硬度下降密切相關[13,14]。

2影響果實硬度的生化基礎

2.1 纖維素

纖維素對維持細胞壁的穩定性具有重要作用。纖維素的變化對果實硬度也會產生影響,山楂的發育后期纖維素含量下降導致果實硬度下降[15]。桃果實中幾丁質類酶PpCTL1活性升高與果實發育過程中纖維素的含量下降趨勢一致[16,17]。內切 β-1,4-D- 葡聚糖酶(EGase)在轉錄水平的積累和酶活性的提高促使果實軟化。

2.2 半纖維素

半纖維素約占細胞壁生物量的1/3,通過與果膠或木質素的相互作用來加強細胞壁的穩定性[18]。蘋果果實發育后期半纖維素含量下降導致細胞壁結構降解,果實硬度降低[19]。

木葡聚糖內轉葡糖苷酶/水解酶(XTH)通過水解木葡聚糖來降低細胞壁中半纖維含量,影響果實硬度。甜櫻桃全基因組鑒定發現PavXTH14和PavXTH15的表達使果實中半纖維素含量下降,果實硬度下降[20]。蘋果中MdXTHB基因過表達可加速蘋果果實軟化[21]。柿子中基因DkXTHI在番茄中異源表達增加了果實的細胞壁和細胞間隙的密度,延遲果實的軟化;相反,DkXTH8的過表達促進番茄果實的軟化[22.23]。XTH基因在草莓果實軟化過程也具有調節作用[24]。這些結果說明不同的XTH在果實發育的過程和軟化過程中發揮不同的作用。

2.3 果膠

果膠是一種富含D-半乳糖醛酸的陰離子多糖,在植物的初生細胞壁和中間片層最為豐富[25]。其水解通常由果膠甲酯酶(PME)、多聚半乳糖醛酸酶(PG)果膠裂解酶(PL)、半乳聚糖酶(β-Gase)、鼠李半乳糖醛酸聚糖裂解酶等相互作用,使細胞壁結構相對松散,促進果實軟化,硬度下降[26]。

多聚半乳糖醛酸酶(PG)在調控果實軟化過程中扮演著重要角色。通過抑制桃PpPG21、PpPG22的表達,PG酶的活性顯著降低,果實的表皮細胞更加緊密,果實硬度提高[27]。草莓基因FaPG1、FaPG2的沉默會提高果實硬度[28]。甜櫻桃 PaνPG38[20] 和無花果FcPG12[29]的超表達,果實的果膠含量下降,果實硬度降低。果膠甲酯酶(PME)在草莓[30]成熟過程中水解果膠,果膠局部pH降低,加速果膠溶解和果實軟化。在杏中隨著PaPME1轉錄水平增加,果實逐漸軟化[31]。

果膠裂解酶(PL)通過催化β消除反應,裂解多聚半乳糖醛酸的 ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ 糖苷鍵,降解去酯化果膠。抑制草莓的FaPLC和FaEG3基因表達,果實硬度增加[32];葡萄VvPL1基因在番茄中異源超表達,PL活性增高,水溶性果膠含量升高,番茄果實硬度下降[33]。沉默桃中的PpePL1、PpePL15后,延緩了果實硬度下降[34]。

β -半乳糖苷酶是一種水解酶,能夠催化乳糖中的β-1,4- 糖苷鍵的斷裂,將乳糖分解為葡萄糖和半乳糖。抑制草莓中 β- 半乳糖苷酶基因(FaβGal4),轉基因株系的成熟果實中果膠與細胞壁的共價結合和半乳糖含量提高,果實硬度提高約 30%[35] 。相反,番茄中異源過表達柿子 ?β- 半乳糖苷酶基因DkGAL1,轉基因番茄細胞間隙擴大,細胞緊密性減少,果實硬度降低[36]。

較高的鼠李糖半乳糖醛酸聚糖(RG-I)含量和分枝程度增加了細胞粘附性,降低了細胞壁孔隙率,保持了果實硬度[37]。抑制草莓中降解鼠李半乳糖醛酸聚糖裂解酶基因(FaRGLyase1)的表達,果實細胞壁內果中間片層成分更加完整,果實更結實[38]。

2.4 木質素

果實中木質素主要存在于皮層和果肉的維管組織中[39]。枇杷[40]中EjHAT1基因可以抑制木質素單體合成基因EjCAD5啟動子的活性,降低肉桂醇脫氫酶(CAD)活性和果實木質化程度,從而降低果實硬度。草莓[41]果實中木質素合成相關基因FaPOD27通過調節木質素合成單體G(愈創木基)和S(紫丁香基)的比例,影響果實的硬度。

2.5擴張蛋白

擴張蛋白(Exp)是一種非酶細胞壁蛋白,通過破壞纖維素微原纖維和半纖維素之間的氫鍵,促進果實軟化。EXP表達含量的差異導致葡萄[42]的硬度差異。草莓中FaEXP2和李中PsEXPA10基因隨著果實的軟化表達含量逐漸上升[43,44]。

3果實硬度的遺傳位點

果實硬度是重要的數量性狀,數量性狀基因座(QTL)分析可以找到果實硬度相關基因,相關位點可與果實硬度緊密連鎖開發分子標記用于輔助育種。通過BSA-seq和QTL聯合分析發現蘋果LG16上的果膠乙酰酯酶(MdPAE10),沉默后可提高蘋果肉緊致度和脆度[45]。甜櫻桃全基因組關聯研究發現,果皮的脆度與果肉硬度遺傳位點主要在LG4號染色體上[4,46]。在3個甜櫻桃的雜交后代群體中同樣在LG4上鑒定到果實硬度相關基因,并推測植物細胞壁擴張蛋白(EXP)和激素信號通路相關基因與果實硬度相關。甜櫻桃雷尼和薩米特的雜交后代中BSA分析,在LG6號染色體上發現了PavSCPL基因,該基因外顯子的 5.2kb 的缺失導致了果實硬度的增加[47]。在木瓜、草莓、山楂等中均找到與果實硬度相關的QTL位點,這為挖掘果實硬度關鍵基因和分子標記輔助育種奠定基礎[48-50]。不同類型果實硬度QTL定位的候選區間以及候選基因如表1。

表1果實硬度相關QTL、分子標記和候選基因

4植物激素及相關通路對果實硬度的影響

4.1 乙烯

乙烯是呼吸躍變果實成熟的催化劑。S-腺苷-L-蛋氨酸合成酶(SAMS)、ACC合酶(ACS)和ACC氧化酶(ACO)是合成乙烯的關鍵酶[51]。乙烯信號傳導的關鍵包括內質網(ER)膜中的乙烯受體家族、CTR1蛋白激酶、生物活性未知的跨膜蛋白(EIN2)、轉錄因子EIN3、EIL、ERF[52]。

乙烯合成通路中基因結構的變異,會影響果實硬度。蘋果中乙烯響應因子ERF4編碼區的突變(C-G)會導致ERF3表達的降低,促進乙烯的產生和果實硬度下降;同時ERF4突變會導致MdTPL4蛋白遏制MdERF4作用下降,促進果實成熟和軟化。MdERF3、MdERF118啟動子8bp、3bp的缺失分別破壞了與MdDOF5.3、MdRAVL1的結合,促進了MdPGLR3、MdPME2和MdACO4的表達,果實硬度下降[53,54]。

乙烯合成通路基因含量的變化會影響細胞壁降解相關酶的活性,影響果實硬度。香蕉中乙烯合成通路轉錄因子MaERF11與組蛋白脫乙酰酶MaHDA1發生相互作用,顯著加強了MaERF11介導的MaACO1和MaEXP2、MaEXP7和MaEXP8的轉錄抑制,負調控香蕉的成熟[55]。木瓜中發現CpERF9直接與細胞壁修飾基因CpPME1/2和CpPG5的啟動子結合,抑制CpPME1/2和CpPG5基因的活性,提高果實硬度[56]。

4.2 脫落酸

脫落酸(ABA)是調控非呼吸躍變果實成熟的關鍵激素[57]。ABA合成途徑中,D-1-脫氧木酮糖5-磷酸(DXS)、玉米黃質環氧化酶(ZEP)、9-順式環氧類胡蘿卜素脫氫酶(NCED)起關鍵作用[58]。甜櫻桃中ABA可通過增加PavDof6的表達和抑制PavDof2/15的表達來促進果實軟化[59]。甜櫻桃中編碼ABA降解酶的PacCYP707A2基因沉默,促進ABA的積累以及PacNCED1轉錄水平的上調,從而導致PacACO1的上調和果實硬度的降低[60]。

4.3 生長素

生長素反應因子(ARF)、生長素/吲哚-3-乙酸(Aux/IAA)、生長素小分子上調RNA(SAUR)和生長素應答的GH3基因家族在果實發育過程中發揮著重要的作用[61]。桃中過表達生長素相關基因PpSAUR43 ,可抑制果實的軟化。酵母雙雜交和雙分子熒光互補表明 PpSAUR43 可能通過抑制PpCMB1(PpMADS2)蛋白的功能來抑制果實成熟[62];生長素轉導基因PpIAA1可與乙烯合成基因 PpACSI 啟動子結合并激活其表達,促進果實軟化。桃中過表達PpIAAI ,會通過增加乙烯生成,促進果實軟化[63]。在桃發育后期生長素合成基因 PpYUClI ,是控制果實硬度的候選基因[64]。草莓[65]外源噴灑生長素,其擴張蛋白(EXP)的活性下降,延緩草莓果實軟化。

4.4油菜素內酯

油菜素內酯(BR)在果實成熟過程中發揮重要作用[66]。研究發現,外源施加BR能抑制桃中果膠降解酶活性(PpPME1/3、PpPG、PpARF2和PpGAL2/l6 ),延緩果實軟化[67]。香蕉中MaBZR1/2可以通過特異性結合其啟動子中的CGTGT/CG序列來抑制乙烯生物合成基因(MaACS1、MaACO13、MaACO14)的轉錄,延緩果實成熟[68]。柿成熟過程中,DkBZR1通過與BR元件(BRRE)結合,抑制DkEGase1和DkACS1的轉錄,抑制成熟;而DkBZR2通過與 DkPLI,DkACO2 基因啟動子上E-box基序結合,加速果實軟化[69]。

4.5 赤霉素

赤霉素(GA)在種子的萌發、成熟和誘導開花和植物的生長發育中具有重要的作用[70]。研究發現外源噴灑赤霉素(GA3),柿中的DkNAC24、DkERF38、DkMYB22分別直接調控香葉基二磷酸合酶DkGGPS1、賴氨酸組氨酸轉運蛋白DkLHT1和果糖-二磷酸醛縮酶DkFBA1,分別導致類胡蘿卜素合成的抑制、乙烯前體的向外運輸以及果糖和葡萄糖的消耗,延緩果實軟化[71]。柿中GA信號轉導蛋白DkDELLA1/2增強了DkNAC9對DkEGase1啟動子的反式激活作用,促進了柿果實軟化[72]。植物激素信號傳導通路關鍵基因的變化和激素之間的相互調控,可影響乙烯的產生,調控果實硬度(圖1)。

5轉錄因子對果實硬度的影響

5.1MADS-box轉錄因子

MADS-box家族基因廣泛存在許多植物中,在果實硬度方面也有一定作用。甜櫻桃[73]PaMADS7正調控PaPG1的基因表達,影響果實硬度。桃中沉默MADS-box家族基因的亞家族成員PrupeFUL4(AP1/FUL),抑制PrupeACO1和PrupeACS2的表達,延遲果實軟化[74,75];草莓中沉默FaMADS1會促進基因FaPG、FaXTH表達,加速果實軟化。

5.2 NAC轉錄因子

NAC轉錄因子在植物發育和脅迫反應中發揮重要作用,也可以參與果實的成熟過程,影響果實的硬度。桃中兩個相鄰的轉錄因子PpNAC1、PpNAC5可以激活乙烯合成相關基因PpACS1、PpACO1和細胞壁降解相關酶PpCEL3、PpPME13、PpPG1/2、PpXET23/33促進果實成熟與軟化[7。香蕉中MaNAC1、MaNAC2可以抑制MaERF11進而抑制乙烯的產生,提高果實硬度[77]。沉默甜櫻桃基因PavNAC56和草莓基因FaRIF(FaNAC035),果實硬度增強[78,79]。

圖1激素對果實硬度調控機制

注:箭頭表示激活,箭頭末端變鈍表示抑制;虛線表示間接對基因的促進/抑制。

5.3 MYB轉錄因子

MYB是ABA依賴性調控過程的轉錄因子,在果實成熟的調控研究較少。近期研究發現,MYB轉錄因子在調控果實硬度方面也發揮著重要作用。草莓中過表達FvMYB79可提高FvPME38的轉錄水平,導致果實硬度下降[80]。木瓜CpMYB1、CpMYB2抑制細胞壁降解酶基因CpPME1、CpPME2、CpPG5的啟動子,延緩果實軟化[81]。藍莓中VcMYB30與蠟質合成基因VcKCS1、VcKCS11、VcLACS8、VcKCR1啟動子結合,促進藍莓表面果實蠟質的積累,延緩果實軟化[82]。香蕉中MaMYB4負調控香蕉的成熟。MaMYB4被E3連接酶MaBRG2/3的蛋白質泛素化,隨著果實的成熟而減少[83]。MaMYB4在番茄中的異源表達延遲了番茄果實的成熟,并伴有乙烯生物合成(SIACS2)和細胞壁修飾基因(SIXTH5、SIPG2、SIEXP1)的下調。

5.4其他轉錄子

香蕉MaTCP5和MaTCP20促進了MaXTH10/11的轉錄,促進香蕉果實軟化[84];草莓中FvWRKY48的過表達和RNAi沉默,影響細胞壁酶FvPLA的活性,從而影響果實硬度[85]。甜櫻桃果實中過表達轉錄因子PavDof6和PavDof2/15,細胞壁降解相關基因PavQRT3、PavPME44、PavXTH31和PavXTH26的上調和下調,分別導致甜櫻桃果實硬度降低和升高[58]。草莓中通過瞬時表達和基因沉默 FνTCP9 ,可以影響ABA合成通路基因的表達,進而改變ABA含量,果實硬度下降和上升[86]。桃中 PpHB.G7 與乙烯合成相關基因 PpACSI 和 PpACOI 結合并刺激其表達,促進果實軟化[87]。總之,不同類型的轉錄因子通過調節激素信號通路基因或細胞壁代謝相關基因,從而影響果實的硬度。

6小結與討論

果實硬度的變化是一個復雜的過程。細胞壁的結構變化和代謝過程中的蛋白質調節是影響果實硬度的直接因素。細胞壁的主要成分(纖維素、半纖維素、果膠和木質素)以及它們的合成和降解酶,共同決定了細胞壁的穩定性和果實的硬度。乙烯、脫落酸、生長素、赤霉素和油菜素內酯等激素在果實成熟過程中起到關鍵作用。這些激素合成、運輸和傳導過程中的相關基因通過直接或間接影響細胞壁代謝相關酶的活性來調節果實硬度。越來越多的轉錄因子通過調控與果實軟化相關的下游靶基因的表達,對果實硬度的調控起到一定作用。有些轉錄因子通過影響激素水平調控果實硬度。

隨著基因組學、轉錄組學、蛋白質組學和代謝組學等的發展,研究人員能夠發現控制果實硬度的新基因和次級代謝物,解析轉錄因子與激素及其他蛋白質之間的相互作用網絡,以全面理解它們如何共同調控果實硬度。基因編輯技術應用的廣泛,可以完善其在果實硬度調控中的應用。筆者總結的是果實硬度形成的一般規律,同一類型的基因在不同物種中可能發揮不同甚至相反的作用,利用基因工程改造果實硬度需要足夠的前期實驗。通過研究,我們可以通過生物信息技術和現代生物技術相結合,從而為果實品質的改良提供更加精確的策略。

參考文獻:

[1]POPOVAV,PETKOVAZ,MAZOVAN,etal.ChemicalComposition Assessment of Structural Parts (Seeds,Peel,Pulp)ofPhysalis alkekengiL.[J].Fruits Molecules,2022,27(18):5787.

[2]LIU Z,LIANG T,KANG C.Molecular bases of strawberry fruitquality traits:Advances,challenges,and opportunities[J].PlantPhysiol,2023,193(2):900-914.

[3]SOUNDARARAJANP,WONSY,KIMJS.Insight on RosaceaeFamily with Genome Sequencing and Functional GenomicsPerspective[J].Biomed Res Int,2019,7519687.

[4]CAIL,QUERO-GARCIAJ,BARRENECHET,et al.A fruitfirmness QTL identified on linkage group 4in sweet cherry(Prunus avium L.)is associated with domesticated and bredgermplasm[J].SciRep,2019,9(1):5008.

[5]ZHOUJ,LID,WANG G,et al.Application and future perspectiveof CRISPR/Cas9 genome editing in fruit crops[J].JIntegr PlantBiol,2020,62(3):269-286.

[6]JENTZSCHM,ALBIEZV,KARDAMAKISTC,etal.Analysisof the pel structure of different Citrus spp.Vialight microscopy,SEM and μCT with manualand automatic segmentation[J].SoftMatter,2024,20(12):2804-2811.

[7]ROMANOVMS,BOBROVAV,WIJESUNDARADS,etal.Pericarp development and fruit structure in borassoid palms(Arecaceae-Coryphoideae-Borasseae)[J].Ann Bot,2011,108(8):1489-1502.

[8]GARCIA-CORONADO H,TAFOLLA- ARELLANO JC,HERNANDEZ-ONATE MA,et al.Molecular Biology,Composition and Physiological Functions of Cuticle Lipids inFleshyFruits[J].Plants(Basel),2022,11(9):1133.

[9]CHUW,GAOH,CHENH,et al.Effects of cuticular wax on thepostharvest quality of blueberry fruit[J].Food Chem,2018(239):68-74.

[10]張珺,劉志民,馬煥普,等.桃果實維管束的分布及解剖研究[J].園藝學報,2009,36(5):639-646.

[11]謝兆森,曹紅梅,李勃,等.巨峰葡萄果實不同發育期維管束水分運輸變化[J].中國農業科學,2012,45(1):111-117.

[12]謝兆森,杜鴻儒,項殿芳,等.藍莓果實不同發育期維管束解剖結構與水分運輸變化[J].植物生理學報,2018,54(1):45-53.

[13]王艷芳,葉淄,劉昊,等.蘋果果實不同發育期維管束結構及水分運輸變化[J].植物生理學報,2015,51(9):1414-1418.

[14]CLEARWATER MJ,LUO Z,ONG SE,et al. Vascular functioningand the water balance of ripening kiwifruit(Actinidia chinensis)DeITIeSLJ」.JEXP B0t,ZUI∠,O5(O):1o5)-104/.

[15]XUJ,ZHAOY,ZHANGX,etal.Transcriptome Analysis andUltrastructure Observation Reveal that Hawthorn Fruit SofteningIsdue to Cellulose/Hemicellulose Degradation[J].Front Plant Sci,2016(7):1524.

[16]XU Z,DAIJ,LIANGL,etal.Chitinase-Like Protein PpCTL1Contributes to Maintaining Fruit Firmness by Affecting CelluloseBiosynthesis during Peach Development[J].Foods,2023,12(13):2503.

[17]CLAUDIOB,LUCAF,BENEDETTOR,et al.Endo -β-1 4-glucanases are involved in peach fruit growth and ripening,andregulated by ethylene[J].Physiol Plantarum,2008,102(3):346-352.

[18]PAULYM,GILLE S,LIUL,et al.Hemicelllose biosynthesis[J].Planta,2013,238(4):627-642.

[19]SUQ,LIX,WANGL,et al.Variation in Cell Wall MetabolismandFlesh Firmness of Four Apple Cultivars during FruitDevelopment[J].Foods.2022,11(21):3518.

[20]ZHAIZ,FENGC,WANGY,etal.Genome-Wide Identificationof theXyloglucan endotransg lucosylase/Hydrolase(XTH)andPolygalacturonase(PG)Genes and Characterization of Their Rolein Fruit Softening of Sweet Cherry[J].IntJMol Sci,2021,22(22):12331.

[21]MAM,YUANY,CHENGC,etal.The MdXTHB gene isinvolved in fruit softening in‘Golden Del.Reinders’ (Maluspumila)[J].JSciFood Agric,2021,101(2):564-572.

[22]HANY,HAN S,BANQ,et al.Overexpression of persimmonDkXTH1 enhanced tolerance to abiotic stress and delayed fruitsoftening in transgenic plants[J].Plant CellRep,2017,36(4):583-596.

[23]HANY,BANQ,LIH,etal.DkXTH8,a novel xyloglucanendotransglucosylase/hydrolase in persimmon,alters cell wallstructure and promotes leaf senescence and fruit postharvestsoftening[J].SciRep,2016(6):39155.

[24] WITASARI LD,HUANG FC,HOFFMANN T,et al.Higherexpression of the strawberry xyloglucan endotransglucosylase/hydrolasegenesFvXTH9andFvXTH6acceleratesfruit ripening[J].PlantJ,2019,100(6):1237-1253.

[25]Caffall KD,Mohnen D.The structure,function,and biosynthesisofplant cell wall pectic polysaccharides[J]. Carbohydr Res,2009,344(14):1879.

[26]LIR,SUN S,WANGH,et al.FIS1 encodes a GA2-oxidase thatregulates fruit firmness in tomato[J].Nat Commun,2020,11(1):5844.

[27]QIANM,XU Z,ZHANG Z,et al. The downregulation of PpPG21and PpPG22 influences peach fruit texture and softening[J].Planta,2021,254(2):22.

[28]PANIAGUAC,RIC-VARAS P,GARCIA-GAGO JA,etal.Elucidating the roleof polygalacturonase genes in strawberryfruit softening[J].JExpBot,2020,71(22):7103-7117.

[29]WANGY,FAN Z,ZHAIY,et al.Polygalacturonase gene familyfruit softening[J].BMC Plant Biol,2023,23(1):320.

[30]DRAYE M,VAN CUTSEMP.Pectin methylesterases induce anabrupt increase of acidic pectin during strawberry fruit ripening[J].JPlant Physiol.2008,165(11):1152-1160.

[31]HOUYY,WUF,ZHAOYT,et al.Cloning and expressionanalysis of polygalacturonase and pectin methylesterase genesduring softening inapricot (Prunus armeniacaL.) fruit[J].ScientiaHorticulturae,2019(256):108607.

[32]YOUSSEFSM,AMAYAI,LOPEZ-ARANDAJM,et al.Effectof simultaneous down-regulation of pectate lyase and endo-β-1,4-glucanase genes on strawberry fruit softening[J].MolBreeding,2013(31):313-322.

[33]YUJ,WANGR,MAW,etal.Pectate Lyase Gene VvPL1 PlaysaRole in Fruit Cracking of Table Grapes[J].JAgric Food Chem,2023,71(3):1643-1654.

[34]XUZ,DAIJ,KANGT,etal.PpePL1 and PpePL15 Are the CoreMembers of the Pectate Lyase Gene Family Involved in Peach FruitRipening and Softening[J].Front Plant Sci,2022(13):844055.

[35]PANIAGUAC,BLANCO-PORTALESR,BARCELO-MUNOZM,et al.Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels andreduces fruit softening[J].JExp Bot,2016,67(3):619-631.

[36]BANQ,HANY,HEY,et al.Functional characterization ofpersimmon β- galactosidase gene DkGALl in tomato reveals cellwall modification related to fruit ripening and radicle elongation[J].Plant Sci,2018(274):109-120.

[37]LIUD,ZHOU W,ZHONGY,et al. Involvement of branched RG-I pectin with hemicellulose in cell - cell adhesion of tomatoduring fruit softening[J].Food Chem,2023(413):135574.

[38]RIC-VARASP,PANIAGUAC,LOPEZ-CASADO G,etal.Suppressing the rhamnogalacturonan lyase gene FaRGLyaselpreserves RGI pectin degradation and enhances strawberry fruitfirmness[J].Plant Physiol Biochem,2024(206):108294.

[39]LIUX,LIS,FENGX,et al.Study on CellWall Composition,Fruit Quality and Tissue Structure of Hardened‘Suli’Pears(PyrusbretschneideriRehd)[J].JPlant Growth Regul,2021(40):2007-2016.

[40]XUM,ZHANGMX,SHIYN,et al.EjHAT1Participates in HeatAlleviation of Loquat Fruit Lignification by Suppressing thePromoter Activity of Key Lignin Monomer Synthesis GeneEjCAD5[J].JAgric Food Chem,2019,7(18):5204-5211.

[41]YEHSY,HUANGFC,HOFFMANNT,etal.FaPOD27 functionsin the metabolism of polyphenols in strawberry fruit(Fragariasp.)[J].Front Plant Sci,2014(5):518.

[42]MAL,SUNL,GUOY,et al.Transcriptome analysis of tablegrapes(Vitisvinifera L.)identified a gene network moduleassociated with berry firmness[J].PLoS One,2020,15(8):e0237526.

[43]FELIPEVR,LUIS MQ.Study of the structure and binding siti

features of FaEXPA2,anα-expansin protein involved in strawberry fruit softening[J].Comput Biol Chem,2020(87): 107279.

[44]ZHANG H,WANGH,LIH,et al.Study on the difference of EXP and PsEXPA10 in ripening period of‘jinmi’plum and‘qingcui’ plum[J].IOP Conference Series:Earth and Environmental Science,2021(792):12036.

[45]WUB,SHENF,CHENCJ,et al.Natural variations in apectin acetylesterase gene,MdPAE10,contribute to prolonged apple fruit shelflife[J].Plant Genome,2021,14(1):e20084.

[46]HOLUSOVAK,CMEJLOVAJ,SURANP,et al.Highresolution genome-wide association study of a large Czech collection of sweet cherry(Prunus avium L.)on fruit maturity and quality traits[J].Hortic Res,2022,10(1):uhac233.

[47]QIX,DONGY,LIUC,et al.A5.2-kb insertion in the coding sequence of PavSCPL,aserine carboxypeptidase-like enhances fruit firmness in Prunus avium[J].Plant Biotechnol J,2024, 22(6):1622-1635.

[48]NANTAWANU,KANCHANA-UDOMKANC,BARI,et al.Linkage mapping and quantitative trait loci analysis of sweetness and other fruit quality traits in papaya[J].BMC Plant Biol,2019,19(1):449.

[49]REY-SERRAP,MNEJJAM,MONFORTA.Shape,firmness and fruit quality QTLsshared in two non-related strawberry populations[J].Plant Sci,2021(311):111010.

[50]ZHAOY,ZHAOY,GUOY,etal.High-density genetic linkage -map construction of hawthorn and QTL mapping for important fruit traits[J].PLoSOne,2020,15(2):e0229020.

[51]FATMA M,ASGHER M,IQBALN,et al.Ethylene Signaling under Stressful Environments:Analyzing Collaborative Knowledge [J].Plants(Basel),2022,11(17):2211.

[52]ZHAOH,YINCC,MAB,et al.Ethylene signaling in rice and Arabidopsis:New regulators and mechanisms[J].JIntegr Plant Biol,2021,63(1):102-125.

[53] HUY,HAN Z,SUNY,et al.ERF4 afects fruit firmness through TPL4 by reducing ethylene production[J].Plant J,2020,103 (3):937-950.

[54]WUB,SHENF,WANGX,et al.Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL - based genomics- assisted prediction [J].Plant BiotechnolJ,2021,19(5):1022-1037.

[55]HANYC,KUANGJF,CHENJY,etal.Banana Transcription FactorMaERF1l Recruits Histone Deacetylase MaHDAl and Represses the Expression of MaACO1 and Expansins during Fruit Ripening[J].Plant Physiol,2016,171(2):1070-1084.

[56]FUCC,HANYC,QIXY,et al.Papaya CpERF9 acts asa transcriptionalrepressor of cell- wall -modifying genes CpPME1/2and CpPG5 involved in fruit ripening[J].Plant Cell Rep,2016,35(11):2341-2352.

[57]FENN MA,GIOVANNONIJJ.Phytohormones in fruit development and maturation[J].PlantJ,2021,105(2):446 -458.

[58]YUE K,LINGLINGL,XIEJ,et al.Synthesis and regulation of auxin and abscisic acid in maize[J].Plant Signal Behav,2021, 16(7):1891756.

[59]ZHAI Z,XIAOY,WANGY,etal.Abscisic acid-responsive transcription factors PavDof2/6/15 mediate fruit softening in sweet cherry[J].PlantPhysiol,2022,190(4):2501-2518.

[60]LIQ,CHENP,DAI S,et al.PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance[J].JExp Bot,2015,66(13):3765-3774.

[61] LIY,HAN S,QIY.Advances in structure and function of auxin response factor in plants[J].JIntegr Plant Biol,2023,65(3): 617-632.

[62]WANGJ,SUW,LIUK,et al.PpSAUR43,an Auxin-Responsive Gene,Is Involved in the Post-Ripening and Softening of Peaches [J].Horticulturae,2022,8(5):379.

[63]WANGXB,PANL,WANGY,et al.PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals[J].Plant Sci,2O21(313): 111084.

[64]PANL,ZENG W,NIUL,etal.pYUC,astrong candidate gene for the stony hard phenotype in peach(Prunus persicaL.Batsch)), participates in IAA biosynthesis during fruit ripening[J].JExp Bot,2015,66(22):7031-7044.

[65]CASTRORI,GONZALEZ-FELIUA,MUNOZ-VERAM,et al.Effect of Exogenous Auxin Treatment on Cell Wall Polymers of StrawberryFruit[J].IntJMol Sci,2021,22(12):6294.

[66] LIJ,QUANY,WANGL,et al.Brassinosteroid Promotes Grape Berry Quality-Focus on Physicochemical Qualities and Their Coordination with Enzymatic and Molecular Processes:A Review [J].IntJMol Sci,2022,24(1):445.

[67]LIJ,GUOT,GUO M,et al.Exogenous BR delayed peach fruit softening by inhibiting pectin degradation enzyme genes[J].Front Plant Sci,2023(14):1226921.

[68] GUOYF,SHANW,LIANGSM,etal.MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit[J].Physiol Plant,2019,165(3):555-568.

[69]HEY,LIUH,LIH,etal. Transcription factors DkBZR1/2 regulate cell wall degradationgenesandethylene biosynthesis genes during persimmon fruitripening[J].JExp Bot,2021,72(18):6437 - 6446.

[70] YAMAGUCHI S.Gibberellin metabolism and itsregulation [J].Annu Rev Plant Biol,2008(59):225-251.

[71] WUW,SUNNJ,XUY,etal.Exogenous gibberellin delays maturation in persimmon fruit through transcriptional activators and repressors[J].Plant Physiol,2023,193(1):840-854.

[72]WUW,BAO ZY,XIONG CX,etal.The Softening of Persimmon Fruit Was Inhibited by Gibberellin via DkDELLA1/2[J].JAgric Food Chem,2025,73(2):1159-1166.

[73]QIX,LIUC,SONGL,et al.PaMADS7,a MADS-box transcription factor,regulates sweet cherry fruit ripeningand softening[J].Plant Sci,2020(301):110634.

[74]ZHANG S,WANG X,XUZ,et al.PrupeFUL4 regulates ripening and softening of peach fruits through ethylene biosynthesis [J].Acta Physiol Plant,2022(44):23.

[75]LUW,WEIX,HANX,et al.Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit[J].Foods,2023, 12(9):1802.

[76]ZHANG RX,LIUY,ZHANG X,et al.Two adjacent NAC transcription factors regulatefruit maturity date and flavor in peach [J].New Phytol,2024,241(2):632-649.

[77]SHANW,KUANGJF,WEIW,etal.MaXB3 Modulates MaNAC2,MaACS1,and MaACOl Stability to Repress Ethylene Biosynthesis during Banana Fruit Ripening[J].Plant Physiol, 2020,184(2):1153-1171.

[78]QIX,DONGY,LIUC,etal.ThePavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium)[J].PhysiolPlant,2022,174(6):e13834.

[79]MARTIN-PIZARROC,VALLARINO JG,OSORIO S,et al. The NAC transcription factor FaRIF controls fruit ripening in strawberry[J].Plant Cell,2021,33(5):1574-1593.

[80] CAI J,MOX,WENC,etal.FvMYB79PositivelyRegulates Strawberry Fruit Softening via Transcriptional Activation of FvPME38[J].IntJMol Sci,2021,23(1):101.

[81]FUC,CHEN H,GAOH,et al. Two papaya MYB proteins function in fruitripening by regulating some genes involved incell-wal degradation and carotenoid biosynthesis[J].JSciFood Agric, 2020,100(12):4442-4448.

[82]KONGQ,LIURL,WUWJ,et al.VcMYB30 enhances wax production and maintains fruit quality by regulating cuticular wax biosynthesis genes[J].Postharvest BlolTec,2024(212):112856.

[83]YANGYY,SHANW,YANGTW,etal.MaMYB4 isanegative regulator and a substrate ofRING-type E3 ligases MaBRG2/3 in controlling banana fruit ripening[J].Plant J,2022,110(6): 1651-1669.

[84]SONGCB,SHANW,YANGYY,et al.Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10/ll genes during banana fruit ripening[J].Biochim Biophys Acta Gene Regul Mech,2018,1861(7):613-622.

[85]ZHANG WW,ZHAO SQ,GUS,et al.FvWRKY48 binds to the pectatelyaseFvPLA promoter tocontrolfruit softening in Fragaria vesca[J].Plant Physiol,2022,189(2):1037-1049.

[86]XIEYG,MAYY,BIPP,etal.Transcription factor FvTCP9 promotes strawberry fruit ripening byregulating the biosynthesis of abscisic acid and anthocyanins[J].Plant Physiol Biochem,2020 (146):374-383.

[87]GUC,GUO ZH,CHENG HY,et al.AHD-ZIP IIHOMEBOX transcription factor,PpHB.G7,mediates ethylene biosynthesis during fruit ripening in peach[J].Plant Sci,2019(278):12 -19.

猜你喜歡
細胞壁果膠軟化
前沿
蝴蝶蘭莖段組織石蠟切片方法的優化研究
基于WGCNA的甘蔗細胞壁建成和糖分積累調控網絡分析
茉莉酸甲酯促進采后忙果成熟軟化 及其關鍵基因表達調控
果樹學報(2025年7期)2025-08-15 00:00:00
魚刺卡喉,喝醋、吃饅頭不可取
乙烯因子對甜瓜采后果實軟化的影響
果膠酶在半夏疏松愈傷組織形成中的作用研究
主站蜘蛛池模板: 日日碰狠狠添天天爽| 亚洲,国产,日韩,综合一区 | 国产成人调教在线视频| 狠狠v日韩v欧美v| 亚洲男人的天堂在线观看| 成人在线观看一区| 亚洲精品午夜天堂网页| 亚洲成人在线播放 | 九色国产在线| 亚洲国产日韩在线观看| 精品综合久久久久久97超人该| 国产欧美一区二区三区视频在线观看| 国产Av无码精品色午夜| 国模极品一区二区三区| 国产欧美视频在线观看| 日本一区高清| 午夜毛片免费观看视频 | 国产成人高清精品免费5388| 国产精品美女自慰喷水| 亚洲精品不卡午夜精品| 91久久青青草原精品国产| 国产凹凸视频在线观看| 亚洲国产综合精品一区| 天堂av综合网| 日韩 欧美 国产 精品 综合| aⅴ免费在线观看| 亚洲婷婷丁香| 亚洲欧美日本国产专区一区| AV在线麻免费观看网站| 精品免费在线视频| 国产在线日本| 久久久久久尹人网香蕉| 日本爱爱精品一区二区| 99er这里只有精品| 丰满人妻久久中文字幕| 98超碰在线观看| 欧美一区二区丝袜高跟鞋| 日韩在线成年视频人网站观看| 亚洲天堂精品在线观看| 国产自在线拍| 久久久久亚洲精品成人网| 国产簧片免费在线播放| 国产成人精品一区二区三区| 亚洲国产精品无码AV| 精品在线免费播放| 国内精品小视频福利网址| 亚洲乱码在线播放| 免费久久一级欧美特大黄| 五月天婷婷网亚洲综合在线| 亚洲精品无码不卡在线播放| 十八禁美女裸体网站| 日韩性网站| 国产亚洲精| 伊人精品视频免费在线| 啪啪永久免费av| 日本91在线| 黄色三级网站免费| 青青草欧美| 毛片网站观看| 丝袜无码一区二区三区| 成人国产精品网站在线看| 欧美亚洲欧美区| 亚洲第一香蕉视频| 欧美激情伊人| 国产又色又刺激高潮免费看| 91欧美亚洲国产五月天| 国产麻豆精品久久一二三| аⅴ资源中文在线天堂| 欧美亚洲国产精品久久蜜芽| 有专无码视频| 欧美第九页| 激情视频综合网| 国产综合另类小说色区色噜噜| 毛片在线区| 国产靠逼视频| 日韩在线播放中文字幕| 久久久久无码精品| 华人在线亚洲欧美精品| 成人久久精品一区二区三区| 福利视频99| 99精品热视频这里只有精品7| 国产伦片中文免费观看|