【中圖分類號】 R697+.3 ; R737.25 【文獻標識碼】A
The role of zinc homeostasis in prostate diseases and potential mechanisms
HAN Yutong122, FAN Jiuming1.2, WANG Tiankun1:2, QI Zihao122, ZHANG Yuanyuan2, HOU Junqing34
1. School of Clinical Medicine,Henan University,Kaifeng 4754oo,HenanProvince, China
2.Center for Evidence-Based and Translational Medicine,Zhongnan Hospitalof Wuhan University,Wuhan 430071, China
3.DepartmentofUrology,Kaifeng155Hospital,ChinaRongTongMedicalHealthcareGroupCo.Ltd,Kaifeng47540o,Henan Province, China
4.Henan Engineering Research Center of Prostate Disease Preventionand Diagnosis, Kaifeng475400,Henan Province,China
Corresponding authors: HOU Junqing, Email: hjq0418@sina.com; ZHANG Yuanyuan, Email: zhangyy_ph@163.com
【Abstract】 Zinc is an essential trace element in the human body, participating in various critical physiological functions and being highly concentrated in the prostate gland. Studies have shown that prostate diseases might be associated with zinc imbalance.Investigating the regulatory mechanisms and dynamic patterns of zinc homeostasis in prostate diseases holds significant importance for exploring the pathogenesis, progression mechanisms,and zinc homeostasis-based prevention and treatment strategies for prostate disorders.Building on a synthesis of previous evidence,this review elaborates on the maintenance processes and key regulatory factors of zinc homeostasis in the human body,and provides an in-depth analysis of zinc's role in the development and progression of prostate diseases,along with potential underlying biological mechanisms.
【Keywords】 Zinc; Zinc Homeostasis; Prostatic diseases; Prostate cancer; Benign prostatic hyperplasia
前列腺作為男性生殖器附件中最大的非成對實質性器官,其組織結構異常可引發前列腺炎、良性前列腺增生(benign prostatic hyperplasia,BPH)及前列腺癌(prostatecancer,PCa)等良、惡性疾病的發生。隨著人口老齡化加劇,前列腺疾病發病及患病率明顯上升,已成為威脅男性健康的重要問題。流行病學數據顯示BPH呈現顯著年齡依賴性,40歲以上男性患病率超過 50% ,70歲后超過 80% ;PCa患病率在男性惡性腫瘤中位居第二,2022年全球新發病例超146萬例[-2]。前列腺相關的排尿困難、疼痛、尿路感染等癥狀對個體生命質量的影響以及惡性病變帶來的生命預期降低,使得此類疾病的防治與管理具有重要意義。
鋅是人體必需的第二大微量元素,具有抗炎、抗氧化及抗纖維化的功能,在機體代謝、免疫過程中發揮重要作用,與糖尿病、心血管疾病等眾多慢性疾病有關。研究顯示,鋅作為關鍵金屬元素,參與人體內約3000種蛋白質的結合,約占蛋白質組總量的 10% ,且超過 3% 的人類基因編碼產物含有鋅指結構域[3]。Lowe等[4發現鋅缺乏可導致兒童生長發育遲緩以及成人的免疫功能下降。鋅在前列腺內高度富集,外周區前列腺細胞中的鋅濃度是血漿中的100倍以上[5。越來越多的研究證據顯示鋅與上述多種前列腺疾病有關,如 Ma 等發現鋅可以通過細胞能量代謝調控PCa細胞的生長。雌激素相關受體 a 可通過抑制PCa干細胞內的鋅鐵轉運蛋白(ZIP)1降低細胞內 Zn2+ 濃度,解除 Zn2+ 對線粒體烏頭酸酶的抑制,從而促進PCa干細胞的線粒體能量依賴性生長。本文旨在總結鋅與前列腺疾病相關既往證據,闡述鋅穩態在前列腺疾病發生、發展過程中的潛在機制,以期為前列腺疾病的早期診斷與防治策略等提供理論支持。
1 鋅在人體內的代謝
人體鋅主要來源于日常飲食且存在種類特異性:豬、牛、羊等紅肉是鋅主要的食物來源,海鮮中鋅含量也較高;植物性食物如水果和蔬菜的鋅含量較少[;豆類、堅果和谷物等雖含鋅,但易與植酸鹽形成植酸-鋅絡合物,降低鋅的生物利用率。當膳食鋅攝入不足時,也可通過強化食品或營養制劑進行補充
攝入的鋅由小腸尤其是十二指腸和近端空腸部位吸收[。在小腸刷狀緣部位,鋅離子通過小腸上皮細胞頂膜上的ZIP進入小腸上皮細胞,再由基底膜上的鋅轉運蛋白(zinc transporter,ZnT)進入肝門靜脈到達肝臟[。肝臟內鋅離子可與不同配體結合成復合物如白蛋白、 a-2 巨球蛋白與轉鐵蛋白等,剩余鋅離子進入體循環分布到全身的各個組織和器官[]。約 87% 的鋅分布于人體骨骼肌與骨骼,約 8% 的鋅存在于肝臟和皮膚中, 1.5% 在血液中[]。前列腺中鋅的總含量相對較低,僅有 0.06~0.08g ,但鋅濃度遠高于其他組織,可達到血漿中鋅濃度的100倍以上[3]人體多余的鋅可通過糞便、尿液或者頭發、指甲、皮膚等附屬物的脫落來進行排泄,維持體內鋅穩態[
2 鋅穩態
人體鋅穩態可分為宏觀和微觀水平,由一系列鋅相關轉運蛋白調控維持,如溶質載體家族(solutecarrier family,SLC)。SLC3O(ZnT)家族負責“鋅外流”,使多余鋅離子從細胞質轉運到胞外或者細胞內囊泡中,而SLC39(ZIP)家族負責“鋅內流”,將鋅離子從細胞外或細胞器內轉運到細胞質中,增加細胞質內的鋅離子濃度。
宏觀鋅穩態指機體通過吸收、分布、代謝及排泄過程調節系統性鋅平衡。當膳食鋅攝入不足時,腸道通過 znT 的代償性調節,動態適配鋅吸收,關鍵蛋白包括定位于腸道絨毛細胞外側膜的 ZIP5、ZIP14與 ZnT1[12-14] ,腸上皮細胞頂膜的ZIP4、ZIP8以及 ZnT10 等[15-17]。胰腺在鋅穩態的維持中也發揮了重要作用,研究表明,胰腺中有16種 znT 和ZIP,其中 ZnT1 在鋅缺乏時呈表達下調趨勢,由腺泡細胞胞質轉移至質膜[18-19]Wang等[2研究表明胰腺SLC39A5可通過SIRT1介導的 PGC-1α 激活,誘導GLUT2表達并促進鋅內流以維持胰島素分泌功能,可能是糖尿病的治療靶點。鋅缺乏時,糞便、尿液中鋅的排泄會迅速減少,骨髓、肝臟等組織和器官促進鋅分泌到血液循環中[]。部分特殊食物成分(谷物和豆類中的植酸鹽)或炎癥性腸病、腹瀉等疾病狀態亦會降低對鋅的腸道利用度,影響系統鋅平衡[21]
微觀鋅穩態指細胞內鋅動態平衡。細胞內鋅以固定鋅(與金屬蛋白或金屬酶牢固結合,具有不反應性)、不穩定鋅和游離鋅(濃度極低,5pM~lnM )等形式存在。不穩定鋅多為鋅離子與金屬硫蛋白(metallothioneins,MTs)或其他低分子量配體(氨基酸、小分子肽)等結合形成的松散結構,具有可交換性和反應性,并且受ZIP和znT 等調控,是細胞內鋅穩態的重要參與者[3]。
由此可見,細胞可通過移動不穩定鋅和游離鋅以及 znT 的運轉等多種途徑來維持細胞內外鋅離子濃度的動態平衡,是系統鋅穩態的基礎,后者又通過機體對鋅的吸收和排泄來調控細胞中的微觀鋅穩態[10]
3 鋅相關蛋白
配體結合是鋅發揮生物學功能的主要形式。鋅可與含硫、氮、氧氨基酸殘基以及核苷酸等有機配體進行催化性配位結合,從而作為氧化還原酶、水解酶、轉移酶等酶的輔因子直接參與催化反應[22;也可通過配位鍵維持蛋白質如MTs、鋅指蛋白(zinc fingerprotein,ZNF)等的三維結構(結構性配位),與 znT 以及ZIP一起精密調控鋅穩態,參與基因表達調控等功能[23]。
MT廣泛分布于細胞質、核及細胞器(如線粒體、溶酶體),其家族含MT1、MT2等至少11個亞型,各亞型均由61~68個氨基酸構成單鏈多肽,含20個半胱氨酸殘基,其順序為Cys-Xn-Cys(“X”代表任何非半胱氨酸的氨基酸),通過 a 1 β 雙結構域協同結合鋅離子。其中β結構域富集Cys、賴氨酸與精氨酸殘基,形成硫醇簇實現鋅的動態捕獲與釋放[24]。人類基因組中共編碼14種ZIP,可分為I(ZIP9)、I(ZIP1、2和3)、LIV-1(ZIP4、5、6、7、8、10、12、13和14)和gufA(包括ZIP11)等不同亞家族[]。ZnT負責鋅從胞質到胞外的逆向轉運,包含 ZnT1-10 多個成員,具有典型的 ZnT 陽離子擴散促進子家族的拓撲結構,包括六個保守的跨膜結構域(transmembranedomain,TMD),其中TMIV和V之間富含組氨酸的 Zn2+ 結合區[25]
既往研究顯示ZIP1-4以及ZIP9均與前列腺疾病有關。以ZIP1為例,該蛋白主要定位于前列腺細胞的基底外側膜區域,在正常前列腺及良性增生上皮組織均表達,可介導 Zn2+ 從血液循環向胞內的主動運輸,生理狀態下其核心啟動子受轉錄因子與環磷腺苷效應元件結合蛋白(cAMP-response element binding protein,CREB)的正向調控;前列腺癌變后,Ras/Raf/MAPK通路異常活化觸發ERK依賴性Ras反應元件結合蛋白1上調,競爭性占據ZIP1啟動子區域,拮抗SP1/CREB的轉錄激活功能,導致ZIP1的表達失調,ZIP1蛋白水平顯著降低,PCa細胞喪失鋅離子富集能力[2。在ZnT家族中,ZnT4與PCa的發展密切相關,研究發現轉錄因子HOXB13通過上調 ZnT4 介導PCa細胞內鋅離子外流,降低核因子κB(nuclearfactor-kB,NF-κB )抑制劑的穩定性進而激活 NF-κB 信號通路,驅動腫瘤侵襲轉移[27]。在MT家族中,MT1h、MT2、MT3等均與前列腺疾病有關,如MT1h結合常染色質組蛋白甲基轉移酶1,增強其催化 H3K9me2 的活性,進而沉默MMP9、CyclinD1等促癌基因,抑制PCa細胞增殖、遷移以及侵襲[28]
ZNF是真核生物中廣泛存在的轉錄因子,其經典C2H2結構由Cys-His-X-Cys序列與鋅離子配位形成“鋅結合結構域”,包含 α 螺旋和 β 片段構成的“手指”狀構象,可特異性結合DNA、RNA或蛋白質,調控基因表達,在細胞分化、胚胎發育及腫瘤生長中起關鍵作用2]。近年來,ZNF與前列腺疾病的研究逐漸成為焦點,如Myc相關鋅指蛋白(MAZ)通過KRas/RalGEFs信號促進PCa骨轉移[30-31]。Jiang等[32]報告了PCa組織中MAZ和ZNF217的共上調與鐵轉運蛋白表達間的負相關聯系。 Xu 等[33發現ZNF403可抑制PCa細胞增殖、遷移與侵襲,發揮腫瘤抑制作用。表1系統總結了調控PCa以及BPH發生發展的鋅相關蛋白的功能[34-42]
4鋅與前列腺疾病
前列腺是男性生殖系統中鋅濃度最高的腺體組織,為精液提供了必需的鋅元素[43],研究發現鋅代謝異常與前列腺疾病相關[44]
4.1鋅與前列腺疾病的流行病學證據
多項流行病學研究表明鋅可能與PCa發生及進展結局有關。Zhao等[45]在一項系統評價/Meta分析中報告了血清鋅與PCa的負向關聯;Amadi等[4同樣在老年人群中檢測到PCa患者的鋅缺乏比健康者更顯著。Pietrzak等[4開展的前瞻性隊列研究不僅發現高水平鋅可顯著延長PCa患者生存期 [HR=4.11 , 95% CI(1.93,8.74)],還探測到硒-鋅聯合對改善患者生存預后的協同效應。此外,鋅在慢性前列腺炎治療中亦有顯著療效,如Goodarzi等[48通過雙盲隨機對照試驗證明了硫酸鋅膠囊服用組前列腺炎癥狀積分指數顯著降低,癥狀明顯減輕。
表1前列腺疾病中的鋅相關蛋白Table1.Zinc-related proteinsin prostatediseases

注:PCa.前列腺癌;BPH.良性前列腺增生。
鋅與BPH間的關聯尚存爭議。一項病例對照研究發現,鋅攝入量增加可能升高BPH風險[49],然而,南瓜籽中的鋅對BPH具有保護作用,可減輕BPH癥狀[50。提示在BPH的發生及進展過程中,鋅可能具有雙重作用。
4.2鋅與前列腺疾病潛在機制
4.2.1 代謝重編程
前列腺由中央帶、外周帶和移行帶三個腺區組成。外周帶約占總腺體體積的 70% ,該區域腺泡上皮細胞富集到的鋅離子可作為 m- 烏頭酸酶的特異性競爭性抑制劑,抑制檸檬酸鹽與其結合從而阻斷檸檬酸鹽向異檸檬酸鹽的轉化,使得前列腺上皮細胞成為“檸檬酸鹽產生細胞”。PCa組織中鋅離子含量明顯降低可解除 m- 烏頭酸酶的抑制作用,檸檬酸鹽正常進入三羧酸循環實現完全氧化,實現高效的能量代謝[51-52]。這種代謝重編程為PCa細胞的增殖和存活提供了能量優勢,也成為PCa的重要代謝特征之一。
Zhang等[53研究發現PCa細胞中的線粒體呼吸鏈復合物I琥珀酸脫氫酶(succinatedehydrogenase,SDH)可增強琥珀酸氧化過程,促進電子傳遞鏈中活性氧(reactiveoxygenspecies,ROS)的過量生成,激活下游促增殖和抗凋亡信號通路(如NF-KB與PI3K/AKT),誘發PCa惡性表型,高濃度鋅離子能夠通過競爭性抑制 m- 烏頭酸酶的活性間接抑制SDH,阻斷琥珀酸氧化過程,從而減少ROS生成并抑制相關信號通路的激活,這一發現揭示了SDH在PCa中的新機制。值得注意的是,鋅長期慢性過量暴露與細胞侵襲性具有正向關聯,如Navratil等[54]將PCa細胞長期暴露于高鋅環境后,檢測到ATP生成、線粒體數量增加,波形蛋白重塑并使E-鈣黏蛋白表達上調,促進PCa細胞向侵襲性表型轉化。提示鋅與PCa間的關聯可能有其他機制,且在探索相關機制時,需考慮富鋅環境暴露的時長、濃度等因素的影響。
4.2.2 性激素穩態
激素穩態對維持前列腺發育及功能具有重要作用,其中雄激素受體(androgen receptor,AR)信號通路具有重要意義。生理狀態下,AR在細胞質中與睪酮或雙氫睪酮(dihydrotestosterone,DHT)結合后,易位至細胞核,與DNA上的雄激素反應元件(androgen response element,ARE)結合,激活或抑制下游基因的表達。既往研究顯示 Zn2+ 與AR受體通路密切相關且具有雙重性。一方面,鋅可作為 5a- 還原酶的輔因子維持其催化活性,促進睪酮轉化為活性更強的DHT55],當鋅缺乏時,5α-還原酶活性下降,辜酮向雌二醇轉化增加,間接下調AR信號通路的配體依賴性激活;另一方面,鋅可與半胱氨酸殘基配位形成穩定的鋅指結構,確保AR能夠正確識別并結合靶基因啟動子區域的ARE5,還可通過抑制AR與前列腺特異性抗原(prostatespecificantigen,PSA)的信號傳導[5],影響AR與ARE結合,最終影響細胞的分化、增殖與遷移[58]
此外,鋅相關轉運蛋白在性激素平衡中亦發揮了關鍵作用。Shi等[5報道了斑點型POZ蛋白利用其鋅指結構域調控 17β- 羥基類固醇脫氫酶4的泛素化降解,促進PCa細胞內雄激素生成和細胞增殖。亦有前列腺相關研究觀察到ZIP/ZnT蛋白與性激素間的關聯:用辜酮與催乳素處理PCa細胞時,ZIP1表達和鋅攝取水平顯著上升[60]。Zhang等發現 ZnT8 的基因沉默或敲除顯著抑制了Leydig細胞中孕激素和睪酮的刺激生成。而Leydig細胞是睪丸中分泌睪酮的細胞,睪酮調控前列腺細胞的生長,二者通過激素信號緊密關聯[2]。上述研究表明 znT 通過調控性激素和睪酮分泌等機制影響前列腺疾病的發生與發展。
4.2.3 氧化應激與炎癥
氧化應激觸發炎癥通路激活,炎癥反應中免疫細胞生成ROS加重氧化損傷,共同促進慢性病發展[3]。Xue等[4發現鋅與鋅依賴性金屬蛋白p53均能使ROS增加,致使烏頭酸酶活性降低、線粒體功能障礙,引發PCa細胞凋亡。Hacioglu等[研究表明 ZnSO4 可通過增強PCa細胞氧化應激水平,上調TNF- σ?a 和IL-6等促炎因子的表達,抑制PCa細胞增殖。一些基于鋅的新興材料在前列腺疾病治療領域也取得了一定成果,Ge等[開發的鋅離子水凝膠交聯緩釋系統有效降低了BPH小鼠模型中的氧化應激水平,實現前列腺微環境重編程和BPH治療;氧化鋅納米顆粒可通過破壞PCa細胞線粒體功能導致ROS積累,抑制抗氧化酶活性,加劇氧化應激,并誘導脂質過氧化與膜損傷,最終引發PCa細胞的程序性死亡[]。
前列腺疾病的發生與慢性炎癥微環境亦密切相關。鋅原卟啉可以逆轉丁酸鈉對小鼠氧化應激、炎性小體活化與IL-1β表達的抑制作用,參與自身免疫性前列腺炎的病理進展[8]。Li等[]的實驗數據則證明肥胖大鼠前列腺上皮細胞呈炎癥性改變,并伴隨ZIP6、ZIP1O表達升高及 ZnT3 表達降低,而補鋅可以抑制JAK1/STAT3信號,促進前列腺上皮細胞凋亡,改善前列腺組織的病理損傷。
4.2.4 其他
細胞增殖、凋亡、周期以及缺氧微環境等其他機制也可能在前列腺疾病的發生發展中發揮作用,且鋅在其中具有重要意義。如Yan等[證實鋅可降低BPH-1細胞中Bcl-2/BAX比值,抑制NF-KB活性和 p65 蛋白表達,減少細胞數量和活力,促進細胞凋亡,調控前列腺上皮穩態。Ma等[發現鋅通過誘導TR3蛋白從細胞核易位至線粒體,直接破壞線粒體膜電位并觸發細胞色素c釋放至胞質溶膠,從而促進PCa細胞凋亡。值得注意的是,鋅能夠通過上調Smad2/4-PIAS1復合物激活p21WAF1/Cip1基因,促進Smad4核轉位與p21啟動子結合進而誘導前列腺癌細胞凋亡[72]。Nardinocchi 團隊[73]通過研究低氧誘導因子-1α(hypoxia-inducible factor- 1a ,HIF-1α)穩定性及下游信號網絡與鋅的關系,證實了鋅可協同低氧微環境促進前列腺疾病進展,具體表現為鋅誘導HIF-1α蛋白酶體降解,抑制HIF-1α募集到VEGF啟動子,降低PCa細胞的侵襲性代謝異常。上述研究證實,鋅通過調控調亡相關通路及缺氧信號,調控前列腺疾病進程,其抑制作用具有微環境依賴性。
5 臨床應用
鋅穩態在前列腺疾病臨床診療過程中具有潛在應用價值。一項隊列研究發現ZNF397(鋅相關蛋白)表達水平與AR靶向治療轉移性去勢抵抗性前列腺癌(metastaticcastration-resistantprostatecancer,mCRPC)患者的無進展生存期顯著正相關,ZNF397低表達量者更易產生耐藥性,提示在mCRPC患者的預后管理中可能需要重點關注鋅相關蛋白的改變[74-75]。然而,以膳食和鋅補充劑為核心的前列腺干預效果似乎并不明顯。Zhang等[基于51529名男性衛生專業人員的分析表明,長期或高劑量補鋅( gt;75mg/d 或 ?15 年)可能增加致死性和侵襲性PCa發生風險,但使用低劑量( 1~24mg/d )鋅補充劑卻可降低非轉移性PCa風險[77};然而使用鋅補充劑對攝入足量鋅飲食的受試者的血清辜酮水平和睪酮代謝無顯著影響[78]。與此同時,鋅聯合治療對BPH癥狀有改善作用,如黃豆昔元異構酶與鋅的組合可以減輕BPH患者癥狀,改善其生活質量[79]
隨著學科間交叉的不斷深入,利用新材料與鋅離子的協同效應治療前列腺疾病可能成為未來的主要研究方向。Yuan等[利用金屬結合劑與 Zn2+ 特異性結合,實現前列腺鋅濃度的監測與PCa的特異性診斷。也有研究發現基于鋅離子構建納米藥物系統,或與經典抗腫瘤藥物(如紫杉醇)聯合使用,可實現抗PCa作用[81]。Tao等[82]則發現一種新型叉狀肽可在生理濃度 Zn2+ 下形成水凝膠,實現前列腺組織特異性原位自組裝,負載多西他賽用于PCa治療,并有效緩解癌痛。鋅在前列腺疾病治療中的臨床應用需結合個體化劑量調整、實時監測關鍵鋅代謝指標,并通過開發新型鋅靶向遞送技術提升療效精準性,以平衡治療獲益與潛在致病風險,推動精準診療發展。
6 結語
本文探討了鋅穩態在前列腺疾病中的重要作用。前列腺是人體內鋅濃度最高的器官之一,鋅穩態失衡與PCa與BPH等疾病的發展密切相關。細胞代謝重編程及線粒體功能穩態、激素穩態、氧化應激與炎癥等多種作用機制可能參與前列腺疾病的鋅相關調控。人群應用過程中基于鋅調控的診療效果存在不一致性,可能與鋅的暴露時間、濃度及方式等有關,有待進一步探索與驗證。同時,未來在新材料的開發過程中,聚焦鋅穩態失衡在上皮間質轉化及缺氧微環境中的作用,可能有助于實現精準干預。同時也需要跨學科協作,推動鋅在前列腺疾病中的代謝調控從基礎研究向臨床應用的跨越。
倫理聲明:不適用
作者貢獻:文獻檢索和論文撰寫:韓雨桐;文獻篩選與歸納:樊九銘;論文修訂與校對:王天堃;表格整理:戚子昊;論文框架設定:張圓圓;論文審定:侯俊清
數據獲取:不適用
利益沖突聲明:無
致謝:不適用
參考文獻
1 BrayF,Laversanne M,SungH,etal.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer JClin,2024,74(3): 229-263.DOI: 10.3322/caac.21834.
2 Liu J,Dong L, Zhu Y,et al.Prostate cancer treatment-China's perspective[J]. Cancer Lett,2022,550:215927. DOI:10.1016/ j.canlet.2022.215927.
3 ChenB,YuP,Chan WN,etal.Cellular zinc metabolismand zinc signaling: from biological functions to diseases and therapeutic targets[J]. Signal Transduct Target Ther,2024,9(1): 6.DOI: 10.1038/s41392-023-01679-y.
4 LoweNM,Gupta S.Food fortification programmes and zinc deficiency[J].NatFood,2024,5(7):546-547.DOI:10.1038/ s43016-024-01003-z.
5 ValleeBL,FalchukKH.Thebiochemical basis ofzinc physiology[J].Physiol Rev,1993,73(1):79-118.DOI:10.1152/ physrev.1993.73.1.79.
6 Ma T,XieW,Xu Z, et al.Estrogen-related receptor alpha (ERRα) controls the stemness and cellular energetics of prostate cancer cells via its direct regulation of citrate metabolism and zinc transportation[J]. Cell Death Dis,2025,16(1): 154. DOI: 10.1038/ s41419-025-07460- -Z
7 Kiouri DP,Chasapis CT,Mavromoustakos T,et al. Zinc and its binding proteins: essential roles and therapeutic potential[J]. Arch Toxicol,2025,99(1): 23-41. D0I: 10.1007/s00204-024-03891-3.
8 Cragg RA,Phillips SR, Piper JM, et al. Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation[J]. Gut, 2005, 54(4): 469-478.DOI: 10.1136/ gut.2004.041962.
9 Krebs NF. Overview of zinc absorption and excretion in the human gastrointestinal tract[J].J Nutr,2000,130(5S Suppl): 1374s-1377s. DOI: 10.1093/jn/130.5.1374S.
10StilesLI,FerraoK,MehtaKJ.Role of zincinhealthand disease[J].ClinExp Med,2024,24(1):38. DOI: 10.1007/s10238- 024-01302-6.
11 Maares M, Haase H.A guide to human zinc absorption: general overview and recent advances ol in vitro intestinal models[J]. Nutrients,2020,12(3): 762. DOI: 10.3390/nu12030762.
12Wang F, Kim BE, Petris MJ, et al. The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells[J]. J Biol Chem,2004,279(49): 51433-51441. DOI: 10.1074/jbc.M408361200.
13Girijashanker K, He L, Soleimani M, et al. Slc39a14 gene encodes ZIP14,a metal/bicarbonate symporter: similarities to the ZIP8 transporter[J]. Mol Pharmacol,2008,73(5):1413-1423.DOI: 10.1124/mol.107.043588.
14Mcmahon RJ, Cousins RJ.Mammalian zinc transporters[J]. JNutr, 1998,128(4): 667-670. D0I: 10.1093/jn/128.4.667.
15Geiser J, Venken KJ, De Lisle RC,et al.A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity[J]. PLoS Genet, 2012, 8(6): e1002766. DOI: 10.1371/ journal.pgen.1002766.
16He L,Girijashanker K,Dalton TP,et al. ZIP8,member of the solute-carrier-39 (SLC39) metal-transporter family: characterizationof transporter properties[J]. MolPharmacol,2006, 70(1): 171-180.D0I: 10.1124/mol.106.024521.
17Bosomworth HJ,Thornton JK,Coneyworth LJ,et al.Efflux function, tissue-specific expressionand intracellular trafficking of the Zn transporter ZnT10 indicate roles in adult Zn homeostasis[J]. Metallomics,2012,4(8): 771-779.D0I: 10.1039/c2mt20088k.
18Kambe T, Tsuji T,Hashimoto A,etal.The physiological, biochemical,and molecular roles of zinc transporters in zinc homeostasis and metabolism[J].Physiol Rev,2015, 95(3):749- 784.DOI: 10.1152/physrev.00035.2014.
19Liuzzi JP,Bobo JA,Lichten LA,et al.Responsive transporter genes within the murine intestinal-pancreatic axis forma basis of zinc homeostasis[J].Proc Natl Acad Sci USA,2004,101(40): 14355-14360. DOI: 10.1073/pnas.0406216101.
20Wang X, Gao H,Wu W,et al. The zinc transporter Slc39a5 controls glucose sensing and insulin secretion in pancreatic β -cells viaSirt1-and Pgc- 10 -mediatedregulationofGlut2[J].Protein Cell,2019,10(6): 436-449.D0I: 10.1007/s13238-018-0580-1.
21 Trumbo P, Yates AA,Schlicker S, et al.Dietary reference intakes: vitamin A,vitaminK,arsenic,boron,chromium, copper,iodine, iron,manganese,molybdenum, nickel, silicon, vanadium,and zinc[J]. J Am Diet Assoc,2001,101(3): 294-301. DOI: 10.1016/ S0002-8223(01)00078-5.
22Costa MI, Sarmento-Ribeiro AB,Goncalves AC. Zinc: from biological functions to therapeutic potential[J]. IntJMol Sci,2023, 24(5): 4822. DOI: 10.3390/ijms24054822.
23LiX,Han M, Zhang H,et al. Structures and biological functions of zinc finger proteins and their roles in hepatocellularcarcinoma[J]. Biomark Res,2022, 10(1): 2. DOI: 10.1186/s40364-021-00345-1.
24Pinter TB, Stillman MJ. Putting the pieces into place: properties of intact zincmetallothionein1A determined from interaction of its isolated domains with carbonic anhydrase[J].Biochem J,2015, 471/3):347-356 D0I:101042/hi20150676
25Yin S,Duan M,Fang B,et al. Zinc homeostasis and regulation: Zinc transmembrane transport through transporters[J]. Crit Rev Food Sci Nutr,2023,63(25): 7627-7237. DOI: 10.1080/10408398.2022.2048292.
26Gioeli D. Signal transduction in prostate cancer progression[J]. Clin Sci (Lond),2005,108(4): 293-308. D01: 10.1042/ cs20040329.
27Kim YR,Kim IJ, Kang TW, et al. HOXB13 downregulates intracellular zinc and increases NF-kB signaling to promote prostate cancer metastasis[J]. Oncogene,2014, 33(37): 4558- 4567.DOI: 10.1038/onc.2013.404.
28Han YC, Zheng ZL, Zuo ZH,et al. Metalothionein 1 h tumour suppressor activity in prostate cancer is mediated by euchromatin methyltransferase1[J].JPathol,2013,230(2): 184-193.DOI: 10.1002/path.4169.
29Zuo Z,Billings T,Walker M,et al. On the dependent recognition of some long zinc finger proteins[J]. Nucleic AcidsRes,2023, 51(11): 5364-5376. DOI: 10.1093/nar/gkad207.
30Yang Q, Lang C,Wu Z, et al. MAZ promotes prostate cancer bonemetastasis throughtranscriptionally activating the KRasdependent RalGEFs pathway[J]. JExp Clin Cancer Res, 2019, 38(1): 391. DOI: 10.1186/s13046-019-1374-x.
31 Zheng C,Wu H, Jin S,etal.Roles of Myc-associated zinc finger protein in malignant tumors[J].Asia Pac JClin Oncol,2022,18(6): 506-514. DOI: 10.111/ajco.13748.
32Jiang X,Zhang C, Qi S,et al. Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportinconducted iron egress[J].Oncotarget,2016,7(51): 84893-84906. DOI: 10.18632/oncotarget.12753.
33Xu X,Zhu Z, XuY,et al.Effects of zinc finger protein 403 on the proliferation,migration and invasion abilities of prostate cancer cells[J]. Oncol Rep,2020, 44(6): 2455-2464. DOI: 10.3892/ or.2020.7786.
34Franklin RB,Feng P,Milon B,et al.hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer[J]. Mol Cancer,2005,4: 32.D0I:10.1186/1476-4598-4-32.
35Desouki MM, Geradts J, Milon B,et al. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands[J]. Mol Cancer,20o7,6: 37.DOI: 10.1186/1476-4598-6-37.
36Thomas P,PangY,Dong J,et al.Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis[J]. Endocrinology, 2014,155(11): 4250-4265. D01: 10.1210/ en.2014-1201.
37HenshallSM, Afar DE,Rasiah KK,et al. Expression of the zinc transporter ZnT4 is decreased in the progression fromearly prostate disease to invasive prostate cancer[J]. Oncogene,2003, 22(38): 6005-6012. DOI: 10.1038/sj.0nc.1206797.
38Wei H, Desouki MM, Lin S,et al.Differential expression of metallothioneins (MTs) 1,2,and 3 in response to zinc treatment I numan prostate Hormai anu mangnamt cens anu ussues[J]. MoI Cancer,2008,77. DOI: 10.1186/1476-4598-7-7.
39Difeo A, Martigneti JA,Narla G. The role of KLF6 and its splice variants in cancer therapy[J]. Drug Resist Updat, 2Oo9,12(1-2): 1-7. DOI: 10.1016/j.drup.2008.11.001.
40Subramaniam M, Hawse JR,Rajamannan NM,et al.Functional role of KLF1O in multiple disease processes[J]. Biofactors, 2010, 36(1): 8-18. DOI: 10.1002/biof.67.
41Antao AM,Ramakrishna S,Kim KS.The role of Nkx3.1 in cancers and stemness[J]. Int J Stem Cells, 2021,14(2): 168-179. DOI: 10.15283/ijsc20121.
42Song Y, Xu Y,Pan C,et al. The emerging role of SPOP protein in tumorigenesis and cancer therapy[J]. Mol Cancer,2O2o,19(1): 2. DOI: 10.1186/s12943-019-1124-x.
43Vickram S,Rohini K,Srinivasan S,etal.Role of zinc (Zn)in human reproduction: a journey from initial spermatogenesis to childbirth[J]. Int J Mol Sci,2021,22(4): 2188.DOI: 10.3390/ ijms22042188.
44Chasapis CT, Ntoupa PA, Spiliopoulou CA,et al.Recent aspects of the effects of zinc on human health[J].Arch Toxicol,2020, 94(5): 1443-1460.D0I: 10.1007/s00204-020-02702-9.
45Zhao J, Wu Q,Hu X,et al. Comparative study of serum zinc concentrations in benign and malignant prostate disease:a systematic review and Meta-analysis[J].Sci Rep,2O16,6: 25778. DOI: 10.1038/srep28606.
46Amadi C,Aleme BM.The prevalence of zinc deficiency among men with and without prostate cancer in port harcourt, nigeria[J]. Nutr Cancer,2020,72(6):1018-1025.DOI: 10.1080/01635581.2019.1664600.
47PietrzakS,MarciniakW,DerkaczR,etal.Correlationbetween selenium and zinc levels and survival among prostate cancer patients[J].Nutrients,2024,16(4): 527.DOI: 10.3390/ nu16040527.
48Goodarzi D,Cyrus A,Baghinia MR,etal. The efficacy of zinc for treatment of chronic prostatitis[J].Acta Med Indones,2O13,45(4): 259-264. https:/pubmed.ncbi.nlm.nih.gov/24448329/
49Tavani A,Longoni E,Boseti C,et al. Intake of selected micronutrientsand the risk of surgicallytreated benignprostatic hyperplasia: a case-control study from Italy[J].Eur Urol,2006, 50(3): 549-554. DOI: 10.1016/j.eururo.2005.11.027.
50Stewart KL,Lephart ED.Overview of BPH: symptom relief with dietary polyphenols, vitamins and phytochemicals by nutraceutical supplements with implications to the prostate microbiome[J]. Int J Mol Sci,2023,24(6): 5486. DOI: 10.3390/ijms24065486.
51Fontana F,Anselmi M,Limonta P.Unraveling the peculiar features of mitochondrial metabolism and dynamics in prostate cancer[J]. Cancers (Basel),2023,15(4): 1192. DOI: 10.3390/ cancers15041192.
52Liu BH,Xu CZ,LiuY,etal.Mitochondrial qualitycontrol in human health and disease[J]. Mil Med Res,2024,11(1): 32. DOI: 10.1186/s40779-024-00536-5.
53Zhang A, Gupte AA, Chatterjee S, et al. Enhanced succinate generation in human prostate cancer[J]. Int JMol Sci,2022, 23(20): 12168. D0I: 10.3390/ijms232012168.
54Navratil J,Kratochvilova M, Raudenska M, et al.Long-term zinc treatment alters the mechanical properties and metabolism of prostate cancer cells[J]. Cancer Cell Int,2024,24(1): 313. DOI: 10.1186/s12935-024-03495- y
55Om AS,Chung KW. Dietary zinc deficiency alters 5 alphareduction and aromatization of testosterone and androgen and estrogen receptors in rat liver[J]. JNutr,1996,126(4): 842-848. DOI: 10.1093/jn/126.4.842.
56Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview[J]. Endocr Rev,2002,23(2): 175-200. DOI:10.1210/ edrv.23.2.0460.
57To PK,Do MH,Cho YS,et al. Zinc inhibits expression of androgen receptor to suppress growth of prostate cancer cells[J]. Int JMol Sci, 2018,19(10): 3062. DO1: 10.3390/ijms19103062.
58Knudsen KE, Penning TM. Partners in crime: deregulation ofAR activity and androgen synthesis in prostate cancer[J]. TrendsEndocrinol Metab,2010,21(5):315-324.DOI:10.1016/ j.tem.2010.01.002.
59Shi L, Yan Y,He Y,et al. Mutated SPOP E3 ligase promotes 17βHSD4 protein degradation to drive androgenesis and prostate cancer progression[J]. Cancer Res,2021,81(13): 3593-3606. DOI: 10.1158/0008-5472.Can-20-3258.
60Costello LC,Liu Y,Zou J,et al.Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone[J]. JBiol Chem,1999,274(25): 17499- 17504. DOI: 10.1074/jbc.274.25.17499.
61ZhangX,Guan T, Yang B,et al.A novel role for zinc transporter 8 in the facilitation of zinc accumulation and regulation of testosterone synthesis in Leydig cells of human and mouse testicles[J].Metabolism,2018,8840-8850.DOI: 10.1016/ j.metabol.2018.09.002.
62Marin De Jesus S,Vigueras-Villasenor RM,Cortes-Barberena E,et al. Zinc and its impact on the function of the testicle and epididymis[J]. Int J Mol Sci,2024,25(16).DOI: 10.3390/ ijms25168991.
63Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species[J]. Nat Rev Immunol,2013,13(5): 349-361. DOI: 10.1038/nri3423.
64Xue YN,Liu YN,Su J, et al. Zinc cooperates with p53 to inhibit the activity of mitochondrial aconitase through reactive oxygen species accumulation[J]. Cancer Med, 2019, 8(5): 2462-2473. DOI: 10.1002/cam4.2130.
65Hacioglu C,Kacar S,KarF,et al.Concentration-dependent effects of zinc sulfate on DU-145 human prostate cancer cel line: oxidative,apoptotic,inflammatory,and morphological analyzes[J]. Biol TraceElemRes,2020,195(2):436-444.DOI:10.1007/ s12011-019-01879-0.
66Ge J,Fang C,Tan H,et al.Endogenous zinc-ion-triggered in situ gelation enables zn capture to reprogram benign hyperplastic prostate microenvironment and shrink prostate[J].Adv Mater, 2024,36(11): e2307796.D0I: 10.1002/adma.202307796.
67Motafeghi F,MortazaviP,Shokrzadeh M.Anticancer activityof zinc oxide nanoparticles on prostate and colon cancer cel line[J]. Toxicol Res (Camb),2024,13(1): tfad127.DOI: 10.1093/toxres/ tfad127.
68Hua X, Zhang J, Chen J, et al. Sodium butyrate alleviates experimental autoimmune prostatitis by inhibiting oxidative stressand NLRP3 inflammasome activation via the Nrf2/HO-1 pathway[J]. Prostate,2024,84(7): 666-681.DOI: 10.1002/ pros.24683.
69Li Y,Wu Z, MaJ, et al. Zinc attenuates prostate hyperplasia and inflammatory injury in obese rats by regulating zinc homeostasis and inhibiting the JAK1/STAT3 pathway[J]. Prostate,2025,85(8): 767-776. DOI: 10.1002/pros.24883.
70 YanM,HardinK,Ho E.Differential response to zinc-induced apoptosis in benign prostate hyperplasia and prostate cancer cells[J]. J Nutr Biochem,2010,21(8): 687-694.DOI: 10.1016/ j.jnutbio.2009.04.002.
71Ma D,Guo Y,FuY,et al.Temporal relationship of the orphan receptor TR3 translocation and expression with zinc-induced apoptosis in prostate cancer cells[J]. Transl Androl Urol, 2023, 12(3): 444-454.DOI:10.21037/tau-23-61.
72Yang N, Zhao B,Rasul A,etal.PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis[J]. Cell Death Dis,2013,4(9):e811.DOI:10.1038/ cddis.2013.333.
73Nardinocchi L,Pantisano V,Puca R,et al. Zinc downregulates HIF-1αand inhibits itsactivity in tumor cellsin vitro and in vivo[J].PLoS One,2010,5(12): e15048.DOI:10.1371/journal. pone.0015048.
74XuY,YangY,Wang Z,etal. ZNF397 deficiency triggers TET2- driven lineageplasticityand AR-targetedtherapyresistancein prostate cancer[J].Cancer Discov,2024,14(8): 1496-1521.DOI: 10.1158/2159-8290.Cd-23-0539.
75Xue YN,Yu BB,Liu YN, et al. Zincpromotes prostate cancer cell chemosensitivityto paclitaxel byinhibiting epithelialmesenchymal transition and inducing apoptosis[J].Prostate,2019, 79(6): 647-656. DOI: 10.1002/pros.23772.
76ZhangY,SongM,MucciLA,etal.Zinc supplement use and risk of aggressive prostate cancer: a 3O-year follow-up study[J]. Eur JEpidemiol, 2022, 37(12): 1251-1260. DOI: 10.1007/s10654- 022-00922-0.
77ZhangY,Stopsack KH,WuK,etal.Post-diagnostic zinc supplement use and prostate cancer survival among men with nonmetastatic prostate cancer[J]. J Urol, 2023,209(3): 549-556. DOI:10.1097/ju.0000000000003080.
78KohlerK,Parr MK, Geyer H,etal.Serum testosterone and urinary excretionof steroid hormonemetabolitesafteradministrationofa high-dose zinc supplement[J]. 2009, 63(1): 65-70. DOI: 10.1038/ sj.ejcn.1602899.
79Tiscione D,GallelliL, Tamanini I, et al. Daidzein plus isolase associated with zinc improves clinical symptoms and quality of life in patients with LUTS due to benign prostatic hyperplasia: results from a phaseI-II study[J].Arch Ital Urol Androl,2017,89(1): 12- 16. DOI: 10.4081/aiua.2017.1.12.
80Yuan Y,Wei Z, Chu C,etal.Development of zinc-specific iCEST MRI as an imaging biomarker for prostate cancer[J].Angew Chem Int Ed Engl,2019,58(43): 15512-15517.DOI: 10.1002/ anie.201909429.
81XueY,TangH, ChenG,etal. Intracellular regulationof zinc by metal-organic framework-mediated genome editing for prostate cancer therapy[J].Biomater Sci,2023,11(23): 7556-7567.DOI: 10.1039/d3bm00002h.
82Tao M,Xu K,He S,et al. Zinc-ion-mediated self-assembly of forky peptides for prostate cancer-specific drug delivery[J]. Chem Commun (Camb),2018, 54(37): 4673-4676. DOI: 10.1039/ c8cc00604k.
收稿日期:2025年02月26日修回日期:2025年05月06日本文編輯:桂裕亮 曹越