【摘要】" 目的" 探討早期浸潤性乳腺癌患者磁共振成像(MRI)影像學參數與腋窩淋巴結轉移的相關性并構建預測模型。方法" 收集2015年1月1日至2019年5月31日天津醫科大學腫瘤醫院收治的早期浸潤性乳腺癌(臨床分期 I-III 期)患者為研究對象,以病理診斷為依據,其中212例患者發生腋窩淋巴結轉移為轉移組(病例組),336例患者未發生腋窩淋巴結轉移為未轉移組(對照組)。單因素分析臨床特征、病理特征、MRI影像學參數與腋窩淋巴結轉移的關系,進一步采用多因Logistic回歸模型篩選影響腋窩淋巴結轉移的因素。結果" 單因素分析顯示,腫瘤位置(左/右乳)、最大直徑、組織學分級及淋巴結短徑長度、淋巴門結構狀態、皮質最大厚度等MRI影像學參數對腋窩淋巴結轉移狀態有影響(Plt;0.05)。多因素Logistic回歸分析顯示,乳腺腫瘤位置及淋巴結短徑、皮質厚度、淋巴門等影像學參數是腋窩淋巴結轉移的影響因素(Plt;0.05)。根據多因素分析結果構建預測模型。ROC分析顯示,該模型的AUC為0.763(0.722~0.805),,具有一定的預測效能。當Y≥0.362時,預測的靈敏度為68.9%,特異度25.9%,預測效果不理想。結論" 淋巴結短徑、皮質厚度、淋巴門等影像學參數是腋窩淋巴結轉移的影響因素;基于此構建的預測模型對早期浸潤性乳腺癌腋窩淋巴結轉移具有一定的預測效能,但預測效果不佳,有待進一步完善優化。
【關鍵詞】" 乳腺癌;腋窩淋巴結;核磁共振成像;預測模型
中圖分類號" R737.9" "文獻標識碼" A" " 文章編號" 1671-0223(2025)17--05
MRI-based predictive modeling of axillary lymph node metastasis: Quantitative parameter analysis and model validation" Li Ling,Chen Yunxiu,Pan Zhanyu.Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin 300060,China
【Abstract】" Objective To investigate the correlation between magnetic resonance imaging (MRI) parameters and axillary lymph node metastasis (ALNM) in early-stage invasive breast cancer and develop a predictive model.? Methods" Patients with early-stage invasive breast cancer (clinical stage I-III) treated at Tianjin Medical University Cancer Hospital from January 1, 2015, to May 31, 2019, were enrolled. Based on pathological diagnosis, 212 patients with ALNM were assigned to the metastasis group (case group), and 336 patients without ALNM constituted the non-metastasis group (control group).Univariate analyses evaluated the associations of clinical characteristics, pathological features, and MRI parameters with ALNM. Statistically significant variables were subsequently incorporated into a multivariate logistic regression model to identify independent predictors of ALNM. ?Results" Univariate analysis revealed significant associations between ALNM status and tumor laterality (left/right breast), maximum tumor diameter, histological grade, as well as MRI parameters including lymph node short-axis diameter, hilum status, and maximum cortical thickness (all Plt;0.05). Multivariate logistic regression confirmed that tumor laterality, lymph node short-axis diameter, cortical thickness, and hilum status were independent predictors of ALNM (Plt;0.05). A predictive model was constructed based on these factors.Receiver operating characteristic (ROC) analysis demonstrated an area under the curve (AUC) of 0.763 (95% CI: 0.722–0.805), indicating modest predictive performance. At the optimal cutoff value (Y≥0.362), the model yielded a sensitivity of 68.9% and specificity of 25.9%, suggesting suboptimal discriminative ability.? Conclusion" Lymph node short-axis diameter, cortical thickness, and hilum status are significant imaging predictors of ALNM. The constructed model exhibits modest yet limited predictive efficacy for ALNM in early-stage invasive breast cancer, necessitating further refinement and optimization for clinical application.
【Key words】" "Breast cancer;Axillary lymph node;Magnetic resonance imaging;Predictive model
乳腺癌是女性發病率最高的惡性腫瘤,位居女性癌癥相關死因的第2位[1]。當前乳腺癌的主要治療策略涵蓋手術治療、放射治療及系統性藥物治療(包括化療、靶向治療、免疫治療、內分泌治療和抗體藥物偶聯物治療)。制定個體化治療方案需綜合評估腫瘤生物學特征(如原發灶大小、分子分型)、區域淋巴結轉移狀態以及患者治療意愿與生活質量需求。其中,腋窩淋巴結轉移狀態的準確評估作為預后的關鍵預測因子及治療決策的核心依據,在臨床管理中具有決定性意義[2]。因此,建立精準的腋窩淋巴結無創評估體系仍是乳腺外科領域的重大挑戰。
目前臨床用于評估腋窩淋巴結狀態的常規無創影像學技術包括體格檢查、乳腺X線攝影(mammography)、超聲檢查(ultrasound)、磁共振成像(magnetic resonance imaging, MRI)、計算機斷層掃描(computed tomography, CT)及正電子發射斷層掃描(positron emission tomography, PET)。基于無創性、無電離輻射及高軟組織分辨率的優勢,超聲與MRI技術已成為乳腺癌患者腋窩淋巴結評估的重要影像學手段。本研究擬整合患者臨床病理特征與MRI影像學參數,篩選腋窩淋巴結轉移的預測因子,構建綜合預測模型。為更多符合腋窩淋巴結清掃術(ALND)豁免標準的早期乳腺癌患者提供循證依據,從而降低手術相關并發癥風險并改善患者生存質量。
1" 對象與方法
1.1" 研究對象
回顧性收集2015年1月1日至2019年5月31日于天津醫科大學腫瘤醫院接受治療的548例早期浸潤性乳腺癌(臨床分期I-III期)患者為研究對象,以病理診斷為依據,其中212例患者發生腋窩淋巴結轉移為轉移組(病例組),336例患者未發生腋窩淋巴結轉移為未轉移組(對照組)。
1.2" 資料收集
(1)臨床特征:包括患者的年齡、乳腺癌家族史、月經狀態、原發腫瘤最大徑、腫瘤位置(左/右乳)、原發腫瘤象限位置。
(2)病理特征:包括乳腺癌病理類型、組織學分級(依據Nottingham分級系統)、分子分型、腋窩淋巴結轉移狀態、免疫組化指標[雌激素受體(ER)、孕激素受體(PR)、人表皮生長因子受體2(HER2)表達狀態、Ki-67標記指數]。
(3)MRI影像學參數:淋巴結短軸徑、皮質最大厚度、長軸/短軸比值(L/T)、淋巴門結構狀態(存在/消失)。
1.3" 數據分析
采用SPSS 22.0統計學軟件分析處理數據。單因素分析中,分類變量組間構成比采用卡方檢驗;符合正態分布的連續變量以“均數±標準差”表示,組間均數比較采用獨立樣本t檢驗。多因素分析中,將單因素分析中具有統計學意義的變量納入多因素Logistic回歸模型,進一步篩選腋窩淋巴結轉移的預測因子,并據此構建預測模型。以Plt;0.05為差異具有統計學意義。
2" 結果
2.1" 單因素分析
轉移組與未轉移組患者間乳腺腫瘤位置、乳腺腫瘤最大直徑、組織學分級及淋巴結短徑、皮質厚度、淋巴門等影像學參數差異具有統計學意義(Plt;0.05)
2.2" 多因素分析
以是否淋巴結轉移為因變量(是=1,否=0),以乳腺腫瘤位置、乳腺腫瘤最大直徑及淋巴結短徑、皮質厚度、淋巴門等影像學參數自變量,多因素Logistic回歸Fenix顯示,乳腺腫瘤位置、及淋巴結短徑、皮質厚度、淋巴門等影像學參數是腋窩淋巴結轉移的影響因素(Plt;0.05)
2.3" 建立腋窩淋巴結轉移的預測模型
根據表2分析結果構建預測模型,即:
Y=?0.399×位置(左=1,右=0)+1.361×淋巴結短徑(lt;10mm =1,≥10mm =0)?0.964×淋巴門(存在=1,消失=0)?0.579×皮質厚度(gt;3mm =1,≤3mm =0)?0.350
以Y值為預測指標,ROC曲線(見圖1)顯示,曲線下面積為0.763(0.722~0.805),具有一定的預測效能。當Y≥0.362時,預測的靈敏度為68.9%,特異度25.9%,預測效果不理想。
3" 討論
乳腺癌早期診斷率的提升使腋窩淋巴結狀態的精準評估成為臨床決策的關鍵環節。當前臨床面臨的核心矛盾在于:組織學證實僅20%~30%的早期乳腺癌患者存在實際腋窩淋巴結轉移[3-5],這意味著約70%~80%的患者可能接受了非必要的前哨淋巴結活檢(SLNB)。盡管SLNB相較于傳統腋窩清掃顯著降低了手術創傷,但仍有31%~65%的患者報告術后持續性疼痛、感覺異常及上肢功能障礙[6]。在精準醫療框架下,建立有效的術前預測模型對優化治療決策具有迫切意義,這不僅關系到新輔助治療方案的制定,更直接影響患者生活質量與醫療資源合理配置[7-9]。
本研究通過多因素Logistic回歸分析構建的預測模型,揭示了腋窩淋巴結轉移的獨立預測因子體系。在納入的臨床病理因素中,腫瘤位置(右乳對比左乳)展現出明確的保護效應。值得注意的是,腫瘤最大直徑與組織學分級未達到統計學顯著性,提示單純依靠傳統病理指標難以實現精準預測。尤其引人關注的是組織學分級呈現的反常分布—Ⅱ級患者轉移率(39.31%)高于Ⅲ級(32.37%),該現象在多項獨立研究中被重復驗證[10-14]。潛在機制可能與高級別腫瘤更強的免疫原性誘導宿主免疫應答,或特定分子通路(如TGF-β/Smad信號)的差異化激活有關,但具體分子機制仍需通過轉錄組測序等研究闡明。
MRI影像學參數在本模型中展現出一定的預測效能。淋巴結短徑增大被確認為最強危險因素,其預測價值超越所有臨床病理指標。當淋巴結短徑≥10mm時,轉移風險增加近3倍,這符合轉移性淋巴結進行性增生的生物學特性。淋巴門結構消失與皮質厚度變薄作為保護因素,其機制與腫瘤轉移的病理進程高度吻合:轉移灶突破被膜侵犯皮質實質時,通常伴隨皮質不均勻增厚(gt;3mm)及淋巴門脂肪組織破壞。MRI的三維成像能力克服了傳統二維影像的局限性,實現腋窩I-III級淋巴結的全景可視化,且圖像質量不受操作者經驗影響 [15]。相較于ACOSOG-Z1071試驗中單純影像學評估56.5%的漏診率[16],本模型的多模態整合策略顯著提升了診斷敏感性。
此次構建的綜合預測模型結合了早期浸潤性乳腺癌患者的腫瘤位置(左/右乳)和MRI(淋巴結短徑、淋巴門結構和皮質厚度),結果顯示,該模型預測的靈敏度為68.9%,表明其具備一定的陽性病例識別能力。然而特異度僅為25.9%,提示當前版本尚無法滿足臨床決策的精度需求。未來研究需通過多中心外部驗證、模型校準及多組學標志物整合(如循環腫瘤DNA)持續優化,方能使此類模型在乳腺癌個體化治療管理中發揮實質作用。
4" 參考文獻
[1] 王云月,阮驪韜,任予,等.CEUS診斷乳腺癌研究進展[J].中國醫學影像技術, 2018,34(4):633-636.
[2] Jatoi I,Hilsenbeck S G,Clark G M,et al.Significance of axillary lymph node metastasis in primary breast cancer[J].Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology,1999,17(8):2334-2340.
[3] Cheng H T,Huang T,Wang W,et al.Clinicopathological features of breast cancer with different molecular subtypes in Chinese women[J].Journal of Huazhong University of Science and Technology. Medical Sciences = Hua Zhong Ke Ji Da Xue Xue Bao. Yi Xue Ying De Wen Ban = Huazhong Keji Daxue Xuebao. Yixue Yingdewen Ban,2013,33(1):117-121.
[4] Giuliano A E,Hunt K K,Ballman K V,et al.Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis:A randomized clinical trial[J].JAMA, 2011,305(6):569-575.
[5] Kell M R,Burke J P,Barry M,et al.Outcome of axillary staging in early breast cancer:A meta-analysis[J].Breast Cancer Research and Treatment,2010,120(2):441-447.
[6] Swenson K K,Nissen M J,Ceronsky C,et al.Comparison of side effects between sentinel lymph node and axillary lymph node dissection for breast cancer[J].Annals of Surgical Oncology,2002,9(8):745-753.
[7] Carter C L,Allen C,Henson D E.Relation of tumor size,lymph node status,and survival in 24740 breast cancer cases[J].Cancer,1989,63(1):181-187.
[8] Rosen P P,Groshen S,Saigo P E,et al.Pathological prognostic factors in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma: a study of 644 patients with median follow-up of 18 years[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology,1989,7(9):1239-1251.
[9] Quiet C A,Ferguson D J,Weichselbaum R R,et al.Natural history of node-negative breast cancer:A study of 826 patients with long-term follow-up[J].Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology,1995,13(5):1144-1151.
[10] 林彩玲,何毅輝,林志武.乳腺癌腋窩淋巴結轉移危險因素的臨床研究[J]. 中華實驗外科雜志,2020,37(9):1716-1719.
[11] Yip C H,Taib N A,Tan G H,et al.Predictors of axillary lymph node metastases in breast cancer:Is there a role for minimal axillary surgery[J].World Journal of Surgery,2009,33(1):54-57.
[12] Chen K,Liu J,Li S,et al.Development of nomograms to predict axillary lymph node status in breast cancer patients[J].BMC cancer, 2017,17(1):561.
[13] Lim G H,Teo S Y,Allen J C,et al.Determining whether high nodal burden in early breast cancer patients can be predicted preoperatively to avoid sentinel lymph node biopsy[J].Journal of Breast Cancer,2019,22(1):67-76.
[14] Qiu S Q,Aarnink M,Van Maaren M C,et al.Validation and update of a lymph node metastasis prediction model for breast cancer[J]. European Journal of Surgical Oncology: The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology,2018,44(5):700-707.
[15] Rahbar H,Partridge S C,Javid S H,et al.Imaging axillary lymph nodes in patients with newly diagnosed breast cancer[J].Current Problems in Diagnostic Radiology,2012,41(5):149-158.
[16] Boughey J C,Ballman K V,Hunt K K,et al.Axillary ultrasound after neoadjuvant chemotherapy and its impact on sentinel lymph node surgery:Results from the American College of Surgeons Oncology Group Z1071 Trial (Alliance)[J].Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2015,33(30):3386-3393.
[17] Yoshihara E,Smeets A,Laenen A,et al.Predictors of axillary lymph node metastases in early breast cancer and their applicability in clinical practice[J].Breast (Edinburgh,Scotland),2013,22(3):357-361.
[18] Barth A,Craig P H,Silverstein M J.Predictors of axillary lymph node metastases in patients with T1 breast carcinoma[J].Cancer, 1997,79(10):1918-1922.
[19] Chadha M,Chabon A B,Friedmann P,et al.Predictors of axillary lymph node metastases in patients with T1 breast cancer:A multivariate analysis[J].Cancer,1994,73(2):350-353.
[20] Harden S P,Neal A J,Al-Nasiri N,et al.Predicting axillary lymph node metastases in patients with T1 infiltrating ductal carcinoma of the breast[J].Breast (Edinburgh,Scotland),2001,10(2):155-159.
[21] Bevilacqua J L B,Kattan M W,Fey J V,et al.Doctor, what are my chances of having a positive sentinel node? A validated nomogram for risk estimation[J].Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology,2007,25(24): 3670-3679.
[22] Barranger E,Coutant C,Flahault A,et al.An axilla scoring system to predict non-sentinel lymph node status in breast cancer patients with sentinel lymph node involvement[J].Breast Cancer Research and Treatment,2005,91(2):113-119.
[2025-07-13收稿]