[關鍵詞]焦慮;行為癥狀;黑色素濃集激素1型受體;伏隔核;小鼠,近交C57BL[中圖分類號]R749.72;R392.116[文獻標志碼]A[文章編號]2096-5532(2025)03-0331-06doi:10.11712/jms.2096-5532.2025.61.077 [開放科學(資源服務)標識碼(OSID)][網絡出版]https://link.cnki.net/urlid/37.1517.R.20250709.1559.004; 2025-07-10 13:04:33
Efect of SNAP-94847 onanxiety-likebehaviorinmiceviathe nucleus accumbensFENG Xufei,WANG Xiaoxuan,TANGWen hui,WEILuling,GUOFeifei,LIUHua(DepartmentofPhysiologyandPathophysiology,SchoolofBasic Medicine,Qingdao University,Qingdao 266071,China)
[Abstract]ObjectiveTo investigate the efectof SNAP-94847,amelanin-concentrating hormone receptor blocker,onanxiety-like behaviorinmiceviathenucleusacumbens shell(NAcSh).MethodsThechronic-acutecombining stress(CACS) method was usedtoestablishamouse modelofanxiety,andaccording tothe injectionof normal saline(NS)or SNAPinto the NAcSh,the CACS model mice and normal control(CON)mice were randomly divided into CON+NS group,CON+SNAP group,CACS + NS group,and CACS + SNAP group,with 8 mice in each group. The open field test (OFT),elevated plus maze (EPM),andthemarbleburyingtest(MBT)wereusedtoassessthechangesinrelatedindicesforanxiety-relatedbehaviorinmice after microinjectionof SNAP-94847intotheNAcSh.ResultsThere were significant diferencesinOFT,EPM,and MBTbetween all the groups (F=3.273-13.210,Plt;0.05) . Compared with the CON + NS group,the CACS + NS group had significant reductions in residence time and moving distance within the central region of OFT ( ?Plt;0.01) ,a significant reduction in total moving distance ( ΔPlt;0.05 ),significant reductions in the number of entries into the open arm and residence time in EPM( Plt;0.01? : and a significant increase in the number of buried beads in MBT ( Plt;0.01 .Compared with the CACS + NS group,the CACS + SNAP grouphad significant increases inresidence time and moving distance inthecentralregion of OFT,significantincrease in thenumberofentriesintotheopenarmandresidencetimeinEPM,andasignificantreductioninthenumberofburiedbeads in MBT(all Plt;0.05 ).ConclusionThere is a significant increase in anxiety-like behavior in CACS mice,and microinjection of SNAP-94847 into the NAcSh can improve such anxiety-like behavior.
[Key words] anxiety;behavioral symptoms;melanin concentrating hormone-l receptor;nucleus accumben;mice,inbred C57BL
焦慮是全球最常見的心理疾病之一,其特征是與實際威脅不成比例的持續性恐懼及擔憂情緒[1-2]焦慮的形成與大腦邊緣系統有密切的聯系[3-4]。已有研究結果表明,急慢性聯合應激法(CACS)誘發的焦慮模型小鼠,其下丘腦外側區內的黑色素濃集激素(MCH)表達神經元激活異常增多、過度活躍,可能是導致焦慮發生的原因之一[5]。在哺乳動物中,MCH主要通過MCH受體1(MCHR1)和MCH受體2發揮作用,而腦室內注射MCHR1阻斷劑GW3430可明顯緩解小鼠的焦慮行為7]。伏隔核(NAc)是腹側紋狀體的重要組成部分,分為外殼區(NAcSh)和中心區[8],是連接邊緣系統的關鍵核團,已發現NAcSh神經元參與焦慮發生[9-10]。雖然免疫組織化學檢測已證實NAc表達MCHR1[1],但MCHR1拮抗劑是否能通過NAcSh發揮抗焦慮作用尚不清楚。本研究應用CACS制備小鼠焦慮模型,通過NAcSh微量注射新型MCHR1高親和力拮抗劑SNAP-94847,觀察模型小鼠焦慮行為的變化,旨在為焦慮中樞神經系統調控機制研究提供新的理論依據。
1 材料和方法
1.1 實驗材料
1.1.1實驗動物選擇取 6~8 周齡SPF級雄性C57BL/6J 小鼠32只,體質量為 18~22g ,購自濟南朋悅實驗動物繁育有限公司,許可證號為SCXK(魯)20220006。所有小鼠使用均符合實驗動物管理和使用指南的要求,并得到了青島醫學院動物倫理委員會的批準。
1.1.2主要的試劑和儀器SNAP-94847(SNAP,MedChemExpress公司,中國);NaCl(國藥化學集團有限公司);S-N3型腦立體定位儀(日本成茂科學器械研究所);漢密爾頓注射器(Hamilton公司);SMART視頻跟蹤系統(Panlab公司)。
1.2 實驗方法
1.2.1模型制備采用CACS制備小鼠焦慮模型。其中,慢性不可預知性刺激包括 24h 的食物剝奪、24h 的飲水剝奪、在 4°C 冷水中游泳 10min 、尾巴捏壓 3min 、整晚照明以及在濕潤籠子里 6h 等,共21d;第22天對小鼠實施 2h 的急性束縛應激。
1.2.2動物分組采用隨機數字表法,將CACS模型和正常對照(CON)小鼠按照NAcSh內注射生理鹽水(NS)或SNAP完全隨機分為4組: CON+NS 組(a組) CON+SNAP 組(b組) CACS+NS 組(c組)和 CACS+SNAP 組(d組),每組8只。
1.2.3給藥方法小鼠麻醉后固定在腦立體定向儀上,將套管置人雙側NAcSh(前囪前 1.7mm ,旁開 0.5mm ,深 4.5mm ),用牙科粘合劑固定。1周后,以低濃度七氟醚(體積分數0.008)輕度吸人麻醉小鼠進行核團注射[8]。小心擰開套管金屬帽后插入導管,然后通過微注射泵在 5min 內將 SNAP(2g/ L,1.5μL 或NS注射到小鼠 NAcSh 中[12-13],并在腦內保持 2min ,讓藥物從尖端完全擴散。
1.2.4行為學測試方法在CON和CACS模型小鼠NAcSh內行微量注射NS或SNAP-94847溶液30min 后,采用如下實驗觀察外源性SNAP-94847對小鼠焦慮行為的影響。 ① 曠場實驗(OFT):實驗前將實驗小鼠放人實驗房間適應 2h ,然后將實驗小鼠置于曠場實驗箱 (40cm×40cm×40cm) 中央處,通過圖像自動監視系統連續監測小鼠 5min 的活動軌跡。實驗過程中保持環境安靜以免影響小鼠的活動軌跡,且每只小鼠檢測完成之后用體積分數0.75的乙醇溶液擦拭實驗設備底部,以免影響下一只小鼠的檢測結果。 ② 高架十字迷宮實驗(EPM):高架十字迷宮由兩個開放臂、兩個閉合臂和一個中央平臺區域構成,距離地面 40cm 。實驗開始時,將實驗小鼠的頭部朝向開放臂置于高架十字迷宮的中央平臺區,記錄其運動軌跡 5min 。并記錄其進入開放臂的時間以及次數。 ③ 埋珠實驗(MBT):使用一個 40cm×25cm×20cm 的透明塑料籠子,在籠子底部鋪上 5.0cm 厚的木屑或其他墊料,并隨機放置20個直徑為 1.5cm 的大理石球,確保每個大理石球之間和籠子邊緣距離相等。將實驗小鼠放進籠子適應 15min 后,觀察其在 30min 內的埋藏行為表現。以大理石球至少有 2/3 高度被覆蓋在木屑或其他墊料中視為被埋藏。
1.2.5組織學檢查方法在實驗結束時,用氯胺酮(100mg/kg) 和甲苯噻嗪 (20mg/kg) 麻醉小鼠。經心臟灌流NS和 40g/L 多聚甲醛溶液固定鼠腦,取鼠腦置于 40g/L 多聚甲醛溶液中 4°C 下固定 6h .然后放入 300g/L 蔗糖溶液中脫水。參照小鼠腦圖譜進行厚度為 25μm 冰凍切片,驗證核團注射位置。將定位錯誤的小鼠數據排除在統計分析之外。
1.3 統計學方法
采用GraphPadPrism9.O軟件進行統計學分析。計量資料數據以
表示,多組間均數比較采用單因素方差分析(one-wayANOVA),組間均數兩兩比較采用Bonferroni/Dunn檢驗。以 Plt; 0.05為差異具有統計學意義。
2結果
2.1 SNAP對模型小鼠行為影響的OFT檢測OFT檢測結果顯示,小鼠在中心區域停留時間、移動總距離及在曠場中運動總距離等指標的多組比較,差異有統計學意義 (F=3.273~7.644,Plt; 0.05)。與 CON+NS 組相比, CACS+NS 組在中心區域相對停留時間由 (12.4±3.2)% 縮短到 (7.0± 1.5)% ,小鼠在中心區域相對移動總距離由 (21.5± 4.5)% 降為 (15.1±3.3)% ,在曠場中總運動距離由(2399.5±202.5)cm 減少到 (2178.7±117.9)cm 各指標差異均有統計學意義( P 均 lt;0.05) 。提示CACS小鼠造模成功。與 CACS+NS 組小鼠相比較, CACS+SNAP 組在中心區域的相對停留時間由 (7.0±1.5)% 增至 (11.2±2.6)% ,在中心區域相對移動總距離由 (15.1±3.3)% 升為 (20.5±2.6)% 二者差異均有統計學意義( P 均 lt;0.05) ;兩組小鼠在曠場中的總運動距離比較差異無顯著意義( Pgt; 0.05)。提示模型小鼠NAcSh內微量注射SNAP-94847可以改善其部分與焦慮行為相關的OFT指標。而與 CON+NS 組相比, CON+SNAP 組小鼠在中心區域相對停留時間、在中心區域相對移動總距離及在曠場中運動總距離的差異均無統計學意義( P 均 gt;0.05) 。提示在正常小鼠NAcSh內微量注射SNAP-94847不會引起與焦慮行為相關OFT指標的變化。見圖 1A~D 。
2.2SNAP對模型小鼠行為影響的EPM檢測EPM結果顯示,小鼠進人開放臂次數、開放臂停留時間等指標的多組比較,差異有統計學意義Δ′F=13.210,7.522,Plt;0.05) 。與 CON+NS 組相比, CACS+NS 組小鼠進入開放臂次數由 (15.6± 3.0)次減至 (8.1±2.5) 次,在開放臂的停留時間由(39.2±5.4) s降為 (28.9±5.5)s ,差異均有統計學意義( P 均 lt;0.01) 。提示CACS小鼠建模成功。與CACS+NS 組相比, CACS+SNAP 組小鼠進人開放臂次數由 (8.1±2.5) 次增至 (13.2±3.5) 次,開放臂停留時間由 (28.9±5.5)s 升為 (36.0±4.6)s ,差異有顯著性( P 均 lt;0.05 )。提示模型小鼠NAcSh內微量注射SNAP-94847可以改善其與焦慮行為相關的EPM指標。而與 CON+NS 組相比較, CON+ SNAP組小鼠進入開放臂次數和開放臂停留時間的差異均無統計學意義( P 均 gt;0.05 )。提示正常小鼠NAcSh內微量注射SNAP-94847不會引起與焦慮行為相關的EPM指標變化。見圖 2A~C 。
2.3 SNAP對模型小鼠行為影響的MBT檢測
MBT的檢測結果顯示,小鼠埋珠數量的多組比 較,差異有統計學意義( F=9.849 , Plt;0.05) 。與 CON+NS 組相比, CACS+NS 組小鼠的埋珠數量 由 (12.5±2.1) 個增至 (16.4±2.1) 個,差異有統計學 意義( Plt;0.01) 。提示CACS小鼠建模成功。與 CACS+NS 組相比, CACS+SNAP 組小鼠的埋珠 數量由 (16.4±2.1) 個降為 (13.2±1.7) 個,差異有統 計學意義( (Plt;0.01) 。提示模型小鼠NAcSh內微 量注射SNAP-94847可以改善其與焦慮行為相關的
圖1NAcSh微量注射SNAP對CACS小鼠OFT指標的影響

A:各組小鼠在OFT中的運動痕跡;B:各組小鼠在OFT中心區停留時間的比較;C:各組小鼠在OFT中心區運動距離的比較;D:各組小鼠在OFT中總運動距離的比較。a: CON+NS 組,b: CON+ SNAP組, c:CACS+ NS組,d:CACS + SNAP組。 n=8 ,與 CACS+N S組比較,* Plt;0.05
。
圖2NAcSh中微量注射SNAP對CACS小鼠EPM指標的影響

A:各組小鼠在EPM中的運動痕跡;B:各組小鼠在EPM中進入開放臂次數比較;C:各組小鼠在 EPM中停留開放臂時間比較。a: CON+ NS組, b:CON+SNAP 組,c:CACS + NS組,d:CACS + SNAP組。 n=8 ,與 CACS+NS 組小鼠相比較, *Plt;0.05 ;與 CON+NS 組小鼠相比較,
, ***Plt;0.001 。
MBT指標。與 CON+NS 組相比, CON+SNAP 組小鼠的埋珠數量差異無顯著意義 (Pgt;0.05) 。提 示正常小鼠NAcSh內微量注射SNAP-94847不會 引起與焦慮行為相關的MBT指標變化。見圖3。
圖3NAcSh中微量注射SNAP對CACS小鼠MBT指標的影響

a: CON+NS 組, b:CON+ SNAP組, c:CACS+NS 組,
SNAP組。 n=8 ,與 CACS+NS 組比較, *Plt;0.05 ;與 CON+NS 組比較,
。
3討論
MCH主要在下丘腦外側區的神經元中表達,
MCHR1是嚙齒動物中唯一表達的受體亞型,且該受體在NAc中表達豐富[14-15]。NAc是腦內獎賞中樞[16],接收不同核團分泌遞質的信號傳遞,在NAc內注射MCH能夠增強小鼠對可卡因和乙醇的自主攝取行為,誘發多動行為[17]。MCH還參與了焦慮行為的調控[18]。大鼠和小鼠NAc殼部注射 MCH均能誘導焦慮行為的發生[19]。焦慮大鼠腹腔注射MCHR1拮抗劑SNAP-7941[20],可導致其在強迫游泳實驗中不動時間減少,在社會交互測試中與陌生小鼠的共處時間延長[21]。焦慮模型小鼠腹腔注射MCHR1拮抗劑GW3430,可導致其在EPM實驗中進入開放臂的時間及次數增加,而對MCHR1敲除小鼠則無此作用[]。這些結果均說明,MCHR1參與誘導了嚙齒類動物的焦慮行為。相比于SNAP-7941和GW3430,本實驗應用的SNAP-94847對MCHR1的拮抗作用具有更高的親和力和更高的選擇性[22]。已有文獻報道,對應激小鼠模型經腹腔注射SNAP-94847可以改善應激誘導的焦慮行為[23],但其在NAcSh內的作用尚未見報道。
已有研究結果表明,CACS大鼠模型下丘腦外側區中MCH表達異常增高和MCHR1的表達明顯下調,藍斑內微量注射SNAP-94847可顯著緩解模型鼠焦慮行為[24-25]。本研究運用CACS 法建立小鼠焦慮行為模型[26],觀察NAcSh內注射MCHR1拮抗劑SNAP-94847對焦慮行為的影響。本文的實驗結果表明,CACS可以引起小鼠焦慮行為;而在NAcSh內注射MCHR1受體拮抗劑SNAP-94847后,CACS小鼠在OFT實驗中心區域運動時間和移動距離均顯著增加,在EPM實驗中其進入開放臂次數和停留時間也均明顯升高,而在MBT中其埋珠數量則顯著減少。提示CACS模型鼠建模成功,而在模型小鼠NAcSh內微量注射SNAP-94847可改善其焦慮行為。
OFT、EPM和MBT實驗等行為學方法常用于評估小鼠的焦慮狀態[27-29]。在OFT中,一般采用小鼠在中心區域停留時間和移動距離來表示焦慮狀態[30],如在中心區域停留時間和移動距離減少,總運動距離也減少,則說明小鼠處于焦慮狀態[31-33]。在本實驗中, CACS+SNAP 組小鼠在中心區域停留時間和運動距離均顯著增加,說明NAcSh內微量注射SNAP-94847,具有緩解CACS小鼠焦慮的作用。在EPM中,通過小鼠進入開放臂的次數和停留時間來評價小鼠的焦慮程度[34-37]。在本實驗中, CACS+SNAP 組小鼠進人開放臂的次數和停留時間均顯著增加,其結果與OFT結果相一致。另外,我們還采用MBT實驗觀察了小鼠在焦慮狀態下會表現出的對陌生物體的強烈掩埋行為,在MBT中埋珠數量增多可反映動物的焦慮情緒[38]本實驗結果顯示,在( ΔCS+SNAF 組小鼠NAcSh內微量注射SNAP-94847后,小鼠的埋珠數量顯著減少,這與OFT和EMP實驗的結果也一致。
綜上所述,NAcSh內MCHR1參與了小鼠焦慮行為的調控,在NAcSh內微量注射MCHR1拮抗劑SNAP-94847具有潛在的抗焦慮作用。本文結果提示NAcSh內MCH1R可能是焦慮癥潛在的治療靶點。然而,下丘腦外側區與NAcSh間MCH能神經通路的化學遺傳性激活或抑制對小鼠焦慮狀態有何影響,能否改善焦慮小鼠的癥狀,將是我們下一步的研究方向。
[參考文獻]
[1] BATTLE DE.Diagnostic and statistical manual of mental disorders(DSM)[J].CoDAS,2013,25(2):191-192.
[2] GBDDISEASEANDINJURYINCIDENCE AND PREVALENCE COLLABORATORS.Global,regional,and national incidence,prevalence,and years lived with disability for 354
diseasesand injuriesfor195 countriesand territories,1990-
ZU17:a systematc anaiysis Ior tne gioDal Duraen oI aisease study 2017[J]. Lancet,2018,392(10159):1789-1858.
[3]KINGIR E,SEVINC C,UNAL G. Chronic oral ketamine pre vents anhedonia and alters neuronal activation in the lateral habenula and nucleus accumbens in rats under chronic unpredictable mild stress[J]. Neuropharmacology,2023,228: 109468.
[4]SAH P. Fear,anxiety,and the amygdala[J]. Neuron, 2017, 96(1) :1-2.
[5]HE X M, LI Y H, ZHANG NN,et al. Melanin-concentrating hormone promotes anxiety and intestinal dysfunction via baso lateral amygdala in mice[J]. Frontiers in Pharmacology,2022, 13:906057.
[6]AL-MASSADI O,DIEGUEZ C,SCHNEEBERGER M,et al. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis[J]. Nature Reviews Endocrinology,2021,17(12):745-755.
[7]SMITH DG,DAVIS R J,RORICK-KEHN L,et al. Melanin-concentrating hormone-l receptor modulates neuroendocrine,behavioral, and corticolimbic neurochemical stress responses in mice[J]. Neuropsychopharmacology,20o6,31(6): 1135-1145.
[8]PARK Y S, SAMMARTINO F,YOUNG N A,et al. Anatomic review of the ventral capsule/ventral striatum and the nucleus accumbens to guide target selection for deep brain stimulation for obsessive-compulsive disorder[J]. World Neurosurgery,2019,126:1-10.
[9]GEBARA E, ZANOLETTI O,GHOSAL S,et al. Mitofusin2 in the nucleus accumbens regulates anxiety and depressionlike behaviors through mitochondrial and neuronal actions[J]. Biological Psychiatry,2021,89(11):1033-1044.
[10] XU Y,LIN Y J,YU M,et al. The nucleus accumbens in reward and aversion processing:insights and implications[J]. Frontiers in Behavioral Neuroscience,2024,18 :1420028.
[11] CHUNG S,HOPF F W,NAGASAKI H,et al. The melaninconcentrating hormone system modulates cocaine reward[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(16):6772-6777.
[12]CAMY,KOCUMCG,KONRADER,etal. Incentive motivation forpalatable food blocked byintra-accumbens melaninconcentrating hormone (MCH) receptor-l antagonist in female rats[J]. Pharmacology,Biochemistry,and Behavior,2024, 245:173884.
[13] MING X,GAO S L, SUN J Q,et al. Regulation of the MCHergic neural circuit to dorsal raphe nucleus on emotionrelated behaviors and intestinal dysfunction in mice model of irritable bowel syndrome with diarrhea[J]. Neuroendocrinology,2024,114(7) :605-622.
[14] SAITO Y,NOTHACKER H P,WANG Z,et al. Molecular characterization of the melanin-concentrating-hormone receptor[J].Nature,1999,400(6741) :265-269.
[15] SPENCER C D,MILLER P A,WILLIAMS-IKHENOBA J G,et al. Regulation of the mouse ventral tegmental area by melanin-concentrating hormone[J]. The Journal of Neuroscience,2024,44(27) :e0790232024.
[16] ZINSMAIER A K,DONG Y,HUANG Y H. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens[J]. Molecular Psychiatry,2022,27(1) :669- 686.
[17] KARLSSON C,AZIZ A M, REHMANF, et al. Melanin-concentrating hormone and its MCH-1 receptor: relationship between effects on alcohol and caloric intake[J]. Alcoholism, Clinical and Experimental Research,2016,40(10):2199-2207.
[18] RANA T,BEHL T, SEHGAL A, et al. Exploring the role of neuropeptides in depression and anxiety[J]. Progress in NeuroPsychopharmacology amp;Biological Psychiatry,2022,114: 110478.
[19]GEORGESCU D, SEARS R M,HOMMEL J D,et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance[J]. The Journal of Neuroscience,2005,25(11) :2933-2940.
[20]DOGGRELL S A. Does the melanin-concentrating hormone antagonist SNAP-794l deserve 3As? [J]. Expert Opinion on Investigational Drugs,2003,12(6):1035-1038.
[21] BOROWSKY B, DURKIN M M, OGOZALEK K, et al. Antidepressant,anxiolytic and anorectic effects of a melanin-concentrating hormone-l receptor antagonist[J]. Nature Medicine,2002,8(8):825-830.
[22] CHEN C A,JIANG Y,LU K,et al. Synthesis and SAR investigations for novel melanin-concentrating hormone 1 receptor (MCH1) antagonists part 2: a hybrid strategy combining key fragments of HTS hits[J]. Journal of Medicinal Chemistry,2007,50(16):3883-3890.
[23] KIM T K,HAN P L. Physical exercise counteracts stress-induced upregulation of melanin-concentrating hormone in the brain and stress-induced persisting anxiety-like behaviors[J]. Experimental Neurobiology,2016,25(4):163-173.
[24] KURBAN N,QIN Y,ZHAO H L,et al. Chronic stress-induced elevation of melanin-concentrating hormone in the locus coeruleus inhibits norepinephrine production and associated with depression-like behaviors in rats[J]. International Journal of Neuropsychopharmacology,2024,27(1) : pyad069.
[25]YE H,CUI X Y,DING H,et al.Melanin-concentrating hormone(MCH) and MCH-R1 in the locus coeruleus may be involved in the regulation of depressive-like behavior[J]. The International Journal of Neuropsychopharmacology, 2018,21 (12):1128-1137.
[26] FEE C,PREVOT T,MISQUITTA K,et al. Chronic stressinduced behaviors correlate with exacerbated acute stress-induced cingulate cortex and ventral hippocampus activation[J]. Neuroscience,2020,440:113-129.
[27] KEDIA S,CHATTARJI S. Marble burying as a test of the delayed anxiogenic effects of acute immobilisation stress in mice [J].Journal of Neuroscience Methods,2014,233:150-154.
[28] WANG D,LI A,DONG K Y,et al. Lateral hypothalamus orexinergic inputs to lateral habenula modulate maladaptation after social defeat stress[J]. Neurobiology of Stress,2021,14: 100298.
[29] YU Y C,LI J,ZHANG M X,et al. Resveratrol improves brain-gut axis by regulation of 5-HT-dependent signaling in the rat model of irritable bowel syndrome[J]. Frontiers in Celular Neuroscience,2019,13:30.
[30] SCHULZ M, ZIEGLOWSKI L,KOPACZKA M,et al. The open field test as a tool for behaviour analysis in pigs:recommendations for set-up standardization-A systematic review [J].European Surgical Research Europaische Chirurgische Forschung Recherches Chirurgicales Europeennes,2O23,64 (1):7-26.
[31] HORKA P,LANGOVA V,HUBENY J,et al. Open field test for the assessment of anxiety-like behavior in Gnathonemus petersii fish[J]. Frontiers in Behavioral Neuroscience, 2023,17:1280608.
[32] GUO R X,GAO S L,FENG X F,et al. The GABAergic pathway from anterior cingulate cortex to lateral hypothalamus area regulates irritable bowel syndrome in mice and its underlying mechanism[J]. Journal of Neurochemistry,2024,168 (9):2814-2831.
[33] KRAEUTER A K,GUEST PC, SARNYAI Z. The open field test for measuring locomotor activity and anxiety-like behavior [J].Methods in Molecular Biology,2019,1916:99-103.
[34] FABRIS D, CARVALHO M C,BRANDAO M L,et al. Sexdependent differences in the anxiolytic-like effect of cannabidiol in the elevated plus-maze[J]. Journal of Psychopharmacology, 2022,36(12) :1371-1383.
[35]CHO W H,NOH K,LEE BH,et al. Hippocampal astrocytes modulate anxiety-like behavior[J]. Nature Communications,2022,13(1) :6536.
[36]KRAEUTER A K,GUEST P C, SARNYAI Z. The elevated plus maze test for measuring anxiety-like behavior in rodents [J].Methods in Molecular Biology,2019,1916:69-74.
[37] ROSSO M,WIRZ R,LORETAN A V,et al. Reliability of common mouse behavioural tests of anxiety: a systematic review and meta-analysis on the efects of anxiolytics[J]. Neuroscience and Biobehavioral Reviews, 2022,143:104928.
[38] JIMENEZ CHAVEZ C L, SZUMLINSKI K K. Modulation of marble-burying behavior in adult versus adolescent C57BL/6J mice of both sexes by ethologically relevant chemosensory stimuli[J]. Oxford Open Neuroscience, 2024,3: kvae009.
(本文編輯 于國藝)