在數列學習中,求數列通項公式非常重要,而求數列通項公式的方法也有很多,下面將幾種數列通項公式的常見類型與求法歸納如下.
一#65380;利用an與n的關系去觀察#65380;遞推(觀察法)
例1數集序列:{1},{2,3},{4,5,6},{7,8,9,10},…,第n個集合的第三個數是 .
解依題意:第3個集合第3個數a3 = 6,第4個集合的第3個數a4 = 9,第5個集合的第3個數為a5 = 13,…,設第n個集合第3個數為an,則由上觀察a3 = 6,a4 - a3 = 3,a5 - a4 = 4,a6 - a5 = 5,…,an - an - 1 = n - 1,則
an = (an - an - 1) + (an - 1 - an - 2) + … + (a4 - a3) + a3 = (n - 1) + (n-2) + … + 4 + 3 + 6 = 6 +(n - 3) =.
∴ 第n個集合的第3個數是 .
二#65380;“an + 1 - an = d(常數)”或“= q(常數)”型 (定義法)
例2① 已知{an}中,a1 = 1,an+1 - an = 1,則an =.
② 已知{an}中,a1 = 1,2an + 1 - 3an = 0則an =.
解① ∵ an + 1- an = 1,
∴ {an}為等差數列,∴ an = 1 + (n - 1) #8226; 1 = n , ∴ an = n.
② ∵ =,∴ {an}為等差數列, ∴ an =n - 1 .
三#65380;“an+1 - an=f(n)”型 或“ = f(n)”型(累加法或累乘法)
例3① 已知a1 = 1,an = an-1 + 3n-1(n ≥ 2),求an =.
②已知a1 = 2,an+1 =an (n∈N+),求an =.
解① ∵ an - an - 1 = 3n - 1(運用累加法),
∴ an = (an - an - 1) + (an - 1 - an - 2) + … + (a2 - a1) + a1,
∴ an = 3n - 1 + 3n - 2 + 3n - 3 + … +3 + 1 =an (n∈N+).
② ∵ =(運用累乘法),
∴ an = #8226;#8226;#8226;…#8226; #8226; #8226;a1,
∴ an = #8226;#8226;#8226; #8226;…#8226; #8226; #8226;2 = n(n + 1).
∴ an = n(n + 1).
四#65380;“an = s1(n = 1)sn - sn - 1(n ≥ 2)”型 或“sn = f(n)”型(公式法)
例4① 已知數列{an}前n項和為sn = 2n2 + 3n + 2,求an =.
② 已知a1 + 2a2+ 3a3 + … + nan + (n + 1)an + 1= sn, a1 = 1,求an =.
解① n = 1時,s1 = a1 = 7;n ≥ 2時 (運用公式“an = sn - sn-1”),
an = sn - sn - 1 = 2n2 + 3n + 2 - (n - 1)2 - 3(n - 1) - 2 = 4n + 1,
∴ an = 7,n = 1,4n + 1,n ≥ 2.
② sn = a1 + 2a2 + 3a3 + … + (n + 1)an + 1.
sn - 1 = a1 + 2a2 + 3a3 + … + nan (運用公式“an = sn - sn - 1”).
以上兩式相減得:an = (n + 1)an + 1.
再運用累乘法:an =#8226; #8226;#8226;…#8226;#8226;#8226;a1,
∴ an =.
五#65380;“an + 1 = pan + q”型 (待定系數法)
例5已知a1 = 1,4an + 1 = 2an + 3,求an .
解∵ 4an + 1 = 2an + 3,∴ an + 1 =an +.
于是,設存在常數λ使an + 1 =an +.
變形為:an + 1 - λ =(an - λ),比較系數得λ=.
∴ an -為等比數列,
∴ an -=(a1-)( )n - 1,
∴ an =- ( )n.
六#65380;“an + 1 =”型(倒數法)
例6已知數列{an}首項a1 =,an + 1 =(n∈N+),求{an}的通項公式.
解∵ an + 1 =,∴ = +,
∴ - 1 = (- 1) ,∴ - 1是等比數列,
∴ -#8226;=,∴ an =.
七#65380;“an + 1 = pan + f(n)”型 (迭代法)
例7已知a1 = 1,an + 1 = 2an + n,求{an}通項公式.
解∵ an + 1 = 2an + n,∴ an = 2an - 1 + n - 1.則
an = 2(2an - 2 + n - 2) + n - 1 = 22an - 2 + 2(n - 2) + (n-1) = 22(2an - 3 + n - 3) + 2(n - 2) + (n-1) = 23an - 3 + 22(n - 3) + 2(n-2) + (n-1) = …= 2n - 1 + n- (n - 1)2n - 1 - = 2n - 1 + (n + 1)- (n - 1)2n-1 = 3#8226;2n - 1 - (n + 1).
八#65380;其他不規則型(數學歸納法)
例8 ① 已知a1 = 2,an + 1 = an2 - nan + 1(n∈N+).
求an = .
② 設正整數數列{an},a2 = 4,對n∈N+,
2 + < < 2 =,求通項an.
解① ∵ a1 = 2,當n = 1時a2 = 22 -2 + 1 = 3,當n = 2時a3 = a22-2a2 + 1,
∴ a3 = 4. 同理a4 = 5. 由此猜想:an = n + 1(n∈N+).
下面證明:當n = 1,a1 = 2 猜想正確.
假設n = k時(k∈N+),ak = k + 1 猜想成立.
則ak + 1 = (k + 1)2 - k(k + 1) + 1 = (k + 1) + 1,
所以n = k + 1時,猜想正確. 綜上所述,an= n + 1.
② ∵ 2 + < n(n + 1)(+) < 2 +,
∴當n = 1時,2 + < 2(+) < 2 +.
解之, ∴ a1 = 1,當n = 2時2 + < 6(+) < 2 +. 解之,8 < a3 < 10. ∴ a3 = 9,由上猜想an = n2(用數學歸納法證明略). 注:“本文中所涉及到的圖表#65380;注解#65380;公式等內容請以PDF格式閱讀原文#65377;”