肖盛聰
[摘要]自電子技術一問世,電子技術與機械技術的結合就開始了,只是出現了半導體集成電路,尤其是出現以微處理器為代表的大規模集成電路以后,機電一體化技術之后有了明顯進展,引起了人們的廣泛注意。
[關鍵詞]機電一體化發展系統組成
中圖分類號:TM-9文獻標識碼:A文章編號:1671-7597(2009)1110120-01
一、機電一體化的概念
機電一體化又稱機械電子學,英語稱為Mechatronics,它是由英文機械學Mechanics的前半部分與電子學Electronics的后半部分組合而成。機電一體化最早出現在1971年日本雜志《機械設計》的副刊上,隨著機電一體化技術的快速發展,機電一體化的概念被我們廣泛接受和普遍應用。隨著計算機技術的迅猛發展和廣泛應用,機電一體化技術獲得前所未有的發展。現在的機電一體化技術,是機械和微電子技術緊密集合的一門技術,他的發展使冷冰冰的機器有了人性化,智能化。機電一體化是指在機構的主功能、動力功能、信息處理功能和控制功能上引進電子技術,將機械裝置與電子化設計及軟件結合起來所構成的系統的總稱。
二、機電一體化技術發展歷程
自電子技術一問世,電子技術與機械技術的結合就開始了,只是出現了半導體集成電路,尤其是出現了以微處理器為代表的大規模集成電路以后,“機電一體化”技術之后有了明顯進展,引起了人們的廣泛注意:
1.數控機床的問世,寫下了“機電一體化”歷史的第一頁;
2.微電子技術為“機電一體化”帶來勃勃生機;
3.可編程序控制器、“電力電子”等的發展為“機電一體化”提供了堅強基礎;
4.激光技術、模糊技術、信息技術等新技術使“機電一體化”躍上新臺階。
三、機電一體化的發展趨勢
機電一體化是集機械、電子、光學、控制、計算機、信息等多學科的交叉綜合,它的發展和進步依賴并促進相關技術的發展。機電一體化的主要發展方向大致有以下幾個方面:
1.智能化:智能化是21世紀機電一體化技術的一個重要發展方向。人工智能在機電一體化的研究中日益得到重視,機器人與數控機床的智能化就是重要應用之一。這里所說的“智能化”是對機器行為的描述,是在控制理論的基礎上,吸收人工智能、運籌學、計算機科學、模糊數學、心理學、生理學和混沌動力學等新思想、新方法,使它具有判斷推理、邏輯思維及自主決策等能力,以求得到更高的控制目標。誠然,使機電一體化產品具有與人完全相同的智能,是不可能的,也是不必要的。但是,高性能、高速度的微處理器使機電一體化產品賦有低級智能或者人的部分智能,則是完全可能而且必要的。
2.系統化:系統化的表現特征之一就是系統體系結構進一步采用開放式和模式化的總線結構。系統可以靈活組態,進行任意剪裁和組合,同時尋求實現多子系統協調控制和綜合管理。表現之二是通信功能的大大加強。一般除RS232外,還有RS485等智能化通信接口。未來的機電一體化更加注重產品與人的關系,機電一體化的人格化有兩層含義:一層是如何賦予機電一體化產品人的智能、情感、人性等等,顯得越來越重要,特別是對家用機器人,其高層境界就是人機一體化;另一層是模仿生物機理,研制出各種機電一體化產品。事實上,許多機電一體化產品都是受動物的啟發而研制出來的。
3.微型化:興起于20世紀80年代末,指的是機電一體化向微型機器和微觀領域發展的趨勢。國外稱其為微電子機械系統(MEMS),泛指幾何尺寸不超過1立方厘米的機電一體化產品,并向微米、納米級發展。微機電一體化產品體積小、耗能少、運動靈活,在生物醫療、軍事、信息等方面具有不可比擬的優勢。
4.仿生物系統化:今后的機電一體化裝置對信息的依賴性很大,并且往往在結構上是處于“靜態”時不穩定,但在動態(工作)時卻是穩定的。這有點類似于活的生物:當控制系統(大腦)停止工作時,生物便“死亡”,而當控制系統(大腦)工作時,生物就很有活力。仿生學研究領域中已發現的一些生物體優良的機構可為機電一體化產品提供新型機體,但如何使這些新型機體具有活的“生命”還有待于深入研究。這一研究領域稱為“生物——軟件”或“生物系統”,而生物的特點是硬件(肌體)——軟件(大腦)一體,不可分割。看來,機電一體化產品雖然有向生物系統化發展趨,但有一段漫長的道路要走。
四、機電一體化技術內容
機電一體化技術內容主要包含以下幾個方面:機械技術機械技術;計算機與信息技術;系統技術;自動控制技術;傳感檢測技術;伺服傳動技術。
五、機電一體化系統組成
1.機械本體:機械本體包括機架、機械連接、機械傳動等,它是機電一體化的基礎,起著支撐系統中其他功能單元、傳遞運動和動力的作用。與純粹的機械產品相比,機電一體化系統的技術性能得到提高、功能得到增強,這就要求機械本體在機械結構、材料、加工工藝性以及幾何尺寸等方面能夠與之相適應,具有高效、多功能、可靠和節能、小型、輕量、美觀的特點。
2.檢測傳感部分:檢測傳感部分包括各種傳感器及其信號檢測電路,其作用就是檢測機電一體化系統工作過程中本身和外界環境有關參量的變化,并將信息傳遞給電子控制單元,電子控制單元根據檢查到的信息向執行器發出相應的控制。
3.電子控制單元:電子控制單元又稱ECU(Electrical Control Unit),是機電一體化系統的核心,負責將來自各傳感器的檢測信號和外部輸入命令進行集中、存儲、計算、分析,根據信息處理結果,按照一定的程度和節奏發出相應的指令,控制整個系統有目的地進行。
4.執行器:執行器的作用是根據電子控制單元的指令驅動機械部件的運動。執行器是運動部件,通常采用電力驅動、氣壓驅動和液壓驅動等幾種方式。
5.動力源:動力源是機電一體化產品能量供應部分,其作用是按照系統控制要求向機械系統提供能量和動力使系統正常運行。提供能量的方式包括電能、氣能和液壓能,以電能為主。
綜上所述,機電一體化的出現不是孤立的,它是許多科學技術發展的結晶,是社會生產力發展到一定階段的必然要求和產物。機電一體化發展至今也已成為一門有著自身體系的新型學科,隨著科學技術的不但發展,還將被賦予新的內容。
參考文獻:
[1]李建勇,機電一體化技術[M].北京:科學出版社,2004.
[2]顧京,現代機床設備[M].北京:化學工業出版社,2001.
[3]張開遜,現代傳感技術在信息科學中的地位[J].工業計量,2006(1).
[4]石美峰,機電一體化技術的發展與思考[J].山西焦煤科技,2007(3).