摘要:傳統數學教育一般是從公理體系出發,沿著“定義→假設→定理→證明→推論”這樣一條演繹的道路進行的。但隨著計算機科學的飛速發展,數學教學有了全新的輔助工具。計算機的出現改變了數學只用紙和筆進行研究的傳統方式,給數學研究帶來了最先進的工具,在計算機上進行計算和模擬實驗已成為一種新的科學方法和技術,計算機使數學實驗方法達到了一個新水平,計算機的使用正在改變數學的性質,數學正在成為一門“實驗科學”。
關鍵詞:高等數學;實驗教學
1高校實行數學實驗教學的意義
數學實驗是計算機技術和數學、軟件引入教學后出現的新事物。數學實驗的開展可以在數學教育中體現學生的主體意識,讓學生做到會學、會用、會做數學,提高學生學習數學的積極性,提高學生對數學的應用意識,并培養學生用所學的數學知識和計算機技術去認識問題和解決實際問題的能力。不同于傳統的數學學習方式,它強調以學生動手為主的數學學習方式。在數學實驗中,由于計算機的引入和數學軟件包的應用,為數學的思想與方法注入了更多、更廣泛的內容,使學生擺脫了繁重的乏味的數學演算和數值計算,促進了數學同其他學科之間的結合,從而使學生有時間去做更多的創造性工作。
2 高等數學實驗教學內容的確立
從問題出發組織教學內容。雖然有意識讓學生通過實驗學會一些基本的方法, 但是并不以這些方法為線索組織課程內容。而是設計了一些能夠引起學生興趣的問題, 這些問題的引入不需很深的數學知識,便于入門,但這些問題具有深刻的內涵,包括科學發展歷史上經典的數學問題,以及具有應用價值的問題。每個實驗圍繞解決一個或幾個問題來展開,教學生使用若干種方法來解決所給的問題,在解決問題中學習和熟悉這些方法,自己觀察結果,得出結論。并激發進一步學習的興趣。
盡管數學專業和非數學專業的學生的數學課程的難易程度有很大的差別,但數學實驗課對他們來說卻不必有多大的差別,基本的部分完全可以是共同的, 只有一些理論較深的部分可以根據各自的情況有所取舍。所以,在開課時完全可以將數學系學生和非數學系數學一起上課。
數學實驗可以包括兩部分主要內容: 第一部分是基礎部分, 圍繞高等數學的基本內容, 讓學生充分利用計算機及軟件的數值功能和圖形功能展示基本概念與結論,去體驗如何發現、總結和應用數學規律。另一部分是高級部分,以高等數學為中心向邊緣學科發散, 可涉及到微分幾何, 數值方法, 數理統計,圖論與組合, 微分方程, 運籌與優化等, 也可涉及到現代新興的學科和方向, 如分形、混沌等。這部分的內容可以是新的, 但不必強調完整性, 教師介紹一點主要的思想, 提出問題和任務, 讓學生嘗試通過自己動手和觀察實驗結果去發現和總結其中的規律。即使總結不出來也沒有關系, 留待將來再學, 有興趣的可以自己去找參考書尋找答案。
3 高等數學實驗教學的實施
開設數學實驗課以二年級或一年級下學期為宜, 讓學生學過高等數學中必要的基本概念即可, 不必學過很多的數學定理。這樣, 就可以有比較多的未知的東西供他們去探索。已學的東西太多, 學生對探索的興趣反而下降。
每學期安排9個實驗, 每兩周做一個實驗。每次實驗先由教師講兩個課時, 兩周中的其余 3次課都是安排學生上機, 教師輔導, 希望學生在兩周中完成實驗作業。教師主要是提出問題, 適當介紹問題的背景, 介紹主要的實驗原理和方法。然后就讓學生自己動手去做, 去觀察, 通過觀察得出結論。教師不宜花時間去作理論推導, 最好也不要預先告訴學生實驗的結果, 實驗結果讓學生自己去觀察得出。在教學過程中, 有的學生希望少講一些理論, 多給他們留一些自己探索的空間; 也有的學生希望多講一些理論。能夠通過實驗使學生希望多學理論, 這就是好事情。將學生學習數學理論的興趣激發起來了, 胃口吊起來了, 這門課的目的就達到了。數學實驗是“開胃湯”, 而不是大餐。胃口吊起來之后希望多“吃”一些,可以通過看參考書和學習其它課程來滿足對于理論學習的渴求。數學實驗教學的具體內容可設定為:
實驗一、微積分基礎:學習使用 Mathematica 的一些基本功能來驗證或觀察得出微積分學的一些基本結論。例如:函數圖象,導數的符號與函數的遞增、遞減、極值的關系,泰勒逼近,傅立葉逼近,無窮乘積逼近,e 的產生,調和級數與自然對數的關系等。
實驗二、怎樣計算 p : 利用數值積分、泰勒級數、蒙特卡羅法等各種方法計算p 的近似值。結合計算p 的近似值學會應用這些方法。
實驗三、最佳分數近似值:仍以p為例,通過實驗的方法說明怎樣用分母小、誤差小的分數近似值逼近實數,引出連分數理論。
實驗四、數列與級數:通過實驗和觀察,發現和驗證一些數列與級數的規律。
實驗五、概率:利用計算機產生隨機數的功能,模擬各種隨機現象,通過觀察這些現象總結和驗證概率統計知識。
實驗六、幾何變換:觀察各種變換(線性變換、射影變換、非歐幾何變換、復變換等)下平面圖形的變化情況及不變量,體驗幾何學的核心:愛爾蘭根綱領。
實驗七、天體運動:在計算機上模擬產生天體運動、電場作用等物理現象,學到微分方程的數值解等數學方法。
實驗八、迭代(一)--方程求解:通過迭代求方程的近似解。
實驗九、尋優:以光的折射、最小二乘法等為例,試驗各種優化方法的原理和方法。
實驗十、最速降線:利用計算機求多元函數極值的功能,用實驗的方法求解最速降線問題。而這個問題的理論解涉及到比較深的數學(變分法)。
實驗十一、迭代(二)--分形:利用計算機迭代過程畫分形圖形,在欣賞美麗的分形圖案的同時對分形幾何這門學科有一個直觀的了解。
實驗十二、迭代(三)--混沌:從一個簡單的二次函數的迭代出發,認識混沌現象及其所蘊涵的規律性。
實驗十三、密碼:在計算機上自己嘗試加密和破譯的一些基本方法和原理。
實驗十四、初等幾何定理的機器證明:嘗試將幾何定理代數化并利用計算機證明的過程。
一個突出的問題是課程內容和作業的分量。實踐結果, 學生普遍反應作業任務比較繁重。但實驗所涉及到的數學知識難度并不大,主要的困難在于學生的計算機水平不夠, 因此完成作業要花很多時間。他們雖然也學過或正在學計算機課程, 但學過不用就忘了。數學實驗課幾乎是逼迫學生重新揀起或現學現用計算機知識, 用來完成作業,當然就顯得緊張了。看來, 一學期做 5個實驗比較適中, 也能達到讓學生動手體驗數學的目的。但實驗涉及的內容嫌單薄了些。設想可以這樣解決: 老師上課仍然安排 9 至10 個實驗, 但學生不必在這學期內全部完成, 可以在下學期自己將它補作完, 交出實驗報告。
實驗課評定成績的主要依據是平時的實驗報告。當然也可以集中做一兩個綜合性較輕的實驗,將其實驗報告作為考試試卷。實驗報告的評分的最基本標準是要自己動手, 要寫上自己觀察到的現象并進行分析。實話實說, 不能造假, 哪怕觀察到的現象與預計不一致,或者與理論推導的結果不一致, 也不能在實驗報告中說假話, 而應當分析其原因,找出改進的辦法, 重做實驗, 重新得出結論。對實驗報告的更高的標準是創造性。對于有創造性的報告, 要給以高分作為鼓勵。教師批改了實驗報告之后, 要在下一次實驗開始時, 對以前的實驗中出現的優點和缺點進行評講, 包括讓學生參加討論和演示。
由于學生實驗的主要工具是計算機。教師的教學手段應盡量采用多媒體教學。課堂基本內容可用計算機幻燈片(powerpoint)顯示, 而且在課堂上演示用計算機軟件作出來的部分實驗的結果(包括圖形和計算結果等), 使課堂更生動, 教師的講解更貼近學生的實驗過程。對實驗報告評講時應盡量鼓勵學生介紹和演示自己的實驗結果。
參考文獻
[1]溫倩,胡家朋.數學實驗教學的研究[J] .中國西部科技,2009.3
[2]程濤.淺析將數學實驗融入高等數學教學的必要性[J] .高校理科研究.
[3]盧誠波.關于數學實驗教學的研究[J] .麗水學院學報,2008.4
作者簡介:邢進喜,男,畢業于牡丹江師范學院數學教育專業,現工作于黑龍江農業經濟職業學院,副教授。