摘要:基于廣義Jordan標準型和分塊矩陣的Drazin逆計算公式,在相對較弱的條件下,得到了擾動矩陣的加權Drazin逆表達式,并根據矩陣范數的相關性質,給出了加權Drazin逆的擾動邊界。
關鍵詞:擾動 加權Drazin逆 廣義Jordan標準型
1.前言
眾所周知,Drazin逆在奇異方程、奇異微分方程、算子理論、馬爾科夫鏈、密碼學、迭代等方面有很多實際應用[1, 3, 4, 6, 7]。
1980年,Cline和Greville [2]把Drazin逆的定義由方矩陣推廣到一般的長方形矩陣。令A[#1013;]Cm×n,W[#1013;]Cm×n,則存在X[#1013;]Cm×n滿足
(AW)K+1xw=(AW)K,XWAWX=XAWX=XWA, (1.1)
其中K=Ind(AW),為AW的指標,是滿足rank((AW(K))=rank((AW)K+1)的最小非負整數,稱X為矩陣A的W-加權Drazin逆,常用X=Ad,w表示。特別地,當A為方陣,W=I 時,加權Drazin逆Ad,w就退化為普通Drazin逆AD。A的W-加權Drazin逆有如下性質:
Ad,w=A[(WA)D]2=[(AW)D]2A 。 (1.2)
對任意的矩陣A[#1013;]Cm×n,分別用R(A)和N(A) 表示A的列空間和零空間,由(1.2)可知,R(Ad,w)=R((AW)K1),N(Ad,w)=N((WA)K2,其中K1=Ind(AW),k2=Ind(WA)。
記B=A+E,A、E[#1013;]Cm×n。在文獻[3-9]中,已經對長方形矩陣W-加權Drazin逆的擾動作了一定的研究,本文主要是對[5, 6]的條件作進一步放寬,并假定A, E滿足下列條件之一。
(1)R(EW)[#8838;]R[(AW)K],[Ad,wWEW][<]1和k=max{Ind(AW),Ind(WA)};
(2)N[(WA)K] [#8838;]N(WE),[WEWAd,w][<]1和k=max{Ind(AW),Ind(WA)};
(3) R(WE)[#8838;]R[(WA)k],[WEWAd,w][<]1和k=max{Ind(AW),Ind(WA)};
(4)N[(AW)K] [#8838;]N(EW),[Ad,wWEW][<]1和k=max{Ind(AW),Ind(WA)}。
參考文獻
[1] Guorong Wang, Yimin Wei, Sanzheng Qiao, Generalized Inverses: Theory and Computations, Science Press, Beijing, 2004.
[2] R.E. Cline, T.N.E. Greville, A Drazin inverse for rectangular matrices, Linear Algebra Appl. 29 (1980) 53-62.
[3] Yimin Wei, Guorong Wang, The perturbation theory for the Drazin inverse and its applications, Linear Algebra Appl. 258 (1997) 179-186.
[4] V. Rakocevic, Yimin Wei, A weighted Drazin inverse and applications, Linear Algebra Appl. 350 (2002) 25-39.
[5] N. Castro-González, J.Y. Vélez-Cerrada, The weighted Drazin inverse of perturbed matrices with related support idempotents, Appl. Math. Comput. 187 (2007) 756-764.
[6] Yimin Wei, Ching-Wah Woo, Tiangang Lei, A note on the perturbation of the W-weighted Drazin inverse, Appl. Math. Comput. 149 (2004) 423-430.
[7] Yimin Wei, Integral representation of the W-weighted Drazin inverse, Appl. Math. Comput. 144 (2003) 3-10.
[8] N. Castro-Gonzalez, J.J. Koliha, Yimin Wei, Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero, Linear Algebra Appl. 312 (2000) 181-189.
[9] Yimin Wei, A characterization for the W-weighted Drazin inverse and a Cramer rule for W-weighted Drazin inverse solution, Appl. Math. Comput. 125 (2001) 303-310.
[10] N.Castro-González, Additive perturbation results for the Drazin inverse, Linear Algebra Appl. 397 (2005) 279-297.