摘 要:本文給出兩個推論;之后,又通過嚴格的數學證明,把此類問題進一步推廣,給出了三個定理。至此,數學上一大類型的數學求極限的問題迎刃而解。
關鍵詞:極限 收斂 中值定理 閉區間套原理 Cauchy收斂準則
中圖分類號:G642 文獻標識碼:A 文章編號:1674-098X(2011)12(c )-0000-00
Abstract: In this paper, after investigating a special problem, we get a different method and using it we wonderfully get a result . Then we do much researching on the same kind of problems deeply and obtain two interesting corollaries . Next we generalize the conclusions and arrive at three theorems Finally we summarize the discussion to form a idea which will be easily used to deal with a kind of limit problems.
Key words: limit, converge, mean value theorem, principle of decreasing closed interval sequence , Cauchy’s convergence criterion.
本文將介紹一些求極限的方法,然后給出一般的結論,進而得出三個定理。
推論1:設x(-,+),=sinx,=sin,…,=sin,…,則=0
證明見參考文獻[3]
由推論1便聯想到其他情況:
推論2:設x(-,+),=cosx,=cos,…,=cos,…,則存在。
證明:由余弦函數的性質,有-11,cos11, cos1coscos1,…, 因此有:當n為偶數時: , n2
因為cosx在第一象限是單調減函數,所以:
當n為奇數時: n3
因此,對任自然數k均是下列區間元素
參考文獻
[1]菲赫歌金科爾茲茨.微積分學教程[M] .北京;人民教育出版社, 1955-1957
[2] Patrick M Fitzpatrick, Advanced Calculus, PWS Publishing Company, USA 1999
[3] 用遞推的方法求極限[M].北京;商業文化雜志,,