摘要:輕彈簧是一種理想化的物理模型,高中物理以輕彈簧為模型,設置了許多復雜的物理情景,可從考查力的概念,物體的平衡,牛頓運動定律的應用及能量的轉化與能量守恒,為高考命題的重點,這類題目幾乎每年高考卷面均有命題,所以應引起廣大師生的重視。
關鍵詞:彈簧;彈力;剪斷
彈力是高考命題的一個重點,彈力的大小與方向時刻要與當時的形變相對應,因此也成為高中學生理解的一個難點,本文將通過幾個例題來分析高中物理中剪斷彈簧后彈力的變化情況。
一、彈簧的彈力是一種由于彈簧形變而產生的一種接觸力。當題目出現與彈簧相關聯的物理情景時,需要注意彈簧彈力的大小與方向時刻要與當時的形變相對應。在題目中一般應從彈簧的形變分析入手,先確定彈簧原長位置x0,現長位置x,找出形變量△x=∣x-x0∣與物體空間位置變化的幾何關系,分析形變所對應的彈力大小、方向,以此來分析計算物體運動狀態的可能變化。
二、由于彈簧的特殊結構。彈簧的彈力是漸變的,而不是突變的,彈力的變化需要一定的“時間”。有時充分利用彈簧的這一“惰性”是解決問題的關鍵。因此分析彈簧問題時利用彈簧的惰性自然成了分析彈簧問題的思維起點。但對于從中間剪斷彈簧的問題時,則彈簧的彈力將消失。
例1.A、B球質量均為m,AB間用輕彈簧連接,
將A球用細繩懸掛于O點,如圖示,剪斷細繩的瞬間,試分析AB球產生的加速度大小與方向。
分析:
開始A球與B球處于平衡狀態,其受力圖示見右:
剪斷繩OA瞬間,A、B球均未發生位移變化,故彈簧產生的彈力kx也不會變化,kx=mg,所以剪斷繩瞬間,B受力沒發生變化,其加速度aB=0;A球受到合外力為kx+mg,其加速度aA==2g豎直向下。
例2.試分析,將上題中繩與彈簧位置互換后懸掛,將繩剪斷瞬間,AB球加速度的大小與方向?
分析:開始A球與B球處于平衡狀態,剪斷繩AB瞬間,A、B球均未發生位移變化,故彈簧產生的彈力kx也不會變化,kx=2mg,所以剪斷繩瞬間,B受力發生變化,其加速度aB=g;A球受到合外力為kx-mg,其加速度aA=(kx-mg)/m=g豎直向下所以,aA=g,豎直向上;aB=g,豎直向下。
例3.如圖所示,質量相同的兩個小球A、B用兩根完全相同的彈簧Ⅰ、Ⅱ連接,則當僅剪斷Ⅰ、Ⅱ中的一根的瞬間,下列說法正確的是( )
A.若剪斷Ⅰ上端,則A、B的加速度aA=aB=g,方向豎直向下。
B.若斷剪斷Ⅰ下端,則A的加速度aA=2g,方向豎直向下;B的加速度aB=0。
C.若剪斷Ⅱ上端,則A的加速度aA=g,方向豎直向上;B的加速度aB=g方向豎直向下。
D.若剪斷Ⅱ下端,則A的加速度aA=g,方向豎直向下;B的加速度aB=g方向豎直向下。
分析:對于同一根彈簧,不管是剪斷哪端,結果都是該彈簧的彈力消失,另一根彈簧的彈力不會發生突變。
1.若剪斷彈簧Ⅰ
A.物體受到重力和彈簧Ⅱ向下的拉力mg,合力為2mg,加速度aA=2g,方向豎直向下。
B.物體受到重力和彈簧Ⅱ向上的拉力mg,合力為0,加速度aB=0。
2.若剪斷彈簧Ⅱ
A.物體受到重力和彈簧Ⅰ向上的拉力2mg,合力為mg,加速度aA=g,方向豎直向上。
B.物體受到重力,加速度aB=g,方向豎直向下。
答案BC
例4.如圖所示,彈簧上端固定在一點,下端掛一木匣A,木匣A頂部懸掛一木塊B(可當作質點),A和B的質量都為m=1kg,B距木匣底面h=16cm,當它們都靜止時,彈簧長度為L,某時刻,懸掛木塊B的細線突然斷開,在木匣上升到速度剛為0時,B和A的底面相碰,碰撞后結為一體,當運動到彈簧長度又為L時,速度變為v=1m/s。求:碰撞中的動能損失△Ek;
解:從B開始下落到彈簧長度再次恢復為L的過程中,系統損失的機械能為:ΔE=mgh-?·2mv/2=0.6J則碰撞中動能損失等于系統的機械能損失:ΔEK=ΔE=0.6J通過上面幾個例題,我們對彈簧彈力的變化從彈簧的連接物體處剪斷和從彈簧某處剪斷及彈簧的能量改變來分析這類問題。以提高學生多方位,全面思考問題的能力,更加有利于提高學生的思維能力。
通過上面幾個例題,我們對彈簧彈力的變化從彈簧的連接物體處剪斷和從彈簧某處剪斷兩點入手來分析此類問題。以提高學生多方位,全面思考問題的能力,更加有利于提高學生的思維能力。
參考文獻:
1.高中物理課本.(人教版第一冊).
2.高中物理易錯題例析.安徽教育出版社1992.
3.梁斌,庹有康.《普通物理學》.機械工業出版社.2009年09月.
4.趙凱華,羅蔚茵.《新概念物理教程》.高等教育出版社.2004年7月.