于晨輝, 杜仲燕, 高 佳, 王偉茜, 竇曉兵
(浙江中醫藥大學生命科學學院,浙江 杭州 310053)
4-HNE通過抑制TNF-α介導的NF-κB活化誘導酒精性肝損傷*
于晨輝, 杜仲燕, 高 佳, 王偉茜, 竇曉兵△
(浙江中醫藥大學生命科學學院,浙江 杭州 310053)
目的通過體外細胞及體內動物實驗,研究腫瘤壞死因子α(TNF-α)誘導的4-羥基壬烯酸(4-HNE)致敏肝細胞發生死亡的作用及機制。方法以人肝細胞株HepG2及小鼠原代肝細胞為細胞模型,通過乳酸脫氫酶(LDH)釋放及MTT比色法檢測4-HNE對TNF-α誘導的肝細胞死亡的作用,利用Western blotting技術檢測細胞內4-HNE與蛋白質形成的加合物水平,通過Western blotting和ELISA技術檢測細胞核內NF-κB(p65)的表達及其與DNA結合活性。以C57BL/6小鼠為動物模型,利用HE染色、ELISA、Western blotting及TUNEL等技術,檢測長期攝入酒精前后動物肝組織形態、甘油三酯(TG)水平、4-HNE水平、TNF-α水平及血漿丙氨酸氨基轉移酶(ALT)活性的變化。結果(1) 4-HNE可以顯著增加HepG2細胞及小鼠原代肝細胞對TNF-α殺傷作用的敏感性,從而使TNF-α誘導4-HNE致敏的肝細胞死亡。(2) 4-HNE可顯著提高HepG2細胞內4-HNE-蛋白質加合物的水平。(3) 4-HNE抑制HepG2細胞內TNF-α介導的NF-κB活化。(4) 長期攝入酒精導致小鼠肝細胞內4-HNE和TNF-α水平升高,引起肝細胞內TG水平升高,血漿ALT活性升高,肝細胞死亡增多。結論長期攝入酒精使肝細胞發生氧化應激,其產物4-HNE可作為一種肝細胞致敏因子,通過抑制肝細胞內TNF-α介導的NF-κB抗細胞凋亡信號通路,誘導酒精性肝損傷。這可能是一種新的酒精性肝病發病機制。
酒精性肝病; 4-羥基壬烯酸; 腫瘤壞死因子α; 核因子κB; 肝細胞
酒精性肝病(alcoholic liver disease, ALD)是由于長期過度飲酒導致的肝臟疾病[1]。近年來我國ALD的發病率及死亡率也呈逐年增長趨勢,已成為僅次于病毒性肝炎的第二大肝病。有研究顯示,酒精性肝硬化占肝硬化發病總數的比例已從1999年的10.8%上升為2003年的24.0%[2-3]。雖然許多研究已證實,氧化應激在ALD的發生發展過程中起著十分關鍵的作用,抗氧化劑對ALD具有一定的預防作用[4],但是ALD的發病機制復雜,氧化應激可以影響細胞內許多信號調控通路[5],其具體機制尚未完全明確,很大程度上限制了抗氧化劑在ALD臨床治療上的應用。目前為止,沒有任何能夠安全有效治療ALD的臨床用藥。長期攝入酒精導致肝細胞發生氧化應激和脂質過氧化反應,4-羥基壬烯酸(4-hydroxynonenal, 4-HNE)是氧化應激和脂質過氧化反應的主要產物之一,在ALD的發生發展過程中起著至關重要的作用[6]。許多臨床研究、流行病學調查及動物實驗研究均表明,ALD患者血漿中4-HNE水平顯著增加。此外,1989年,McClain等最初發現酒精性肝炎患者體內的腫瘤壞死因子α(tumor necrosis factor α, TNF-α)明顯高于正常人[7]。TNF-α具有多種生物學功能,在生理狀態下,TNF-α介導的抗凋亡通路的活化使肝細胞對TNF-α處于耐受狀態。然而在酒精等某些病理因素作用下,肝細胞可以變得對TNF-α敏感,導致細胞的死亡[8]。以上研究提示,長期攝入酒精可產生氧化應激,而氧化應激是誘發肝細胞死亡的重要觸發機制,4-HNE作為其主要產物之一,是否也可以通過增加肝細胞對TNF-α介導的細胞毒作用的敏感性,誘導肝細胞死亡呢?在本研究中我們采用人肝細胞株HepG2和小鼠原代肝細胞作為細胞模型、長期攝入乙醇的C57BL/6小鼠作為動物模型,檢測4-HNE對TNF-α誘導的肝細胞死亡的作用,從細胞信號調控及蛋白質翻譯后修飾水平進一步揭示ALD的發病機制,為ALD的臨床治療提供新的策略,也為以4-HNE為靶點的新型藥物研發提供重要的理論指導和依據。
1材料
1.1動物 8周齡雄性C57BL/6小鼠,體重(25.0±0.5)g,由Jackson Laboratory提供。
1.2細胞 人肝細胞株HepG2購自中科院上海細胞庫;小鼠原代肝細胞購自Celsis IVT。
1.3試劑 4-HNE購自Cayman Chemical。TNF-α購自Perro Tech。LDH測試盒購自Key Gen。β-actin 抗體購自Santa Cruz。4-HNE抗體購自R&D。NF-κB(p65)抗體購自CST。ELISA試劑盒購自Pierce。其它實驗試劑均購自Sigma Aldrich。
2方法
2.1LDH測定 按2×108/L細胞密度制備單細胞懸液,每孔1 mL接種于24孔培養板中,每組重復3孔進行細胞培養及藥物孵育。根據LDH檢測試劑盒說明測定細胞培養液中LDH的活性,分析各組間的細胞毒性作用。
2.2MTT比色法 制備單細胞懸液,細胞按2×108/L密度接種于96孔培養板內,每孔100 μL,每組重復5孔。置37 ℃、5%CO2培養箱中培養24 h,待細胞貼壁后,棄掉原培養基,向每孔加入含4-HNE的培養基100 μL,預處理2 h, 再加入TNF-α孵育16 h。加入20 μL MTT在培養箱內培養4 h后,棄去孔中所有液體,各孔加入150 μL DMSO,振蕩10 min后在酶標儀570 nm波長處測定吸光度。
2.3Western blotting 細胞培養及藥物孵育后,PBS洗滌細胞2次,加入蛋白裂解液,置冰浴裂解30 min。以12 000 ×g、4 ℃離心10 min。取上清,用BCA試劑盒測定提取液中的蛋白質濃度。將各組調整至相同蛋白濃度后,取20 μg樣本經SDS-PAGE電泳、轉移電泳、抗體免疫、顯影、曝光等步驟檢測蛋白表達情況(β-actin作為內參照)。
2.4ELISA檢測 細胞培養藥物孵育后按試劑盒(碧云天)說明書操作抽提核蛋白,根據ELISA試劑盒(Pierce)說明書操作,經包被,樣本孵育,封閉,Ⅰ抗、Ⅱ抗孵育,顯色,終止等步驟檢測細胞核內NF-κB(p65)與96孔板中特異性DNA序列的結合活性。
2.5動物模型制備 采用含乙醇的液體飼料(alcohol fed,AF)及不含乙醇但含有與AF組相同熱卡的對照組飼料(pair fed,PF)喂飼小鼠5周(試喂1周后,從第2周開始乙醇液體飼料中乙醇含量從占總熱卡的30%遞增到36%,每周增加2%),以建立正常對照組(PF)和ALD模型組(AF)。小鼠的進食量和體重每天、每周分別記錄,5周后處死小鼠,提取并保存肝組織和血漿。
3統計學處理
利用SPSS 10.0統計軟件,數據以均數±標準差(mean±SD)表示,組間均數比較采用單因素方差分析。以P<0.05為差異有統計學意義。
14-HNE顯著增加肝細胞對TNF-α殺傷作用的敏感性
用4-HNE(0~60 μmol/L)預處理肝細胞2 h,再加入40 μg/L TNF-α孵育16 h,LDH檢測結果顯示,40 μg/L TNF-α或20 μmol/L 4-HNE單獨作用HepG2肝細胞,細胞活性與對照組相比無明顯差異(P>0.05),若先用20 μmol/L 4-HNE預處理HepG2肝細胞2 h,再加入40 μg/L TNF-α孵育16 h,可檢測到細胞活性顯著降低(P<0.05),且呈現明顯的劑量效應,見圖1A。MTT比色法檢測4-HNE對TNF-α介導的肝細胞增殖的作用,得到了與LDH檢測相一致的結果,見圖1B。先用20 μmol/L 4-HNE預處理HepG2肝細胞2 h,再加入40 μg/L TNF-α孵育16 h,熒光顯微鏡下被Hoechst 33342染色的細胞數量明顯減少,見圖1C。MTT檢測4-HNE對TNF-α介導的小鼠原代肝細胞的增殖作用,得到了與HepG2細胞相一致的結果,見圖1D。

Figure 1. 4-HNE significantly increased the sensitivity of hepatocytes to the killing effect of TNF-α. A: HepG2 cells were pretreated with 4-HNE (20, 40 or 60 μmol/L) for 2 h, followed by 40 μg/L TNF-α incubation for 16 h, and then the activity of LDH in cell medium was determined (n=3); B: HepG2 cells were pretreated with 20 μmol/L 4-HNE for 2 h, followed by TNF-α (10 or 40 μg/L) incubation for 16 h, and then the proliferation of the cells was tested by MTT assay(n=6); C: HepG2 cells were pretreated with 20 μmol/L 4-HNE for 2 h, followed by 40 μg/L TNF-α incubation for 16 h, and then Hoechst 33342 staining was performed (×40); D: primary mouse hepatocytes were pretreated with 20 μmol/L 4-HNE for 2 h, followed by 40 μg/L TNF-α incubation for 24 h, and then MTT assay was conducted(n=6). Mean±SD.*P<0.05,**P<0.05vscontrol (0 μmol/L 4-HNE + 0 μg/L TNF-α);△P<0.05vs20 μmol/L 4-HNE + 40 μg/L TNF-α or 40 μmol/L 4-HNE alone;#P<0.05vs40 μmol/L 4-HNE + 40 μg/L TNF-α or 60 μmol/L 4-HNE alone.
圖14-HNE顯著增加肝細胞對TNF-α殺傷作用的敏感性
24-HNE對HepG2細胞內4-HNE-蛋白質加合物形成的影響
不同濃度的4-HNE作用于HepG2細胞,隨著4-HNE濃度的增高,細胞內4-HNE-蛋白質加合物明顯增多,當4-HNE為80 mol/L時,4-HNE與蛋白質形成加合物的量是對照組的4.83倍(P<0.01),見圖2A。用20 μmol/L 4-HNE作用HepG2細胞2 h,細胞內4-HNE-蛋白質加合物明顯增多(P<0.05),作用4 h表達量進一步增加,約為對照組的10倍(P<0.01),作用8 h與4 h比無明顯變化,見圖2B。

Figure 2. Effect of 4-HNE on 4-HNE-protein adduct formation in HepG2 cells detected by Western blotting. A: HepG2 cells were incubated with exogenous 4-HNE at the indicated concentrations for 4 h; B: HepG2 cells were incubated with exogenous 4-HNE (20 μmol/L) for the indicated time periods. Mean±SD.n=3.*P<0.05,**P<0.01vscontrol (0 μmol/L or 0 h).
圖24-HNE對HepG2細胞4-HNE-蛋白質加合物形成的影響
34-HNE抑制HepG2細胞內TNF-α介導的NF-κB活化
用20 μmol/L 4-HNE預處理細胞2 h,再用100 μg/L TNF-α孵育4 h,細胞核內NF-κB(p65)與DNA的結合活性比單獨用100 μg/L TNF-α孵育4 h明顯降低(P<0.05),見圖3A。隨著4-HNE濃度的增高,NF-κB(p65)的活性進一步降低,對照組NF-κB(p65)的活性是4-HNE 40 μmol/L組的2.02倍(P<0.05),見圖3B。
Western blotting結果顯示,隨著4-HNE濃度的增高,HepG2細胞核內NF-κB(p65)蛋白的表達明顯降低,見圖3C。
4乙醇對小鼠肝組織內4-HNE、TNF-α、甘油三酯(triglyceride,TG)和血漿丙氨酸氨基轉移酶(alanineaminotransferase,ALT)的影響
與正常喂食組小鼠相比,實驗組小鼠肝臟內TG的含量顯著升高(圖4A),并且肝臟出現脂肪水解現象(圖4B)。同時發現,攝入乙醇提高了實驗組小鼠血漿內ALT的活性(圖4C)。TUNEL檢測顯示,實驗組小鼠比正常組小鼠表現出明顯的肝細胞凋亡現象(圖4D)。肝臟內TNF-α水平也明顯升高(圖4E)。此外,用含乙醇的食物喂養5周后小鼠肝細胞內4-HNE-蛋白質加合物水平明顯提高(圖4F)。

Figure 3. 4-HNE inhibitied TNF-α-mediated NF-κB activation in HepG2 cells. A: HepG2 cells were pretreated with 20 μmol/L 4-HNE for 2 h, followed by 100 μg/L TNF-α incubation for 4 h, and then intranuclear NF-κB (p65) DNA binding activity were measured by ELISA; B: HepG2 cells were pretreated with 4-HNE (20 or 40 μmol/L) for 2 h, followed by 40 μg/L TNF-α incubation for 4 h, and then intranuclear NF-κB (p65) DNA binding activity were measured by ELISA; C: HepG2 cells were pretreated with 4-HNE (20 or 40 μmol/L) for 2 h, followed by 100 μg/L TNF-α incubation for 4 h, and then NF-κB (p65) protein expression was detected by Western blotting. Mean±SD.n=3.*P<0.05,**P<0.01vscontrol (0 μmol/L 4-HNE+0 μg/L TNF-α);△P<0.05vs40 μg/L TNF-α alone;#P<0.05vs20 or 40 μmol/L 4-HNE alone;▲P<0.05vs20 μmol/L 4-HNE + 40 μg/L TNF-α.
圖34-HNE抑制HepG2肝細胞內TNF-α介導的NF-κB活化
肝臟是酒精代謝的主要部位,長期攝入酒精會導致肝細胞發生氧化應激和脂質過氧化。血漿中4-HNE的生理濃度是0.3~0.7 μmol/L[9-10],ALD患者的血漿中4-HNE水平顯著增加,肝炎早期4-HNE水平是生理濃度的2.8倍,肝硬化時期的4-HNE水平是生理濃度的8.4倍[11],肝臟的局部細胞為了應對氧化應激,濃度甚至可高達100 μmol/L[12-13]。本研究中我們用20~60 μmol/L 4-HNE來模擬早期ALD的體內4-HNE水平。雖然4-HNE對許多類型細胞的毒性作用已被廣泛證實,但在病理狀態下,肝細胞對4-HNE的耐受力將增強,這是因為肝細胞對4-HNE具有較強的降解代謝功能[14]。本研究體外實驗數據表明,20~40 μmol/L 4-HNE單獨作用于人肝細胞HepG2和小鼠原代肝細胞并沒有引起細胞死亡或僅引起很小程度死亡,但TNF-α可以誘導4-HNE致敏的肝細胞顯著殺傷;體內實驗也證實,長期攝入酒精可以引起肝組織內TNF-α和4-HNE水平顯著升高,從而誘導ALD。上述結果均表明TNF-α誘導4-HNE致敏的肝細胞產生細胞毒作用可能是導致ALD患者肝損傷的一個新機制。
TNF-α水平過高是ALD的另一個病理因素。乙醇會增加腸的通透性,引起巨噬細胞吞噬脂多糖增加,導致TNF-α水平升高。NF-κB是用以應對TNF-α刺激的細胞生死存亡之間一個重要的轉換樞紐。在TNF-α的誘導下,缺乏NF-κB p65亞基或IKK復合物重要組成部分的小鼠在妊娠中期就會因肝細胞凋亡而死亡[15]。此外,IκBα突變的肝細胞對TNF-α誘導的殺傷作用更敏感[16]。本研究結果表明,4-HNE可以抑制TNF-α誘導的肝細胞內NF-κB的激活,從而增加肝細胞對TNF-α的敏感性,誘導肝細胞死亡,這個結論被以下2個實驗結果所支持:(1)4-HNE降低了p65與DNA的結合活性; (2)4-HNE減少了細胞核內p65的含量。雖然前期研究有報道4-HNE對NF-κB活化的影響,但本研究結果與以前的結果存在不一致之處。4-HNE具有明顯的細胞類型和刺激因素依賴性,4-HNE可以激活血管平滑肌細胞NF-κB的活性[17],而在THP-1單核細胞中,4-HNE通過抑制IκBα的磷酸化來抑制NF-κB的活性,這種抑制作用受到脂多糖、白細胞介素1β和佛波酯的刺激,而不是TNF-α的刺激[18]。目前為止,本文首次報道4-HNE可以抑制TNF-α誘導的肝細胞內NF-κB活性。

Figure 4. Effects of long-term (5 weeks) alcohol intake on the morphology and functions of mouse hepatic tissues, and the hepatic levels TNF-α and 4-HNE-protein adducts. A: hepatic triglyceride (TG) content; B: histological changes of hepatic tissues (HE staining, ×100); C: plasma alanine aminotransferase (ALT) activity; D: hepatocyte apoptosis in hepatic tissues (TUNEL, ×100); E: hepatic TNF-α level; F: Western blotting analysis of hepatic 4-HNE-protein adduct formation. PF: pair fed; AF: alcohol fed. Mean±SD.n=3.*P<0.05vsPF.
圖4長期攝入酒精對小鼠肝組織形態、功能、TNF-α水平和4-HNE-蛋白質加合物形成的影響
4-HNE影響蛋白質功能的主要機制之一是通過與蛋白質形成加合物,這一過程稱為蛋白質的羰基化。本研究體內和體外實驗結果均表明,外源4-HNE的加入及慢性酒精攝入均可以引起肝細胞內4-HNE與蛋白質形成加合物水平的升高,這與前期報道相一致[19-21]。這些均表明4-HNE在ALD的發生發展過程中起著至關重要的作用。
本研究提示,長期攝入乙醇使肝細胞發生氧化應激,其產物4-HNE可能作為肝細胞致敏因子,通過抑制肝細胞內TNF--α介導的NF-κB抗細胞凋亡信號通路而誘導ALD。本文為脂質過氧化作用和TNF-α誘導的肝細胞損傷作用之間潛在的相互聯系及ALD的發病機制提供了新的思路,為ALD的臨床治療提供新的策略,也為以4-HNE為靶點的新型藥物研發提供了重要的理論指導和依據,但4-HNE抑制NF-κB活性的確切機制和作用靶點仍需進一步研究。
[1] 賈 青, 張維東,王朝霞,等. 不同劑量乙醇對小鼠早期肝纖維化的影響及機制研究[J]. 中國病理生理雜志, 2010, 26(9):1801-1806.
[2] 劉 陽, 遲寶榮. 酒精性肝硬化237例臨床分析[J]. 吉林醫學, 2004, 25(4):40-42.
[3] 中華醫學會肝病學分會脂肪肝和酒精性肝病學組.酒精性肝病診療指南[J].胃腸病學, 2010, 15(10):617-621.
[4] Wheeler MD, Kono H, Yin M, et al. Delivery of the Cu/Zn-superoxide dismutase gene with adenovirus reduces early alcohol-induced liver injury in rats [J]. Gastroenterology, 2001, 120(5):1241-1250.
[5] Videla LA. Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms [J]. World J Hepatol, 2009, 1(1):72-78.
[6] Smathers RL, Galligan JJ, Stewart BJ, et al. Overview of lipid peroxidation products and hepatic protein modification in alcoholic liver disease [J]. Chem Biol Interact, 2011, 192(1-2):107-112.
[7] Goldblum SE, Hennig B, Jay M, et al. Tumor necrosis factor α-induced pulmonary vascular endothelial injury [J]. Infect Immun, 1989, 57(4):1218-1226.
[8] McClain CJ, Hill DB, Song Z, et al.S-Adenosylmethionine, cytokines, and alcoholic liver disease [J]. Alcohol, 2002, 27(3):185-192.
[9] Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes [J]. Free Radic Biol Med, 1991, 11(1):81-128.
[10] Strohmaier H, Hinghofer-Szalkay H, Schaur RJ. Detection of 4-hydroxynonenal (HNE) as a physiological component in human plasma [J]. J Lipid Mediat Cell Signal, 1995, 11(1):51- 61.
[11] Aleynik SI, Leo MA, Aleynik MK, et al. Increased circulating products of lipid peroxidation in patients with alcoholic liver disease [J]. Alcohol Clin Exp Res, 1998, 22(1):192-196.
[12] Tsukamoto H, Horne W, Kamimura S, et al. Experimental liver cirrhosis induced by alcohol and iron [J]. J Clin Invest, 1995, 96(1):620-630.
[13] Benedetti A, Comporti M, Fulceri R, et al. Cytotoxic aldehydes originating from the peroxidation of liver microsomal lipids: identification of 4,5-dihydroxydecenal [J]. Biochim Biophys Acta, 1984, 792(2):172-181.
[14] Sakuma S, Negoro M, Kifamura T, et al. Xanthine oxidase-derived reactive oxygen species mediate 4-oxo-2-nonenal-induced hepatocyte cell death [J]. Toxicol Appl Pharmacol, 2010, 249(2):127-131.
[15] Tanaka M, Fuentes ME, Yamaguchi K, et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice [J]. Immunity, 1999, 10(4):421-429.
[16] Chaisson ML, Brooling JT, Ladiges W, et al. Hepatocyte-specific inhibition of NF-κB leads to apoptosis after TNF treatment,but not after partial hepatectomy [J]. J Clin Invest, 2002, 110(2):193-202.
[17] Lee JY, Je JH, Jung KJ,et al. Induction of endothelialiNOS by 4-hydroxyhexenal through NF-κB activation [J]. Free Radic Biol Med, 2004, 37(4):539-548.
[18] Page S, Fischer C, Baumgartner B, et al. 4-Hydroxynonenal prevents NF-κB activation and tumor necrosis factor expression by inhibiting IκB phosphorylation and subsequent proteolysis [J]. J Biol Chem, 1999, 274(17):11611-11618.
[19] Koteish A, Yang S, Lin H, et al. Chronic ethanol exposure potentiates lipopolysaccharide liver injury despite inhibiting Jun N-terminal kinase and caspase 3 activation [J]. J Biol Chem, 2002, 277(15):13037-13044.
[20] Diehl AM. Effect of ethanol on tumor necrosis factor signaling during liver regeneration [J]. Clin Biochem, 1999, 32(7):571-578.
[21] Mandrekar P, Catalano D, White B, et al. Moderate alcohol intake in humans attenuates monocyte inflammatory responses:inhibition of nuclear regulatory factor kappa B and induction of interleukin 10[J]. Alcohol Clin Exp Res, 2006, 30(1):135-139.
InhibitionofTNF-α-mediatedNF-κBactivationby4-hydroxynonenalcontributestoliverinjuryinalcoholicliverdisease
YU Chen-hui, DU Zhong-yan, GAO Jia, WANG Wei-xi, DOU Xiao-bing
(LifeSciencesCollegeofZhejiangChineseMedicalUniversity,Hangzhou310053,China.E-mail:xbdou77@163.com)
AIM: To study the role of 4-hydroxynonenal (4-HNE) in hepatocyte death induced by tumor necrosis factor α (TNF-α).METHODSHuman liver cell line HepG2 and primary mouse hepatocytes were used to establish the cell model. The effect of 4-HNE on TNF-α-induced cell death was determined by lactate dehydrogenase (LDH) release and MTT assays. The intracellular levels of 4-HNE-protein adducts were determined by Western blotting. The intranuclear NF-κB (p65) and its DNA binding activity were detected by Western blotting and ELISA, respectively. Long-term intake of alcohol in C57BL/6 mice was performed to establish the animal model. The histological changes of mouse hepatic tissues and the apoptosis of hepatocytes were observed by HE staining and TUNEL assay, respectively. The hepatic levels of triglyceride (TG), TNF-α and 4-HNE-protein adducts, and the plasma activity of alanine aminotransferase (ALT) were also detected.RESULTS(1) 4-HNE significantly increased the sensitivity of HepG2 cells and primary mouse hepatocytes to the killing effect of TNF-α. (2) 4-HNE significantly increased the intracellular levels of 4-HNE-protein adducts. (3) 4-HNE inhibited TNF-α-mediated NF-κB (p65) activation in HepG2 cells. (4) Long-term intake of alcohol in mice resulted in high hepatic levels of 4-HNE and TNF-α, accompanied with the increases in hepatic TG content, plasma ALT activity and hepatocyte death.CONCLUSIONLong-term intake of alcohol induces oxidative stress and produces 4-HNE as a hepatocyte-sensitizing factor, which inhibits TNF-α-mediated NF-κB anti-apoptotic signaling pathway in hepatocytes, thus inducing alcoholic liver damage.
Alcoholic liver disease; 4-Hydroxynonenal; Tumor necrosis factor alpha; Nuclear factor kappa B; Hepatocytes
R363
A
10.3969/j.issn.1000- 4718.2013.06.016
1000- 4718(2013)06- 1046- 07
2012- 12- 08
2013- 04- 17
國家自然科學基金資助項目(No.81241145);浙江省自然科學基金資助項目(No.LY12C07002);浙江省衛生廳中醫藥科技計劃(No.2013KYA138)
△通訊作者Tel: 0571-86613724; E-mail: xbdou77@163.com